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Long-range atom-wall interactions and mixing terms: Metastable hydrogen
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We investigate the interaction of metastable 2S hydrogen atoms with a perfectly conducting wall, including
parity-breaking S-P mixing terms (with full account of retardation). The neighboring 2P1/2 and 2P3/2 levels are
found to have a profound effect on the transition from the short-range, nonrelativistic regime, to the retarded
form of the Casimir-Polder interaction. The corresponding P state admixtures to the metastable 2S state are
calculated. We find the long-range asymptotics of the retarded Casimir-Polder potentials and mixing amplitudes
for general excited states, including a fully quantum electrodynamic treatment of the dipole-quadrupole mixing
term. The decay width of the metastable 2S state is roughly doubled even at a comparatively large distance of
918 a.u. (Bohr radii) from the perfect conductor. The magnitude of the calculated effects is compared to the
unexplained Sokolov effect.
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Introduction.—The investigation of atom-wall interactions
for atoms in contact with conducting materials has a long
history. Starting from the works of Lennard-Jones [1],
Bardeen [2], Casimir and Polder [3], and Lifshitz [4], research
on related matters has found continuously growing interest
over the last decades [5–8]. In the nonretarded regime
(close range), the interaction energy scales as 1/Z3 with
the atom-wall distance Z , while for atom-wall distances
large in comparison to a typical atomic wavelength, the
interaction energy scales as 1/Z4 (see Chap. 8 of Ref. [9]).
The leading term is given by virtual dipole transitions,
while multipole corrections have recently been analyzed in
Ref. [10]. The symmetry breaking induced by the wall leads to
dipole-quadrupole mixing terms, which lead to admixtures to
metastable levels [11,12]. While this effect has been analyzed
in the nonretarded van der Waals regime [11,12], a fully
quantum electrodynamic calculation of this effect would be
of obvious interest.

This fact is emphasized by the curious observation of a long-
range, and conceivably super-long-range (micrometer-scale)
interaction of metastable hydrogen 2S atoms with a conducting
surface (the so-called Sokolov effect, see Refs. [13–16]).
It is not far-fetched to suspect that this effect could be
due to a quantum electrodynamically induced tail of the
dipole-quadrupole mixing term in the atom-wall interaction.
Namely, for the hydrogen 2S atom, the neighboring 2P1/2

and 2P3/2 levels are removed only by the Lamb shift and fine
structure, respectively, while it is known that virtual states
of lower energy can induce long-range tails in atom-wall
interactions, as well as in the Lamb shift between plates
(see Refs. [17–26]). The large admixtures typically induced
in atomic systems when a metastable level couples to nearly
degenerate states of opposite parity suggest that a closer
investigation of the hydrogen system is warranted. Atomic
units with � = 4πε0 = 1 and c = 1/α are used throughout this
Rapid Communication, where α is the fine-structure constant.
The electron charge is explicitly denoted as e unless stated
otherwise.

Retardation of the atom-wall interaction.—The
quantum electrodynamic (QED) length-gauge

interaction,

HI = −e �r · �E − e

2
ri rj ∂Ei/∂rj + · · · , (1)

follows naturally from the formalism of a long-wavelength
QED interaction Hamiltonian [27,28] (�r denotes the electron
coordinate). In contrast to the vector potential, the electric field
strength (operator) is gauge-invariant (this point has given rise
to some discussion, see Ref. [29]) and reads as [cf. Eq. (2.3)
of Ref. [20]]

�E(�r) =
∫ ∞

0
dL

∫
R2

d2k‖
π

√
ω

{
a1(�k,L)(k̂‖ × êz) sin(Lz)

+ a2(�k,L)

[
k̂‖

iL

ω
sin(Lz) − êz

k‖
ω

cos(Lz)

]}

× e i�k‖·�r‖ + H.c., (2)

where �r = �r‖ + z êz with �r‖ = x êx + y êy , while �k‖ = kx êx +
ky êy , also �k⊥ = kz êz and L ≡ |�k⊥|. The commutator relation
is [as(�k‖,L), a†

s ′ (�k‖,L)] = δss ′ δ(2)(�k‖ − �k′
‖) δ(L − L′) for the

annihilation and creation operators as and a
†
s . In order to

evaluate the interaction Hamiltonian (1), one shifts z → Z + z

where Z is the coordinate of the atom’s center (nucleus). The
proton is at (0,0,Z), while the atomic electron coordinates are
(x,y,Z + z). The surface of the perfect conductor is in the xy

plane, i.e., in the plane described by the points (x,y,0). The
unperturbed Hamiltonian H0 is the sum of the free radiation
field and the unperturbed atom [see Eq. (2.1) of Ref. [20]
and Eq. (3.2) of Ref. [30]]. For a reference ground state |n〉,
second-order perturbation theory leads to a known result given
in Eq. (8.41) of Ref. [9] or Eq. (27) of Ref. [10], which
involves the symmetric sum with imaginary frequency in the
argument of the dynamics polarizability �(±iω). The Wick
rotation of the virtual photon integration contour leads to the
symmetrization iω ↔ −iω but cannot be done for excited
reference states. We use second-order perturbation theory to
evaluate 	E = 〈n|(−e �r · �E) [1/(En − H ′

0)] (−e �r · �E)|n〉 and
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obtain [cf. the discussion following Eq. (2.12) of Ref. [20]]

	E
.= e2

2π
P

∑
q

∫ ∞

0
dL

∫ ∞

L

dω cos(2LZ)
L2 (|〈n|�r‖|q〉|2 + 2|〈n|z|q〉|2) + ω2(|〈n|�r‖|q〉|2 − 2|〈n|z|q〉|2)

Eq + ω − i δ
, (3)

where P denotes the principal value. Here, the identity
∫
R3 d3k = 2

∫ 2π

0 dϕ
∫ ∞

0 dL
∫ ∞

0 dω ω, with ω =
√�k2

‖ + k2
z , and L = |kz|

has been used in order to transform the integration measure. The virtual states are denoted as |q〉, and their energy difference to
the reference state is denoted as Eq ≡ Eq − En. In contrast to the velocity gauge [20], there is no seagull term to consider, and
it is not necessary to add the electrostatic interaction with the mirror charges by hand [31]. It is an in principle well-known (see
the remarks following Eq. (A.22) in Appendix A of Ref. [32]), but sometimes forgotten, wisdom that the Coulomb interaction
does not need to be quantized in the velocity gauge [31]. The integration with respect to ω leads to logarithmic terms [see the
Appendix of Ref. [20]]. After the subtraction of Z-independent terms (the subtraction is denoted by the

.= sign), one obtains

I1(χ )
.=

∫ ∞

0
dL cos(2LZ) ln(|Eq + L|) = Eq

(
π [1 − ε(Eq)]

2χ
− T (χ )

χ
− π(−Eq)

2 sin2
(

χ

2

)
χ

)
, (4a)

I2(χ )
.= −∂2I1

∂χ2
= Eq

(
π [ε(Eq) − 1] + χ

χ3
+ 2 − χ2

χ3
T (χ ) − 2

χ2
U (χ ) + π(−Eq)

∂2

∂χ2

2 sin2
(

χ

2

)
χ

)
, (4b)

T (χ ) = sin(χ ) Ci(χ ) − cos(χ ) Si(χ ) + π

2
cos(χ ), χ = 2|Eq |Z, ε(Eq) = (Eq) − (−Eq). (4c)

Here, Ci(χ ) = − ∫ ∞
χ

dt cos(t)
t

and Si(χ ) = ∫ χ

0 dt sin(t)
t

, and U (χ ) = ∂
∂χ

T (χ ), while T (χ ) = χ−1 − ∂
∂χ

U (χ ). We confirm the result
given in Eq. (2.18) of Ref. [20] and represent the “distance-dependent Lamb shift” as

	E
.= e2

2π

∑
q

E3
q

{
(|〈n|�r‖|q〉|2 − 2|〈n|z|q〉|2)

[
π [ε(Eq) − 1]

2χ
− 1

χ2
+ T (χ )

χ
+ π(−Eq)

1 − cos(χ )

χ

]

− (|〈n|�r‖|q〉|2 + 2|〈n|z|q〉|2)

[
π [ε(Eq) − 1] + χ

χ3
+ 2 − χ2

χ3
T (χ ) − 2

χ2
U (χ ) + π(−Eq)

∂2

∂χ2

1 − cos(χ )

χ

]}
. (5)

We should perhaps clarify that the Z-independent contribution to the Lamb shift (the ordinary “free-space Lamb shift”) is
absorbed in the subtraction procedure denoted here by the “

.=” sign in Eqs. (4), (5), (7), and (8). The Z-dependent position of
the energy level is obtained after adding the free-space Lamb shift L and free-space fine structure F given in Eq. (12) to the
Z-dependent energy shifts given in Eqs. (5) and (8). In the nonretardation limit, the Z-dependent results given in Eqs. (5) and (8)
are replaced by the respective terms of the nonretarded potential (11). This (somewhat subtle) point is not fully discussed in
previous works on the subject [17–21] and therefore should be mentioned for absolute clarity.

The term −χ−2 in the coefficient multiplying |〈n|�r‖|q〉|2 − 2 |〈n|�z|q〉|2 vanishes after summing over the entire spectrum of
virtual states; it is obtained naturally in the length gauge and otherwise cancels a term in the expansion of the energy shift for
large χ (even before the application of the sum rule, which is crucial in velocity gauge [20]). The off-diagonal mixing term leads
to the matrix element 	M = 〈m|(−e �r · �E) [1/(En − H0)′](− e

2 ri rj (∂Ei/∂rj )|n〉 + 〈m|H.c.|n〉,

	M = e2

4π
P

∑
q

∫ ∞

0
dL

∫ ∞

L

dω
L sin(2 LZ)

Eq + ω − iδ
(L2 〈n|T2|m〉 − ω2 〈n|T1|m〉), (6a)

〈m|T1|n〉 = 〈m|z|q〉 〈q|�r 2
‖ − 2 z2|n〉 + 〈m|H.c.|n〉, (6b)

〈m|T2|n〉 = 〈m|z|q〉 〈q|�r 2
‖ − 2 z2|n〉 − 2 〈m|�r‖|q〉 · 〈q|�r‖ z|n〉 + 〈m|H.c.|n〉. (6c)

After the subtraction of Z-independent terms, the following two results for J1(χ ) = ∫ ∞
0 dL L sin(2LZ) ln(|Eq + L|) and

J2(χ ) = −∂2J1(χ )/∂χ2 supplement the analytic integrals given in Eq. (4),

J1(χ )
.= E2

q

(
ε(Eq)

[
π

2χ2
− T (χ )

χ2
+ U (χ )

χ

]
− π

2χ2
+ π(−Eq)

2 sin2
(

χ

2

) − χ sin(χ )

χ2

)
, (7a)

J2(χ )
.= E2

q

(
3 π

χ4
+ ε(Eq)

[
4χ − 3π

χ4
+ 3 (2 − χ2)

χ4
T (χ ) + χ2 − 6

χ3
U (χ )

]
− π(−Eq)

∂2

∂χ2

2 sin2
(

χ

2

) − χ sin(χ )

χ2

)
. (7b)

010502-2



RAPID COMMUNICATIONS

LONG-RANGE ATOM-WALL INTERACTIONS AND MIXING . . . PHYSICAL REVIEW A 91, 010502(R) (2015)

We can finally give the complete result for the mixing term 	M , with full account of retardation, as a sum over virtual states |q〉,

	M
.= e2

4π

∑
q

E4
q

{
〈m|T1|n〉

[
ε(Eq)

(
4 + πχ

2 χ3
− T (χ )

χ2
+ U (χ )

χ

)
− π

2χ2
+ π(−Eq)

2 sin2
(

χ

2

) − χ sin(χ )

χ2

]

+ 〈m|T2|n〉
[
ε(Eq)

(
3π − 4 χ

χ4
+ 3(χ2 − 2)

χ4
T (χ ) + 6 − χ2

χ3
U (χ )

)
− 3π

χ4
+ π(−Eq)

∂2

∂χ2

2 sin2
(

χ

2

) − χ sin(χ )

χ2

]}
.

(8)

The energy variable Eq is defined with respect to the reference state; i.e., if one evaluates the |m〉-state admixture to the reference
state |n〉, then one sets Eq = Eq − En. For excited reference states, results for both 	E given in Eq. (5) and 	M in Eq. (8)
contain long-range retardation tails for excited reference states,

	E = e2
∑

q

(−Eq)

[
|〈n|�r‖|q〉|2

(E2
q cos(2EqZ)

2Z − Eq sin(2EqZ)

4Z2
− cos(2EqZ)

8Z3

)

− |〈n|z|q〉|2
(Eq sin(2 Eq Z)

Z2
+ cos(2EqZ)

4Z3

)]
− 1

8 π Z4
(2�‖ + �⊥), Z  1

Eq

,

�‖ = 1

2

∑
q,±

2

Eq

〈n|�r‖|q〉 · 〈q|�r‖|n〉, �⊥ =
∑
q,±

2

Eq

|〈n|z|q〉|2, �(ω) = e2

3

∑
±

〈n|ri

(
1

Eq ± ω

)
ri |n〉, (9)

where �‖ and �⊥ are the longitudinal and transverse static polarizabilities [for the ground state, �⊥ = �‖ = �(0)]. The mixing
term has the following long-range asymptotics:

	M = e2
∑

q

(−Eq) 〈m|�r‖|q〉 · 〈q|�r‖ z|n〉
(

−E3
q sin(2Eq Z)

4Z − 3 E2
q cos(2Eq Z)

8Z2
+ 3 Eq sin(2Eq Z)

8Z3
+ 3 E4

q cos(2Eq Z)

16Z4

)

+ e2
∑

q

(−Eq) 〈m|z|q〉〈q|�r 2
‖ − 2z2|n〉

(
E2

q cos(2Eq Z)

8Z2
− 3 Eq sin(2Eq Z)

16Z3
− 3 cos(2Eq Z)

32Z4

)

+ e2

π Z5

∑
q

1

Eq

(
−1

8
〈m|z|q〉 〈q|�r 2

‖ |n〉 + 1

4
〈m|z|q〉 〈q|z2|n〉 + 3

8
〈m|�r‖|q〉 · 〈q|�r‖ z|n〉

)
+ 〈m|H.c.|n〉, Z  1

Eq

.

(10)

The results (5) and (8) will now be applied to metastable hydrogen.

Nonretarded admixtures to metastable hydrogen.—The
results given in Eqs. (5) and (8) have a rather involved
analytic structure. In the short-range limit, these results can
be compared to the static interaction of the electron and
proton [33,34] with their respective mirror charges. This
interaction leads to the following nonretarded potential (from
now on we set the elementary charge e = 1),

V = 1

2

(
− 1

2(z + Z)
+ 2√

x2 + y2 + (z + 2Z)2
− 1

2Z

)

= − �r2
‖ + 2z2

16Z3
+ 3z(�r2

‖ + 2z2)

32Z4
+ · · · , (11)

where we ignore terms of order 1/Z5 and higher [35,36]. After
some tedious, but straightforward algebra, one can convince
oneself that the terms of order Z−3 and Z−4 are in agreement
with the short-range asymptotics of the results given in Eqs. (5)
and (8), i.e., in the regime Z � 1/Eq , which is equivalent to
the limit χ → 0.

For close approach of the atom to the wall, the interaction
energy is well described by the static potential (11), which
necessitates a diagonalization of the Schrödinger Hamiltonian

plus the nonretarded potential V (both “diagonal” interaction
and Lamb-shift or fine-structure terms, as well as “mix-
ing” terms) in the basis of the |2S1/2〉,|2P1/2〉, and |2P3/2〉
Schrödinger-Pauli wave functions with magnetic projection
μ = +1/2, to form the manifestly coupled states |S1/2〉,|P1/2〉,
and |P3/2〉. We denote the (free-space) fine-structure and the
Lamb-shift interval as

F = 1.66 × 10−6 a.u., L = 1.61 × 10−7 a.u. , (12)

respectively. According to the adiabatic theorem [37–39], the
|S1/2〉 state eigenvector has the form

|S1/2〉 ≈ aS |2S1/2〉 + a 1
2
|2P1/2〉 + a 3

2
|2P3/2〉, (13a)

aS = 1 , a 1
2

=
√

3

2

15

LZ4
, a 3

2
=

√
3

2

15

F Z4
, (13b)

1/L  Z  1/L1/4, 1/Z  Z  1/F1/4, (13c)

where we ignore higher-order terms in the expansion in inverse
powers of Z . The absolute square of the admixture is given by

� = 675

2

(
1

F2
+ 1

2L2

)
1

Z8
= 6.63 × 1015

Z8
a.u. (14)

010502-3



RAPID COMMUNICATIONS

U. D. JENTSCHURA PHYSICAL REVIEW A 91, 010502(R) (2015)

The one-photon decay width of the 2P state is given as �2P =
6.27 × 108 rad

s = 1.51 × 10−8 a.u., whereas the two-photon
decay width of the 2S state reads �2S = 8.229 rad

s = 1.99 ×
10−16 a.u. The effective decay rate �eff at a distance Z is

�eff = �2S + �2P � =
(

1.99 × 10−16 + 1.01 × 108

Z8

)
a.u.

(15)

We have �eff = 2 �2S for Z0 = 918 a.u. The leading (non-
retarded) term in the atom-wall energy shift at this distance
amounts to −7Z−3

0 /2 = −4.52 × 10−9 a.u. and approximates
both the single-particle perturbative shift given in Eq. (5) as
well as the adiabatic energy of the coupled |S1/2〉 state obtained
from the diagonalization of the potential (11) to within 10%.
The atom-wall energy at Z0 is equal to −29.7 MHz and thus
much smaller than the Lamb shift and fine structure.

The admixture formulas for the coupled |P1/2〉 state reads
as

|P1/2〉 ≈ bS |2S1/2〉 + b1/2 |2P1/2〉 + b3/2 |2P3/2〉, (16a)

bS = −
√

3

4

15

LZ4
, b 3

2
= 1

2
√

2

1

F Z3
, (16b)

and b 1
2

= 1. The |P3/2〉 state reads as

|P3/2〉 ≈ cS |2S1/2〉 + c1/2 |2P1/2〉 + c3/2 |2P3/2〉, (17a)

cS = −
√

3

2

15

F Z4
, c 1

2
= 1

2
√

2

1

(L + F)Z3
, (17b)

and of course c 3
2

= 1. For very close approach Z � 300,
higher-order terms in the expansion of the potential V [see
Eq. (11)] gradually become important. [These are obtained by
straightforward expansion of the potential (11).] Numerically
determined admixtures of the coupled |S1/2〉 are given in Fig. 1,
they do not follow the asymptotic formulas for very close
approach.

Long-range tails.—The oscillatory repulsive-attractive
dominant term in the long-range limit of the energy shift for
the 2S level goes as [see Eqs. (5) and (9)]

	E2S ∼ 9L2 cos(2LZ)

2Z , Z  1

L , (18)

where we have isolated the leading term from Eq. (9),
setting Eq = −L and carrying the summation over the virtual
levels |q〉 = |2P1/2〉 with magnetic projections μ = ±1/2.
Somewhat surprisingly, the oscillatory terms in Eq. (10) vanish
for virtual |2P1/2〉 states, so that the long-range coupling to
the lower-lying P state vanishes. The leading terms in the
long-range asymptotics of the admixture coefficients read as
[see Eq. (13)]

a1/2 ∼ 3
√

3

π LF Z5
, Z  1

L , (19a)

a3/2 ∼ −
√

3

2

3L3

F Z sin(2LZ), Z  1

L . (19b)

The long-range asymptotic tail of the P3/2-state admixture has
an oscillatory (1/Z) form [see Eqs. (10) and (19b)]. If this tail
had not been suppressed by the prefactor L3/F , then it could

FIG. 1. (Color) The modulus-squared admixtures to the coupled
|S1/2〉 state are obtained from a diagonalization of the potential (11)
in the basis of |S1/2〉,|P1/2〉, and |P3/2〉 states, for close approach
of the atom toward the wall. The subscript j in Eq. (13) takes on
the values j = S, as well as j = 1/2 and j = 3/2, and denotes the
state responsible for the admixture. As the |S1/2〉 state approaches
the wall, the initially dominant |S1/2〉 state contribution (solid curve,
j = S) gradually fades and the |P1/2〉 admixture (short-dashed curve,
j = 1/2) increases, while a significant admixture of the |P3/2〉 state
(long-dashed curve, j = 3/2) is observed only for close approach.
The atom-wall interaction energy becomes commensurate with the
Lamb shift and fine structure at Z ≈ 84 and Z ≈ 184, respectively.

have easily provided a theoretical explanation for the Sokolov
effect [13–16], because the (1/Z) interaction has the required
functional form to describe a super-long-range term. The tail
is created by virtual |q〉 = |2P1/2〉 states in Eq. (10), which are
energetically lower than the reference |2S〉 state. The prefactor
of the super-long-range tail of the admixture term depends
on details of the spectrum of the atomic system and could be
larger for other atoms. For the P1/2-state admixture (term a1/2),
retardation changes the 1/Z4 asymptotics for short range to
a 1/Z5 asymptotics at long range. A full QED treatment of
the admixture terms is required for both results recorded in
Eqs. (19a) and (19b).

Conclusions.—We can safely conclude that the curious
observations reported in [13–16] regarding super-long-range
2S-2P mixing terms near metal surfaces cannot find an
explanation in terms of a long-range effect involving quantum
fluctuations. Both the energy shift (9) as well as the mixing
term (10) have long-range tails proportional to 1/Z , but the
energy numerator for the 2S-2P1/2 transition is so small (Lamb
shift, a 30-cm wavelength transition) that the region in which
the 1/Z terms dominate is restricted to excessively large
atom-wall separations where the single power of Z in the
denominator is sufficient to make the interaction energy and
admixture terms negligible. (We should add that the inclusion
of additional mirror charges in a cavity as opposed to a wall
can be taken into account, in the short-range limit, by summing
the mirror charge interactions into a generalized Riemann
ζ function [40] and therefore cannot change the order of
magnitude of the admixture terms.)

If the observations reported in Refs. [13–16] had found a
natural explanation in terms of a QED effect, then this might
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have had significant implications for a typical atomic beam
apparatus [41] used in high-precision spectroscopy of atoms,
potentially shifting the frequency of transitions involving 2S

atoms in a narrow tube. For atom-wall separations smaller
than 1000 Bohr radii, substantial admixture terms are found,
and the 1/Z8 scaling of the effective 2S decay rate predicted
by Eq. (14) could be tested against an experiment. The
clarification of the parity-breaking admixture terms also is
important for other precision measurements in atomic physics
which involve metastable states, such as electron dipole
moment (EDM) and weak-interaction experiments [42–47].

The fully retarded expression for the mixing term, given
in Eq. (10), formulates higher-order QED corrections to
atom-wall interactions beyond dipole order. Generalization
of the formulas to, e.g., the 23S1 metastable state of helium
is straightforward. One just sums the interactions over the
electron coordinates.
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