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We present a quantum theory of slow light beyond the weak probe pulse approximation. By reduction of
the full Hamiltonian of the system to an effective Hamiltonian for a single quantum field we demonstrate that
the concept of dark-state polaritons can be introduced even if the linearized approach is no longer valid. The
developed approach allows us to study the evolution of nonclassical quantum states of the polariton field.
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I. INTRODUCTION

Slow light is a phenomenon associated with a propagation
of dark-state polaritons [1,2], i.e., quantum superpositions of
photons and spin excitations in a three-level medium [see
Fig. 1(a)], where a low-frequency coherence is established [3],
at the group velocity by many orders of magnitude less than
the speed of light. The slow group velocity is attained via
steep dispersion of the refractive index of the medium within
the slow-light propagation window. Slow propagation of light
pulses increases their interaction time and is therefore a key
component of various proposed nonlinear-optical schemes
aimed at the operation at the few-photon level [4]. Adiabatic
switching off the coupling field maps the photon state onto the
collective spin state [5], thus providing a reversible quantum
memory.

Up to now the quantum aspects of the slow-light prop-
agation have been analyzed in the approximation, where
the number of excitations in a medium is much less than
the number of atoms [1,2]. This approximation makes the
construction of bosonic operators for dark-state polaritons
easy and certainly holds for the case of experiments with
atomic vapors in a gas cell [6] or large ensembles of cold
atoms [7]. Attempts to develop a quantum theory of slow light
beyond the framework of Refs. [1,2] have been scarce up to
now [8,9] and the analysis of the models has proved itself
to be quite difficult. Remarkably, the approach of Ref. [10]
yielded definite results on the slow-light dynamics only in
the semiclassical limit, and left open the question about the
medium response to nonclassical fields.

It is intuitively clear that when the number of photons
entering the medium becomes comparable to the number
of atoms interacting with the light, the picture of dark-state
polaritons with bosonic properties needs a more elaborate
justification. The probe field interacts with a depleted medium
and propagates at a velocity approaching the speed of light as
the ratio of the input photons to the number of atoms increases.
And a system that makes this situation experimentally feasible
is now available. Thousands [11] or hundreds (or tens) [12]
of atoms can be trapped near a single-mode tapered optical
nanofiber and coupled via evanescent field to a probe (P)
radiation sent through the nanofiber. A similar physical
situation can be achieved also for atoms in hollow-core
fibers [13].

To simplify the analysis, we assume that the classical
coupling (C) field is sent perpendicularly to the nanofiber, as

shown in Fig. 1(b). This allows us to assume the Rabi frequency
�C for the atomic transition driven by the coupling field to
be constant along the nanofiber. The case of copropagating,
nanofiber-guided, quantized probe and coupling fields requires
a more elaborate treatment and is beyond the scope of the
present paper.

The purpose of the present paper is to establish a many-body
quantum theory of slow light for arbitrary probe light intensity,
in other words, to formulate the problem as an effective
Hamiltonian problem for a single bosonic field of dark-state
polaritons beyond the linearized approach of Refs. [1,2].
Although atoms in the system of interest do not interact with
each other via short-range forces, nevertheless, they interact
with each other via the nanofiber-guided electromagnetic field.
Also we can say that probe-field photons interact with each
other via their coupling to the atomic medium. As a result,
the collective field of dark-state polaritons emerges, in some
analogy to collective excitations in Bose-Einstein condensates
of weakly interacting atoms [14]. This allows us to regard our
theory as a many-body theory.

In Sec. II we introduce the full Hamiltonian of the problem
and recover, by its diagonalization in the single-excitation case,
the weak-field limit [1,2] for the group velocity of dark-state
polaritons. In Sec. III we recall the mean-field limit and the
result of [10]. The derivation of the effective Hamiltonian
for dark-state polaritons beyond the linearized (weak-field)
approach is presented in Sec. IV. The analysis of the dynamics
of nonclassical states of the dark-state polariton field described
by this effective Hamiltonian is the subject of Sec. V.

II. FULL HAMILTONIAN

We consider a one-dimensional (1D) system of N three-
level atoms, |g1〉 and |g2〉 being the ground-state sublevels and
|e〉 being an optically excited state. The classical coupling field
is detuned from the |g2〉 ↔ |e〉 transition by the frequency �

(we explicitly write this detuning for the sake of generality;
however, our approach works also in the case � = 0). If
the probe field has the frequency ω then the two-photon
detuning is δω = ω − ωeg1 − �, where ωeg1 is the resonant
frequency of the |g1〉 ↔ |e〉 transition, driven by the probe
field. We use the slowly varying amplitude approximation [15]
for the probe field, choosing ω0 = ωeg1 + � as the carrier
frequency. We assume the linear dispersion for the probe
photons, ω = u|k|, where k is the wave number and u is
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FIG. 1. (Color online) (a) The three-level excitation scheme of a
slow-light experiment: |g1〉 and |g2〉 are ground-state sublevels, |e〉
is an optically excited state. (b) Sketch of the atoms trapped near
a nanofiber. The probe light is transmitted through the nanofiber
(the dashed line shows its evanescent field that excites atoms). The
coupling field is sent perpendicularly to the nanofiber.

the velocity of propagation in the nanofiber. The operator of
annihilation of a photon in a 1D nanofiber at the point z at time
t is Ê(z,t) exp[−iω0(t − z/u)]. We introduce in a similar way
the slowly varying amplitudes ψ̂1,2,e for operators annihilating
bosonic atoms in the states |g1〉, |g2〉, |ge〉, respectively.
Then the full Hamiltonian of the system in the interaction
representation and in the rotating wave approximation reads
as

Ĥ = �

∫ L

0
dz

[
−iuÊ † ∂

∂z
Ê − �ψ̂†

e ψ̂e − κ(Ê †ψ̂†
1ψ̂e

+ ψ̂†
e ψ̂1Ê) − �C(ψ̂†

2ψ̂e + ψ†
e ψ̂2)

]
. (1)

The periodic boundary conditions over the distance L are
assumed. We also recall that δω = uδk, where δk = k − ω0/u,
reduces to −iu ∂

∂z
when we write the slowly varying amplitude

of the probe photonic field in the coordinate representation.
The coupling between the probe field and the atoms is given
by κ = deg1

√
ω0/(2�ε0A), where deg1 is the projection of the

dipole moment of the atomic transition driven by the probe
light to the unit vector of the probe field polarization, ε0 is
the dielectric permittivity of the vacuum in SI units, and A

is the effective mode area determined by the structure of the
evanescent field [16].

Both the atom-number

N̂ =
∫ L

0
dz(ψ̂†

1ψ̂1 + ψ̂
†
2ψ̂2 + ψ̂†

e ψ̂e) (2)

and the excitation-number

M̂ =
∫ L

0
dz(Ê †Ê + ψ̂

†
2ψ̂2 + ψ̂†

e ψ̂e) (3)

operators commute with the Hamiltonian (1).

It is easy to show not only that Eq. (2) holds, but also that
the operator of the local linear density of atoms is the integral
of motion:

∂

∂t
(ψ̂†

1ψ̂1 + ψ̂
†
2ψ̂2 + ψ̂†

e ψ̂e) = 0. (4)

Exact positions of atoms near the nanofiber are not essential
for our treatment. Hence, we introduce atomic field operators
using some kind of a coarse graining [1,2] over length scales
exceeding the mean interatomic separation in 1D. In what
follows we assume that the linear density of atoms n1D = N/L

is not only continuous, but also spatially uniform,

∂

∂z
n1D = 0. (5)

The Hamiltonian (1) can be easily diagonalized for M = 1.
However, it is more instructive to find the eigenvalue of Eq. (1)
corresponding to the energy of a single dark-state polariton
perturbatively, provided that the two-photon detuning is small
enough, |δω| � Wsl, where Wsl is the width of the slow-light
propagation spectral window, discussed in the Appendix. If the
two-photon detuning is exactly zero, then the atomic medium
is in the dark state |DS〉 characterized by

ψ̂e|DS〉 = 0, (κ Êψ̂1 + �Cψ̂2)|DS〉 = 0. (6)

For small deviations from the two-photon resonance the energy
�ωDS

δk of the dark-state polariton can be calculated in the first
order of the perturbation theory as

�ωDS
δk = uδk〈DS| ˆ̃E†

δk
ˆ̃Eδk|DS〉, (7)

where

ˆ̃Eδk = 1√
L

∫ L

0
dz Ê exp(−iδkz).

Then the group velocity of a single dark-state polariton vgr =
∂ωDS

δk /(∂δk) [17] yields the well-known weak-field limit [1,2]

v(w)
gr = u


1 + 

, (8)

where 
 = �2
C/(κ2n1D). If 
 � 1, then the group velocity of

the pulse is significantly slowed down compared to u.

III. MEAN-FIELD LIMIT

Heisenberg equations of motion for the electromagnetic and
atomic field operators can be easily derived from Eq. (1) using
bosonic commutation rules. Then we assume the semiclassical
(mean-field) approximation and substitute the operators by
classical complex fields, thus obtaining the following set of
evolution equations (the time derivative being denoted by a
dot):

Ė = −u
∂

∂z
E + iκψ∗

1 ψ2, (9)

ψ̇1 = iκE∗ψe, (10)

ψ̇e = i�ψe + i(κEψ1 + �Cψ2), (11)

ψ̇2 = i�Cψe. (12)
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Since in the slow-light regime the population of the optically
excited state is negligibly small, we set

κEψ1 + �Cψ2 = 0 (13)

[cf. Eq. (6)]. Equations (13) and (12) rewritten as ψe =
−i�−1

C ψ̇2 reduce the number of independent variables to 2.
For them we obtain

Ė + κ2

�2
C

(ψ∗
1 ψ1Ė + ψ∗

1Eψ̇1) = −u
∂

∂z
E, (14)

ψ̇1 + κ2

�2
C

(E∗Eψ̇1 + E∗ψ1Ė) = 0. (15)

From Eq. (15) we obtain the conservation law for the atom
number in the case where all excitations are dark-state
polaritons (ψ∗

e ψe is negligible):

ψ∗
1 ψ1

(
1 + κ2

�2
C

E∗E
)

= n1D. (16)

Substituting Eq. (16) and following from the Eq. (15) expres-
sion

ψ̇1 = − κ2E∗ψ1Ė
�2

C + κ2E∗E
into Eq. (14), we obtain

Ė = −u

(
�2

C + κ2E∗E
)2

�2
Cκ2n1D + (

�2
C + κ2E∗E

)2

∂

∂z
E . (17)

Hence, we obtained the propagation equation with the
intensity-dependent group velocity of Ref. [10]. The intensity
dependence of the group velocity has been studied in different
contexts [18]. It manifests itself in wave front sharpening and,
ultimately, in wave breaking [19].

IV. DERIVATION OF THE EFFECTIVE HAMILTONIAN
FOR DARK-STATE POLARITONS

The mean-field Eqs. (14) and (15) will be the starting
point of our further derivations. We will reformulate the
corresponding problem first in a Lagrangian and then in a
Hamiltonian way. The resulting classical Hamiltonian will
be again quantized and the quantum field for dark-state
polaritons will be introduced. Such a method based on
reduction of an exact many-body quantum problem to a set
of classical Hamilton equations for certain collective variables
and subsequent quantization of these collective variables
proved itself to be successful in many studies, from the
well-known quantization of phonons in solids [20] to the
theory of macroscopic quantum tunneling of a Bose-Einstein
condensate with attractive interactions [21].

A. Classical variables and the effective Hamiltonian

In what follows we use the Lagrangian and Hamiltonian
formalisms for continuous systems described in detail, e.g., in
Ref. [22]. We introduce the four generalized coordinates J , S,
�, and Q as real classical fields dependent on z and t via

E =
√

J exp(−iS/�), ψ1 =
√

� exp(−iQ/�). (18)

Obviously, J � 0 and � � 0. Planck’s constant appears in
Eq. (18) in anticipation of the quantization of the variables in
the next section. Then the two complex equations (14) and (15)
are transformed into four real equations:

Ṡ + κ2

�2
C

�(Ṡ + Q̇) = −u
∂

∂z
S, (19)

J̇ + κ2

�2
C

(�J̇ + J �̇) = −u
∂

∂z
J, (20)

Q̇ + κ2

�2
C

J (Ṡ + Q̇) = 0, (21)

�̇ + κ2

�2
C

(�J̇ + J �̇) = 0. (22)

The Lagrangian � ≡ ∫ L

0 dzL is constructed in such a way that
the Lagrangian equation

d

dt

δ�

δq̇
= δ�

δq
,

where δ/(δq) stands for variational derivative or, equivalently,
d

dt

∂L
∂q̇

= ∂L
∂q

(23)

is satisfied for q standing for J , S, �, and Q. This determines
the Lagrangian density

L = uJ
∂

∂z
S +

(
J + κ2

�2
C

J�

)
Ṡ +

(
� + κ2

�2
C

J�

)
Q̇.

(24)
Note that due to the assumed periodic boundary conditions,
integration by parts gives the result∫ L

0
dz J

∂

∂z
S = −

∫ L

0
dz S

∂

∂z
J, (25)

which is used in derivation of Eq. (20) from Eq. (23).
Since only Ṡ and Q̇, but not J̇ and �̇, appear in Eq. (24),

we introduce two generalized momenta

PS = ∂

∂Ṡ
L = J + κ2

�2
C

J�, (26)

PQ = ∂

∂Q̇
L = � + κ2

�2
C

J�. (27)

Equation (22) then reduces to ṖQ = 0, where PQ has the
meaning of the linear density of atoms in the mean-field limit
under the slow-light propagation conditions, i.e., PQ = n1D.

From Eq. (13) we understand that PS is the sum of the
densities of the photons and atoms driven from the state |g1〉
to |g2〉 under the slow-light propagation conditions (without
populating the optically excited state), i.e., the density of dark
polaritons in the mean-field regime. Bright polaritons [2],
excitations appearing when condition (13) is not fulfilled, do
not contribute to the value of PS .

Since n1D is assumed to be spatially uniform [see Eq. (5)],
the introduction of the effective Hamiltonian

Heff =
∫ L

0
dz (PSṠ + PQQ̇ − L)

= −u

∫ L

0
dz J (PS,PQ)

∂

∂z
S (28)
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easily yields the set of equations for the canonical variables

Ṡ = δHeff

δPS

= −u
∂J (PS,PQ)

∂PS

∂S

∂z
, (29)

Q̇ = δHeff

δPQ

= −u
∂J (PS,PQ)

∂PQ

∂Q

∂z
, (30)

ṖS = −δHeff

δS
= −u

∂J (PS,PQ)

∂PS

∂PS

∂z
, (31)

ṖQ = −δHeff

δQ
= 0, (32)

which are equivalent to Eqs. (19)–(22). Taking the non-
negative solution of Eqs. (26) and (27), we obtain

J (PS,PQ) = 1

2

(
PS − PQ − �2

C

κ2

)

+
√

1

4

(
PS − PQ − �2

C

κ2

)2

+ �2
C

κ2
PS . (33)

After some algebra one can demonstrate the equivalence of
Eqs. (29) and (31) to Eq. (17).

From now on, we consider PQ ≡ n1D as a mere constant
and treat the Hamiltonian given by Eqs. (28) and (33) as a
Hamiltonian for the canonical variables S and PS only.

By introducing the complex field

 =
√

PS exp(−iS/�) (34)

we can rewrite Eqs. (29) and (31) as

∂

∂t
 + vgr

∂

∂z
 = 0, (35)

where

vgr = u

2

⎡
⎣1 +

PS

n1D
− 1 + 
√(

PS

n1D
− 1 + 


)2 + 4


⎤
⎦ (36)

has the meaning of the intensity-dependent propagation ve-
locity (group velocity) [19,23] of dark-state polaritons and

 = �2

C/(κn1D) has to be much less than 1 to provide the
slowdown of the propagation velocity of a weak pulse. After
some algebra Eq. (36) can be expressed in terms of the probe-
field Rabi frequency �P = κ

√
J , thus reproducing the result of

Ref. [10]: vgr = (�2
P + �2

C)2/[(�2
P + �2

C)2 + �2
Cκ2n1D]. The

limit PS → 0 yields the well-known result Eq. (8) in the
weak-field limit [1,2].

B. Quantization of the effective Hamiltonian

In quantum theory, the canonic variables S and PS can be
replaced with operators Ŝ and P̂S , obeying the commutation
relation

[Ŝ(z),P̂S(z′)] = i�δ(z − z′). (37)

In principle, we could define a quantum field for dark-state
polaritons using the analogy with the phase-density represen-
tation of the atomic field in the theory of degenerate gases of
bosonic atoms [24]. Note that the sign of the commutator (37)

is opposite to the widely used convention [24], since it
was natural to introduce S in Sec. IV A as a generalized
coordinate; the standard definition of the phase and density
operators implies choosing PS as a generalized coordinate and
−S as a generalized momentum. However, the phase-density
representation is well defined on the length scales containing
on average many field quanta. This is not a problem in theory of
atomic Bose-Einstein condensates or quasicondensates [24],
but our goal is to formulate the theory in a way suitable for
both small and large numbers of dark-state polaritons.

We take therefore one more step in our classical treatment
by transforming S and PS to new canonic variables

ψS =
√

2�PS sin(S/�), ψP =
√

2�PS cos(S/�), (38)

with F = − 1
2

∫ L

0 dz ψ2
S cot(S/�) being the generating func-

tion of the canonical transformation. Obviously,  =
(ψP − iψS)/

√
2�. And now we substitute the new canonic

variables with the operators ψ̂S,P , which are Hermitian, since
they correspond to the real-valued observables, and obey the
canonical commutation rules

[ψ̂S(z),ψ̂S(z′)] = [ψ̂P (z),ψ̂P (z′)] = 0,

[ψ̂S(z),ψ̂P (z′)] = i�δ(z − z′). (39)

Then, in correspondence to Eq. (34), we introduce the quantum
field

̂ = ψ̂P − iψ̂S√
2�

, ̂† = ψ̂P + iψ̂S√
2�

(40)

that obeys the bosonic commutation relations

[̂(z),̂(z′)] = [̂†(z),̂†(z′)] = 0,

[̂(z),̂†(z′)] = δ(z − z′). (41)

Recalling the physical meaning of PS as the semiclassical
density of dark polaritons, we can identify ̂(z) and ̂†(z)
with operators of annihilation and creation, respectively, of a
dark-state polariton at the point z. The dark-state polariton den-
sity operator is, obviously, m̂1D(z) = ̂†(z)̂(z), and M̂D =∫ L

0 dz m̂1D(z) is the operator of the total number of the dark-
state polaritons with non-negative integer eigenvalues MD.

Since the Hamiltonian (1) reduces under the conditions (6)
to Ĥeff = �u

∫ L

0 dz Ê †(−i ∂
∂z

)Ê , we need to establish the rela-
tion between the probe field and dark-state polariton operators.
A proper unitary transformation relates Ê not only to ̂, but
also to the field operator for bright-state polaritons [2] and,
in a general case, to the excitations of the type that gradually
approaches ψ̂e as the atom-field coupling vanishes. But dark-
state polaritons are decoupled from excitations of other types
in the limit of adiabatically slow dynamics discussed in the
Appendix. Hence, we assume that only dark-state polaritonic
excitations are present in the system, M ≡ MD, and relate
Ê to ̂. We assume this relation is local, i.e., contains only
a dark-state polariton density operator in a given point. The
locality property helps us to infer this relation from an easily
solvable case of MD dark-state polaritons created by coupling
to the medium probe photons exactly at the two-photon
resonance. We make our notation of the dark state more definite
and explicitly write the atom, N , and dark-state polariton, MD,
quantum numbers. We introduce the annihilation operators
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âq for probe photons and d̂q for dark-state polaritons in
the momentum modes via the plane-wave expansions Ê =∑

q âq exp(iqz)/
√

L and ̂ = ∑
q d̂q exp(iqz)/

√
L. Then the

dark state |DS; N,MD〉 = (MD!)−1/2d
†MD
0 |0〉, where |0〉 is the

vacuum of polaritons, can be expressed, according to Eq. (6),
as a superposition of products of Fock states of atoms in the
states |g1〉, |g2〉 and of probe photons:

|DS; N,MD〉 = 1√
AN,MD

mmax∑
m=0

(−1)m
(

κ

�C

√
L

)m

×
√

(−N )m(−MD)m
m!

× |N − m〉g1 |m〉g2 |MD − m〉phot, (42)

where

(X)m =
{

1, m = 0∏m
j=1(X + j − 1), m = 1, 2, 3, . . .

is the Pochhammer symbol, mmax = min(N,MD), and the
normalization factor is

AN,MD =
mmax∑
m=0

(−N )m(−MD)m
m!

(
κ2

�2
CL

)m

. (43)

It is easy to show that

â0|DS; N,MD〉 = √
YN,MD

√
MD|DS; N,MD − 1〉

= √
YN,MD d̂0|DS; N,MD〉, (44)

where

YN,MD = AN,MD−1

AN,MD

. (45)

After some identical transformations we arrive at the following
equation for YN,MD :

YN,MD = κ−2�2
CL + (MD − 1)YN−1,MD−1

N + κ−2�2
CL + (MD − 1)YN−1,MD−1

. (46)

This exact equation can be used for recursive calculation of
YN,MD for increasing numbers of dark-state polaritons, starting
from

YN,1 = κ−2�2
CL

N + κ−2�2
CL

. (47)

On the other hand, we can make an assumption

YN,MD ≈ YN−1,MD−1, (48)

whose consistency is easily checked a posteriori. Then Eq. (46)
reduces to a quadratic algebraic equation. Taking its positive
root, we obtain

YN,MD ≈ K

(
MD − 1

L
,
N

L

)
, K(PS,PQ) = J (PS,PQ)

PS

,

(49)
and the function J (PS,PQ) is defined by Eq. (33).
Note that Eq. (49) reproduces Eq. (47) in the limit
MD = 1, where we take K = limPS→0[J (PS,N/L)/PS] =
κ−2�2

CL/(N + κ−2�2
CL), recalling that all the variables in

Eq. (33) are non-negative by definition.

FIG. 2. (Color online) Difference DK = YN,MD − K( MD−1
L

,N

L
)

between the exact value of YN,MD defined by Eq. (45) and its
approximation (49) for (a) 
 = 10−6 and (b) 10−4; N = 1000 (solid
line) and 2000 (dashed line). Units on the axes are dimensionless.

As we can see from Fig. 2, Eq. (48) provides a very good
approximation for MD − 1 < N . The difference DK between
the exact value of YN,MD and its approximation by Eq. (48)
steeply rises near (MD − 1)/N = 1 to its maximum value
Dmax

K ∼ 1/N and decreases slowly as MD grows further. Such a
deviation is, however, not important, since it is small compared
to the limiting value of 1, which is rapidly approached by
YN,MD as MD−1

N
begins to exceed unity by more than 2

√

. For

pulses of finite spatial extension �p in the medium, we estimate
the maximum systematic error of our approximation (49) as
Dmax

K ∼ 1/(�pn1D), which is always much less than unity, since
by our course-graining assumption there are many atoms on a
typical length scale of the problem.

Using Eq. (49) we obtain

Ê�̂D =
√

K(̂†̂,n1D) ̂, (50)

where �̂D = ∑∞
MD=0 |DS; N,MD〉〈DS; N,MD| is the projec-

tion operator to the Hilbert subspace containing only dark-
polariton states. Placing

√
K to the left from the dark-polariton

annihilation operator enables us to substitute (MD − 1)/L by
the operator of the local density of dark-state polaritons ̂†̂
in the first argument of K . Finally, the quantum effective
Hamiltonian for dark-state polaritons is

Ĥeff = �u

∫ L

0
dz ̂†

√
K(̂†̂,n1D)

×
(

−i
∂

∂z

)√
K(̂†̂,n1D) ̂. (51)

V. RESULTS AND DISCUSSION

The most interesting application of the theory developed
in the previous section concerns the dynamics of nonclassical
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states, which is hardly accessible by the methods developed
previously [10]. We can easily generalize the variational
approach [14] to these states. We assume a probe state |χ〉
characterized by certain variational parameters and find an
extremum

δSχ = 0 (52)

of the action

Sχ = 〈χ |
∫ t2

t1

dt

(
i�

∫ L

0
dz ̂† ∂

∂t
̂ − Ĥeff

)
|χ〉. (53)

An exemplary nonclassical state is a Fock state. Assume
that MD dark polaritons occupy the same state corresponding
to a wave packet with a slowly varying envelope �(z,t)
(the normalization

∫ L

0 dz |�|2 = 1 is assumed), i.e., |χ〉 =
(MD!)−1/2d̂

†MD

� |0〉, where |0〉 is the polaritonic vacuum state
and d̂

†
� creates a dark polariton in the wave-packet state. Then

Eq. (52) reads explicitly as

δSχ

δ�∗ = 0,

which results in the evolution equation for the slowly varying
envelope

∂

∂t
� + vgr

∂

∂z
� = 0, (54)

where vgr is given by Eq. (36) with PS = (MD − 1)|�|2 ≡
m1D. Equation (54) can be solved by the characteristics
method [23,26].

Note that the propagation of the probe-light intensity of the
pulse is described by the essentially classical nonlinear group
velocity even for a Fock state of dark-state polaritons, where
〈̂〉 = 0. The number of probe photons is not well defined in
this case; however, the state of the probe light is entangled with
the state of the atomic medium [see Eq. (42)], and the average
amplitude of the probe light is also zero. The absence of such
coherences, contrary to the concerns of Ref. [10], does not
change the dynamics dramatically, compared to the classical
limit. This is not very surprising, since the optical coherence
is shown to be a sufficient, but not necessary condition for
observing many phenomena, traditionally associated with the
semiclassical regime [25].

The group velocity shown in Fig. 3 exhibits rapid saturation
at vgr = u for m1D > n1D. Such a behavior can be associated
with the depletion of the state |g1〉 at too high a density of
the dark-state polaritons: although the system remains in the
dark state defined by Eq. (6), the average number of atoms
available for coupling to the probe light becomes small, and
probe photons pass through the medium without interaction-
induced delay.

As an illustration, we present in Fig. 4 the results of nu-
merical calculations of a slow-light pulse propagation through
a nanofiber of a length L = 5000 μm. The linear density of
cesium atoms [27] coupled to the nanofiber is n1D = 1 μm−1,
the effective area of the probe field mode A = 3 μm2. We
assume that the probe field drives the |g〉 = |F = 4,MF =
4〉 ↔ |e〉 = |F ′ = 5,M ′

F = 3〉 transition of the cesium D2

line. The phase velocity u of light in the nanofiber is assumed

FIG. 3. (Color online) Group velocity of dark-state polaritons
(normalized to the phase velocity u of the probe light in the nanofiber)
on the logarithmic scale as a function of the ratio of the dark-state
polariton 1D density to the atomic 1D density. 
 = 10−5 (solid line),
10−4 (long-dashed line), and 10−3 (short-dashed line). The units on
the axes are dimensionless.

to be of about 0.9 times the speed of light in a vacuum;
�C = 3 × 106 s−1.

FIG. 4. (Color online) Power of the probe field at the entrance
(long-dashed line) and at the exit (solid line) of the nanofiber-coupled
atomic medium for (a) a strong and (b) a weak pulse. See the system
parameters in the text. Effects of absorption are taken into account
according to Eq. (55). As a guide for the eye, we show by a short-
dashed line the pulse at the exit of the medium with fully neglected
absorption [Eq. (51)]. In case (a) the delay of the pulse peak arrival
is negligible compared to the pulse peak delay of about 10 μs in
case (b).
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Up to now, in our fully Hamiltonian theory we have
neglected the decay of the dark-state polaritons due to
the small but nonzero population of the optically excited
state and coupling of the optical transitions to the free-space
electromagnetic modes. This assumption is valid if the two-
photon detuning is less than the slow-light propagation spectral
window, which is of the order of �2

C/(γ
√

s) [3,28] for an
optically dense (s > 1) medium, where 2γ is the radiative
decay rate of the optically excited state, s = L/ζ is the optical
density of the medium, ζ = A/(n1Dσ0) is Beer’s length, and
σ0 is the resonance cross section of the probe-light absorption.

Absorption effects can be accounted for by adding a cor-
responding nonadiabatic term [2] to the propagation equation,
which then reads as

∂

∂t
 + vgr

∂

∂z
 = v3

grγ
2

2ζ�4
C

∂2

∂z2
, (55)

where by  we now denote the product of the normalized
envelope function and the square root of the mean number
of dark-state polaritons in the pulse. The expression  =
〈MD〉1/2�(z,t) is suitable in both the semiclassical and the
Fock-state cases. The mean 1D density of probe photons
is then approximately ||2K[(〈MD〉 − 1)|�|2,n1D]. For the
parameters of Fig. 4 (s ∼ 250) absorption begins to play a
role but does not destroy the pulse too much. The delay
time of the pulse peak arrival remains the same, the pulse
becomes slightly broadened because of preferential absorption
of its high-frequency components. Generalizations of our vari-
ational theory in the spirit of multiconfigurational variational
method [29] are possible, however, their development is out of
the scope of the present paper.

To summarize, we developed a quantum many-body theory
for the propagation of slow-light pulses. We developed a
quantization framework that enabled us to introduce a bosonic
quantum field for dark-state polaritons. The effective quantum
Hamiltonian (51) is the main result of our work. We considered
atoms coupled to a nanofiber as a definite example of an atomic
medium; however, our results may be easily generalized to
the cases of a laser beam propagating in a gas cell or in
an ultracold atomic cloud by replacing A by the effective
cross-section area of the probe beam. We found that the
propagation of nonclassical wave packets of slow light (Fock
states of dark-state polaritons) is very similar to the classical
dynamics in terms of light intensity. The existence of probe-
field coherences is not necessary, contrary to the expectations
of Ref. [10].
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APPENDIX: SPECTRAL WIDTH OF THE SLOW-LIGHT
PROPAGATION REGIME

The width Wsl of the slow-light propagation spectral
window in an optically dense (s > 1) medium is well known,
see, e.g., the absorptive term in the bright-state polariton

propagation equation in Ref. [2]. Locally, two-photon detuning
couples the dark state to the bright state. The latter is coupled
to the optically excited state and therefore has the width
equal to the rate of induced transition to the optically excited
state [28]. If the two-photon detuning exceeds this width,
the dark and bright states become mixed, and all effects
based on the existence of the dark state decoupled from the
optically excited state, including the slowing down of the probe
pulse propagation, disappear. The effects of absorption in the
medium further reduce this width by a factor of 1/

√
s.

In this Appendix we consider in detail the case of a very
large one-photon detuning, i.e., we consider the Hamilto-
nian (1) with � being the largest frequency available in the
system; also � is assumed to be so large that the natural
width of the optically excited state and the related effects of
absorption of the probe photons can be neglected. We consider
also, for the sake of clarity, states with a single excitation
(M = 1). We denote the states as follows: |1〉 is the state
where all atoms are in their internal state |g1〉 and one photon
is present; in the state |2〉 there are no photons, but one atom
is transferred from |g1〉 to |g2〉; the state with no photons and
one atom excited to the state |e〉 is denoted by |3〉. Since the
one-photon detuning is the highest frequency in this system,
the state |3〉 can be adiabatically eliminated. For the probability
amplitudes aj , j = 1,2, of the two remaining states we obtain
the following Schrödinger equation:

i
∂

∂t

(
a1

a2

)
=

(
δω + κ2n1D

�

κ
√

n1D�C

�
κ
√

n1D�C

�

�2
C

�

)(
a1

a2

)
. (A1)

We analyze the eigenvalues and eigenvectors of Eq. (A1)
depending on the two-photon detuning δω = uδk. The two
states, denoted by superscripts (±), and their respective
eigenfrequencies are given by(

a
(+)
1

a
(+)
2

)
=

(
sin ϑ

cos ϑ

)
,

(
a

(−)
1

a
(−)
2

)
=

(
cos ϑ

− sin ϑ

)
, (A2)

ω
(±)
δk = 1

2

(
κ2n1D + �2

C

�
+ δω

)

±
√

1

4

(
κ2n1D + �2

C

�
+ δω

)2

− �2
Cδω

�
, (A3)

where

cot ϑ = �C

κ
√

n1D

(
1 − δω

ω
(+)
δk

)
. (A4)

The dark-polariton state admitting the slow-light propaga-
tion satisfies two conditions: (i) the derivative of its eigenfre-
quency over δk, i.e., the group velocity of the excitation, is
small compared to u and (ii) the state adiabatically reduces
to |1〉 when the ratio κ

√
n1D/�C is formally decreased to

0 (i.e., the coupling between |g1〉 and |e〉 is switched off).
Equations (A2)–(A4) show that the state |(−)〉 possesses these
properties for |δω| � Wsl = (κ2n1D + �2

C)/|�|. Outside this
spectral range either the group velocity is high (close to u) or
the state does not reduce to |1〉 in the limit of the vanishing
coupling between |g1〉 and |e〉. In the latter case, a wave
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packet containing different photonic wave numbers and having
an adiabatically slowly changing envelope transforms, after
entering the medium, into an excitation with the group velocity

∼u with overwhelming probability.If the one-phonon detuning
is not too large, |�| �

√
κ2n1D + �2

C, then the adiabaticity
condition requires |δω| �

√
κ2n1D + �2

C [2,4,18].
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