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Multipartite Bell-type inequality by generalizing Wigner’s argument
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Wigner’s argument inferring a Bell-type inequality for the Einstein–Podolsky–Rosen–Bohm entangled state
is generalized here for any N -partite state. This is based on assuming for the relevant dichotomic observables
the existence of the overall joint probability distributions, satisfying the locality condition, which would yield
the measurable marginal probabilities. For any N , such a generalized Wigner inequality (GWI) is violated
by quantum mechanics for all pure entangled states. The efficacy of GWI is probed, comparing with the
Seevinck–Svetlichny multipartite Bell-type inequality, by calculating threshold visibilities for the quadripartite
Greenberger–Horne–Zeilinger, Cluster, and W states that determine their respective robustness with respect to
the quantum-mechanical violation of GWI in the presence of white noise.
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I. INTRODUCTION

Closely following the discovery of the Bell–Clauser–
Horne–Shimony–Holt (Bell-CHSH) inequality [1] showing
an incompatibility between quantum mechanics and local
realism, Wigner [2] gave an interesting derivation of a
different Bell-type inequality, albeit restricted for the Einstein–
Podolsky–Rosen–Bohm (EPR-Bohm) entangled state. This
was based on assuming the locality condition and the existence
of the joint probability distributions (JPDs) for the occurrence
of different possible combinations of the outcomes of mea-
surements of the relevant observables. However, Wigner’s
approach has remained largely unexplored, apart from its
application in the context of entangled neutral kaons [3,4],
and its extension made by Castelleto et al. [5] for an arbitrary
two-qubit state in order to study its implication for quantum
key distribution. Against this backdrop, the central theme of the
present paper is to bring out the wider significance of Wigner’s
argument by extending it to develop an elegant method that
yields a generalized multipartite inequality, essentially based
on the assumption of the existence of JPD. The generalized
Wigner inequality (GWI) thus obtained turns out to be
useful for probing multipartite quantum nonlocality for an
arbitrary N -partite state. Before proceeding to develop our
generalization of Wigner’s approach and comparing the results
based on this approach with that obtained from other directions
of studies concerning multipartite Bell-type inequalities, let us
briefly outline the derivation of Wigner’s original inequality in
a way suitable for our subsequent treatment.

In the scenario considered by Wigner, two spin- 1
2 particles

are prepared in a singlet state and are spatially separated for
which the spin components of the particles, respectively, are

*dhome@jcbose.ac.in
†debashis7112@iiserkol.ac.in
‡sdas@students.iiserpune.ac.in

measured along three directions; say, a, b, and c. Then, in
this context, considering the individual outcomes (±1) of nine
possible pairs of measurements, Wigner’s original inequality
can be derived as follows:

Assuming the locality condition and an underlying
stochastic hidden variable (HV) distribution corresponding to
a quantum state specified by a wave function, one can infer in
the HV space the existence of overall joint probabilities for the
individual outcomes of measuring the pertinent observables,
from which the observable marginal probabilities can be
obtained. In particular, the single probability of the occurrence
of a particular outcome of measuring an observable for either
the first or the second particle can be obtained as a marginal
of the assumed overall joint probability distributions—note
that, in conformity with the locality condition, this is fixed
irrespective of what variable of the other particle is measured.
Thus, corresponding to an underlying stochastic HV, say
λ, one can define pλ(v1(a),v1(b),v1(c); v2(a),v2(b),v2(c))
as the overall joint probability of occurrence of the
outcomes, where v1(a) represents an outcome (±1) of
the measurement of the observable a for the first particle,
and so on. For example, pλ(+,−,−; −,+,+) expresses the
overall joint probability of occurrence of the outcomes v1(a) =
+1, v1(b) = −1, v1(c) = −1 for the first particle, and v2(a) =
−1, v2(b) = +1, v2(c) = +1 for the second particle. Then,
the joint probability, say, v1(a) = +1 and v2(b) = +1 for the
first and the second particle, respectively, can be written by
using the perfect anticorrelation property of the singlet state as
pλ(a + ,b+) = pλ(+,−,+; −,+,−) + pλ(+,−,−; −,+,+).
Similarly, writing pλ(c + ,b+) and pλ(a + ,c+) as marginals,
and assuming non-negativity of the overall joint probability
distributions in the HV space, it can be shown that

pλ(a + ,b+) � pλ(a + ,c+) + pλ(c + ,b+). (1)

Subsequently, by integrating over the hidden variable space
for an arbitrary distribution, one can obtain the original form
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of Wigner’s inequality:

p(a + ,b+) � p(a + ,c+) + p(c + ,b+), (2)

where p(a + ,b+) is the observable joint probability of
getting +1 for both the outcomes if the observables a and b

are measured on the first and the second particle, respectively,
and so on.

If the respective angles between a and b, a and c, and b

and c are θ12, θ13, and θ23 then, by substituting the quantum-
mechanical expressions for the relevant joint probabilities in
the inequality given by Eq. (2), one obtains 1

2 sin2(θ12/2) �
1
2 sin2(θ13/2) + 1

2 sin2(θ23/2)—a relation which is not valid for
arbitrary values of θ12, θ13, θ23. This shows an incompatibility
between quantum mechanics (QM) and Wigner’s form of
the inequality given by Eq. (2), restricted for the singlet
state in the bipartite case. Note that the above argument is
within the framework of stochastic HV theory, subject to the
locality condition, and does not depend on using the notion
of determinism. Here we may stress that the incompatibility
of QM with Eq. (2) rules out only a class of stochastic HV
theories satisfying the locality condition. This is also true for
the subsequent generalization of Wigner’s inequality discussed
in this paper in terms of stochastic HV theory.

II. GENERALIZED WIGNER INEQUALITY
FOR ANY BIPARTITE STATE

For the purpose of our treatment here, we consider that pairs
of dichotomic observables a or a′ and b or b′ are measured on
the first and the second particle, respectively. For the generality
of our treatment here, we assume, consistent with the locality
condition, an underlying HV distribution given by ρ(λ) such
that, for 24 possible combinations of pairs of outcomes, each
such pair of outcomes occur with a certain probability in
the HV space. Now, defining pλ(v1(a),v1(a′); v2(b),v2(b′)) to
be the overall joint probability pertaining to a particular λ,
the joint probability pλ(a + ,b+) is assumed to be obtainable
as a marginal in the HV space, given by the following
expression

pλ(a + ,b+) =
∑

v(a′)

∑

v(b′)

pλ( + ,v1(a′); +,v2(b′))

= pλ(+,+; +,+) + pλ(+,+; +,−)

+pλ(+,−; +,+) + pλ(+,−; +,−). (3)

Writing expressions similar to Eq. (3) for the other marginal
joint probabilities given by pλ(a+,b′+), pλ(a′+,b+), and
pλ(a′−,b−), and invoking non-negativity of the overall joint
probabilities in the HV space, we obtain the following
result:

pλ(a+,b′+) + pλ(a′+,b+) + pλ(a′−,b′−)

= pλ(a+,b+) + eight non-negative terms. (4)

Then, it follows that pλ(a+,b′+) + pλ(a′+,b+) +
pλ(a′−,b′−) − pλ(a+,b+) � 0 for any λ. Subsequently, in-
tegrating over the hidden variable space using the distribution
ρ(λ), one obtains the following form of GWI for bipartite

systems:

p(a+,b+) − p(a+,b′+) − p(a′+,b+) − p(a′−,b′−) � 0,

(5)

where we have used
∫

ρ(λ)dλ = 1, while each term in Eq. (5)
is the observable joint probability.

Similarly, other forms of GWI can be derived, such as the
one given below:

p(a+,b−) − p(a+,b′−) − p(a′+,b−) − p(a′ − ,b′+) � 0.

(6)

Next, substituting the QM expressions for the joint probabili-
ties pertaining to any state (pure or mixed) in Eqs. (5) and (6),
one obtains in terms of the expectation values the following
inequalities: 〈ab〉 − 〈ab′〉 − 〈a′b〉 − 〈a′b′〉 � 2 and 〈a′b′〉 +
〈ab′〉 + 〈a′b〉 − 〈ab〉 � 2, respectively, which together imply

|〈a′b′〉 + 〈ab′〉 + 〈a′b〉 − 〈ab〉| � 2. (7)

Thus, it is seen that the QM violation of GWI can be regarded as
equivalent to violating the Bell-CHSH inequality for bipartite
systems. Note that, a special case of the QM violation of
GWI of the form given by Eq. (5) is when p(a+,b+) >

0,p(a+,b′+) = p(a′+,b+) = p(a′−,b′−) = 0, which, inter-
estingly, is the case considered in Hardy’s nonlocality ar-
gument [6]. Another special case of GWI occurs by taking
a′ = b′ = c, whence Eq. (5) reduces to

p(a+,b+) − p(a+,c+) − p(c+,b+) − p(c−,c−) � 0,

(8)

which was derived by Castelletto et al. [5].

III. GENERALIZATION FOR ANY N-PARTITE STATE

The derivation of GWI for multipartite systems is a suitable
extension of the procedure adopted for bipartite systems.
Here we consider two dichotomic observables for each of
the spatially separated particles which are denoted by ai and
a′

i where the index i represents the ith particle. Following
an argument similar to that used earlier for writing Eq. (3),
considering any N -partite system, one can write the marginal
joint probability pλ(a1+,a2+,a3+, . . . ,aN+) in the λ space
in terms of the overall joint probabilities as follows:

pλ(a1+,a2+,a3+, . . . ,aN+)

=
∑

v(a′
1),v(a′

2),...,v(a′
N )

pλ(+,v(a′
1); +,v(a′

2);

+,v(a′
3); . . . ; +,v(a′

N )). (9)

Here, pλ(v(a1),v(a′
1); v(a2),v(a′

2); . . . ; v(aN ),v(a′
N )) is

defined to be the overall joint probability pertaining to a
given λ where v(ai) denotes the possible outcomes (±1)
when the observable ai is measured on the ith particle,
and so on. Writing expressions similar to Eq. (9) for
the other relevant marginal joint probabilities given by
pλ(a′

1+,a2+,a3+, . . . ,aN+), pλ(a1+,a′
2+,a3+, . . . ,aN+),

pλ(a1+,a2+,a′
3+, . . . ,aN+), . . ., pλ(a1+,a2+, . . . ,a′

N+),
and pλ(a′

1−,a′
2−,a′

3−, . . . ,a′
N−), and by invoking

non-negativity of the overall joint probabilities, it can
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be seen that

pλ(a′
1+,a2+,a3+, . . . ,aN+)

+pλ(a1+,a′
2+,a3+, . . . ,aN+)

+pλ(a1+,a2+,a′
3+, . . . ,aN+)

+ . . . + pλ(a1+,a2+, . . . ,a′
N+)

+pλ(a′
1−,a′

2−,a′
3−, . . . ,a′

N−)

= pλ(a1+,a2+,a3+, . . . ,aN+)

+N2N non-negative terms. (10)

Therefore, we can write the following inequality:

0 � pλ(a1+,a2+,a3+, . . . ,aN+)

−pλ(a′
1+,a2+,a3+, . . . ,aN+)

−pλ(a1+,a′
2+,a3+, . . . ,aN+)

−pλ(a1+,a2+,a′
3+, . . . ,aN+)

− · · · − pλ(a1+,a2+,a3+, . . . ,a′
N+)

−pλ(a′
1−,a′

2−,a′
3−, . . . ,a′

N−) (11)

for each λ. Subsequently, by integrating over the HV space for
an arbitrary ρ(λ), one obtains from Eq. (11) the following form
of N -partite GWI in terms of the observable joint probabilities:

0 � p(a1+,a2+,a3+, . . . ,aN+)

−p(a′
1+,a2+,a3+, . . . ,aN+)

−p(a1+,a′
2+,a3+, . . . ,aN+)

−p(a1+,a2+,a′
3+, . . . ,aN+)

− · · · − p(a1+,a2+,a3+, . . . ,a′
N+)

−p(a′
1−,a′

2−,a′
3−, . . . ,a′

N−). (12)

It can be checked by substituting into Eq. (12) the QM
expressions for the joint probabilities for any state that the
above form of GWI can be written in terms of the expectation
values, as in Eq. (7), so that the local realist upper bound for
the QM violation of N -partite GWI is obtained to be “N”.
Note that, interestingly, the form of GWI given by Eq. (12) is
equivalent to Cereceda’s multipartite local realist inequality [7]
that was obtained by generalizing Hardy’s argument for
quantum nonlocality. Possible implications of this equivalence
that suggests a close link between Wigner’s and Hardy’s
argument should be worth investigating. The maximum QM
violation of this form of inequality was studied by Ghosh
and Roy [8]. Recently, Yu et al. [9] provided a powerful
demonstration that all pure N -partite quantum entangled states
violate such an inequality. Here it is worth emphasizing that
the derivation of Eq. (12) is within the framework of stochastic
HV theory, without requiring the invokation of the notion of
determinism and satisfying the locality condition in the sense
of the single probability of the occurrence of an outcome of
measurement on a particular particle being unaffected by what
observable is actually measured on any of the other particles.

At this stage, before proceeding further, to put things in
historical perspective, we recall that studies related to N -partite

local realist inequalities were initiated by Mermin [10] and Roy
and Singh [11] in order to investigate the nature of QM viola-
tion of local realism for large N . Later, Seevinck–Svetlichny
N -partite local realist correlation inequality [12] was derived
by using the assumption of partial factorizability. Furthermore,
a set of multipartite inequalities were derived pertaining to a
local realist description of N -particle correlation by Zukowski
and Brukner [13,14]. Unlike for GWI, not all pure entangled
states violate these inequalities. Also, in contrast to GWI,
the upper local realist bound for these N -partite correlation
inequalities increases exponentially with N .

We now proceed to discuss the key features of GWI, moving
from the tripartite to the quadripartite case, concentrating
mainly on the latter.

IV. EFFICACY OF GENERALIZED WIGNER INEQUALITY

The form of GWI given by Eq. (12) reduces in the tripartite
case to the following form:

0 � p(a1+,a2+,a3+) − p(a1+,a2+,a′
3+)

−p(a1+,a′
2+,a3+) − p(a′

1+,a2+,a3+)

−p(a′
1−,a′

2−,a′
3−). (13)

It is interesting that such an inequality for the tripartite case
was earlier obtained from Hardy’s argument of quantum
nonlocality, and it was argued that QM violates this inequality
for all pure tripartite entangled states [15,16].

Next, considering the quadripartite case of GWI, we obtain
from Eq. (12) the following inequality:

0 � p(a1+,a2+,a3+,a4+) − p(a1+,a2+,a3+,a′
4+)

−p(a1+,a2+,a′
3+,a4 + ) − p(a1+,a′

2+,a3+,a4+)

−p(a′
1+,a2+,a3+,a4+) − p(a′

1 − ,a′
2 − ,a′

3 − ,a′
4−),

(14)

which, in terms of the expectation values, reduces to

〈S〉 = 〈a1a2a3a4〉 − 〈a′
1a

′
2a

′
3a

′
4〉 − 〈a1a2a3a

′
4〉 − 〈a1a2a

′
3a4〉

− 〈a1a
′
2a3a4〉− 〈a′

1a2a3a4〉− 〈a3a
′
4〉 − 〈a2a

′
4〉− 〈a1a

′
4〉

− 〈a′
3a4〉 − 〈a2a

′
3〉− 〈a1a

′
3〉 − 〈a′

2a3〉− 〈a′
2a4〉 − 〈a1a

′
2〉

− 〈a′
1a3〉 − 〈a′

1a4〉− 〈a′
1a2〉 − 〈a1a2〉− 〈a1a3〉 − 〈a1a4〉

− 〈a3a4〉 − 〈a2a3〉− 〈a2a4〉 − 〈a′
3a

′
4〉− 〈a′

2a
′
3〉 − 〈a′

2a
′
4〉

− 〈a′
1a

′
3〉 − 〈a′

1a
′
4〉− 〈a′

1a
′
2〉 − 〈a2a3a

′
4〉 − 〈a1a3a

′
4〉

− 〈a1a2a
′
4〉− 〈a2a

′
3a4〉 − 〈a1a

′
3a4〉 − 〈a1a2a

′
3〉

− 〈a′
2a3a4〉 − 〈a1a

′
2a3〉 − 〈a1a

′
2a4〉 − 〈a′

1a3a4〉
− 〈a′

1a2a3〉− 〈a′
1a2a4〉 + 〈a′

2a
′
3a

′
4〉 + 〈a′

1a
′
3a

′
4〉

+ 〈a′
1a

′
2a

′
4〉 + 〈a′

1a
′
2a

′
3〉 − 2(〈a1〉 + 〈a2〉 + 〈a3〉 + 〈a4〉)

� 4. (15)

Now, since the GHZ state [17], Cluster state [18], and the
W state [19] are of special interest in the context of quantum
information, here we consider these types of entangled states.
In the quadripartite case, the expressions for these states are,
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respectively,

|GHZ〉1234 = 1√
2

(|0000〉 + |1111〉), (16a)

|Cluster〉1234 = 1

2
(|0000〉 + |0011〉 + |1100〉 − |1111〉),

(16b)

|W 〉1234 = 1

2
(|0001〉 + |0010〉 + |0100〉 + |1000〉),

(16c)

where |0〉 and |1〉 are the eigenstates of σz corresponding to
the eigenvalues +1 and −1, respectively.

In order to calculate the maximum QM violation of GWI
in the quadripartite case corresponding to the GHZ state, we
consider the settings in the X-Y plane given by

ai = cos(φi)σx + sin(φi)σy,

a′
i = cos(φ′

i)σx + sin(φ′
i)σy,

(17)

where φi,i ′ is the angle with the X axis. For the GHZ state (16a),
it can be shown that all the correlation functions occurring
on the left-hand side (LHS) of Eq. (15) involving the four
observables of the type considered in Eq. (17) are cosine of
the sum of the corresponding angles with X axis, and the
correlation functions involving less than four observables are
all zero. Then the LHS of GWI in the quadripartite case given

by Eq. (15) reduces to the following form:

〈S〉GHZ

= cos(φ1 + φ2 + φ3 + φ4) − cos(φ′
1 + φ′

2 + φ′
3 + φ′

4)

− cos(φ1 + φ2 + φ3 + φ′
4) − cos(φ1 + φ2 + φ′

3 + φ4)

− cos(φ1 + φ′
2 + φ3 + φ4) − cos(φ′

1 + φ2 + φ3 + φ4).

(18)

Now, simplifying Eq. (18) by choosing φ1 + φ2 + φ3 + φ4 =
α and φ′

i = φi + β, we obtain

〈S〉GHZ = cos(α) − cos(α + 4β) − 4 cos(α + β). (19)

The maximum value of the above quantity signifying the
maximum QM violation of GWI for the GHZ state in the
quadripartite case is given by 5.656 848 (≈4

√
2) when (α,β) =

(0.6981,2.2427) or (5.5938,4.0492) in radians.
Next, in order to calculate the maximum QM violation for

the quadripartite Cluster and W states, we consider the settings
in the X-Z plane given by

ai = cos(φi)σz + sin(φi)σx,

a′
i = cos(φ′

i)σz + sin(φ′
i)σx,

(20)

where φi,i ′ is the angle with the Z axis. Considering these
observables, the expression for the LHS of GWI in the
quadripartite case given by Eq. (15) for the Cluster state (16b)
is given by

〈S〉Cluster = cos(φ′
3) sin(φ′

1) sin(φ′
2) − cos(φ1) cos(φ′

2) − cos(φ′
1) cos(φ2) − cos(φ′

1) cos(φ′
2) − cos(φ3) cos(φ4) − cos(φ3) cos(φ′

4)

− cos(φ′
3) cos(φ4) − cos(φ′

3) cos(φ′
4) − cos(φ3) sin(φ1) sin(φ′

2) − cos(φ3) sin(φ′
1) sin(φ2) − cos(φ′

3) sin(φ1) sin(φ2)

− cos(φ1) cos(φ2) − cos(φ4) sin(φ1) sin(φ′
2) − cos(φ4) sin(φ′

1) sin(φ2) − cos(φ′
4) sin(φ1) sin(φ2)

+ cos(φ′
4) sin(φ′

1) sin(φ′
2) − cos(φ1) sin(φ3) sin(φ′

4) − cos(φ1) sin(φ′
3) sin(φ4) − cos(φ′

1) sin(φ3) sin(φ4)

+ cos(φ′
1) sin(φ′

3) sin(φ′
4) − cos(φ2) sin(φ3) sin(φ′

4) − cos(φ2) sin(φ′
3) sin(φ4) − cos(φ′

2) sin(φ3) sin(φ4)

+ cos(φ′
2) sin(φ′

3) sin(φ′
4) + cos(φ1) cos(φ2) cos(φ3) cos(φ4) − cos(φ1) cos(φ2) cos(φ3) cos(φ′

4)

− cos(φ1) cos(φ2) cos(φ′
3) cos(φ4) − cos(φ1) cos(φ′

2) cos(φ3) cos(φ4) − cos(φ′
1) cos(φ2) cos(φ3) cos(φ4)

− cos(φ′
1) cos(φ′

2) cos(φ′
3) cos(φ′

4). (21)

By choosing φ1 = −φ2 = −φ3 = φ4, φ′
1 = −φ′

3, φ′
2 = −φ′

4, and φ′
1 + φ′

2 = 2π , the expression given in Eq. (21) reduces to

〈S〉Cluster = cos4(φ1) − cos4(φ′
1) − 2 cos2(φ′

1) − 2 cos2(φ1) + 4 cos3(φ′
1) − 4 cos2(φ1) cos(φ′

1) − 4 cos3(φ1) cos(φ′
1)

− 4 cos(φ1) cos(φ′
1) + 8 cos(φ1) sin(φ1) sin(φ′

1). (22)

Now, for (φ1,φ
′
1) = (0.3578,2.2689) or (5.9341,4.0230) in radians, the value of the above expression is 5.7442. This is indeed

the maximum QM violation of GWI given by Eq. (15) for the quadripartite Cluster state that is confirmed by the numerical study.
Considering the quadripartite W state given by Eq. (16c), the LHS of GWI given by Eq. (15), while choosing φ1 = 0, φ2 =

φ4, φ′
2 = φ′

4, reduces to the following expression:

〈S〉W = cos(2φ2)/4 + cos(2φ′
2)/4 − cos(2φ2 − φ3)/8 + cos(2φ2 − φ′

3)/8 + cos(φ′
1 + 2φ2 + φ3)/2 + cos(φ′

1 + 2φ′
2 + φ′

3)/2

+ cos(φ2 + φ′
2 − φ3)/4 + cos(φ2 − φ′

2 + φ3)/4 + cos(φ′
1 + φ2)/2 + cos(φ′

1 + φ′
2)/2 + cos(φ′

1 + φ3)/2

+ (3 cos(φ2 + φ′
2))/2 + cos(φ′

1 + φ′
3)/2 + cos(φ2 + φ3)/2 + [3 cos(φ2 + φ′

3)]/2 + [3 cos(φ′
2 + φ3)]/2

+ cos(φ′
2 + φ′

3)/2 + cos(φ′
1 − 2φ2 − φ3)/8 + cos(φ′

1 + 2φ2 − φ3)/8 + cos(φ′
1 − 2φ′

2 − φ′
3)/8 + cos(φ′

1 + 2φ′
2 − φ′

3)/8

+ cos(φ2 − φ′
2 − φ3)/4 − 2 cos(φ2) − [5 cos(φ3)]/4 + cos(φ′

3)/4 − cos(φ′
1 − φ2)/2 + cos(φ′

1 + 2φ2)/2

− cos(φ′
1 − φ′

2)/2 − cos(φ′
1 + 2φ′

2)/2 − cos(φ′
1 − φ3)/4 − cos(φ2 − φ′

2)/2 − cos(φ′
1 − φ′

3)/4 − cos(φ2 − φ3)/2

− cos(φ2 − φ′
3)/2 − cos(φ′

2 − φ3)/2 − [5 cos(2φ2 + φ3)]/8 − cos(φ′
2 − φ′

3)/2 + [9 cos(2φ2 + φ′
3)]/8 − cos(2φ′

2

+φ′
3)/2 + cos(φ′

1 + φ2 + φ3) − cos(φ′
1 + φ′

2 + φ′
3) + [9 cos(φ2 + φ′

2 + φ3)]/4 − 3/2. (23)
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For (φ′
1,φ2,φ

′
2,φ3,φ

′
3) = (2.271,0.131,2.298,−2.557,−0.892)

in radians, the value of the expression given by Eq. (23) is
6.5603, which is confirmed by numerical investigation to be
the maximum value.

Thus, the maximum QM violations of GWI of the form
given by Eq. (15) that were obtained for the quadripartite GHZ,
Cluster, and W states correspond to the (approximate) values
on the LHS of Eq. (15) given by 5.6568, 5.7442, and 6.5603
respectively. Note that, for GWI, the Cluster and W states show
greater QM violation than the GHZ state, whereas in the case
of the Seevinck–Svetlichny inequality (SSI), the GHZ state
shows greater (maximal) QM violation than the Cluster and
W states. Next, by using these states to illustrate the efficacy
of GWI, we probe their tolerance to white noise with respect to
the QM violation of GWI. For this, let us introduce the notion
of what is known as the visibility parameter pertaining to a
state. Considering a quadripartite mixed state given by

ρ = v|ψ〉〈ψ | + (1 − v)
I

24
, (24)

where |ψ〉 is a quadripartite pure state and the parameter v

is defined as the visibility of the state |ψ〉. Note that (1 − v)
denotes the amount of white noise present in the state ρ,
while for v = 0, ρ denotes the maximally mixed state. The
minimum value of v for which the QM predictions for ρ

given by Eq. (24) violate a given local realist inequality
therefore signifies the maximum amount of white noise that
can be present in the state ρ for the persistence of the QM
violation of the given local realist inequality. This value of v

is known as the threshold visibility pertaining to the state |ψ〉
corresponding to the given inequality.

The threshold visibilities for the GHZ, Cluster, and W

states, corresponding to the N -partite GWI given by Eq. (12)
are found to be 0.7071 (≈ 4

4
√

2
), 0.6964 (≈ 4

5.7442 ), and

0.6097 (≈ 4
6.5603 ), respectively, by using the feature that, in

the presence of white noise, for any state, the QM expression
of the LHS of Eq. (15) is v times the expression without
noise. On the other hand, using SSI, the threshold visibility
is found to be a minimum (∼0.7071) for the GHZ state [12].
Thus, an interesting feature is that, in the quadripartite case,
the threshold visibility using the GHZ state for GWI turns
out to be the same as the threshold visibility for this state
corresponding to SSI, while for the Cluster and W states, the
threshold visibilities for GWI are less than that corresponding
to SSI. This means that the QM violations of GWI for the
quadripartite Cluster and W states can persist in the presence
of greater amount of white noise than that in the case of SSI.

V. CONCLUSION

Here we stress that, although there were different directions
of studies exploring multipartite Bell-type inequalities, our
paper provides a distinct approach through N -partite gen-
eralization of Wigner’s argument for obtaining a Bell-type
inequality. In particular, it will be interesting to investigate if
there is any relation between the QM violation of GWI and
the various measures of entanglement of quantum states [20].
Curiously, for quadripartite systems, the increasing order of
pure entangled states; namely, GHZ, Cluster, and W states,
considered on the basis of the magnitudes of the maximum
QM violation of GWI shown by these states, turns out to be
the same as the ordering of these states when considered on the
basis of the magnitudes of the measure of the “persistency of
entanglement” [18] for these states. Its possible implications
need to be investigated in future studies.

Finally, we note that stimulating questions about the nature
of quantum nonlocality have been raised in the light of studies
showing that a suitably constructed classical model using
an appropriate two-particle phase space distribution can be
employed to show the violation of the Bell-CHSH inequality;
furthermore, the role of the factorizability condition used
in deriving the Bell-CHSH inequality for stochastic hidden
variables has been subjected to a critical examination [21]. On
the other hand, Fine [22] has shown that the assumption of the
existence of JPD and the use of the factorizability condition
are equivalent in the study of quantum nonlocality for bipartite
systems. Our work, based on GWI, serves to validate the notion
that, assuming the locality condition and the existence of over-
all joint probabilities in any stochastic HV theory yielding the
measurable marginal probabilities is sufficient to demonstrate,
for the multipartite states, an incompatibility between QM
and a class of stochastic HV theories satisfying the locality
condition. Possible ramifications of such findings regarding
fundamental questions about the nature of quantum nonlocal-
ity for multipartite systems call for comprehensive studies.
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