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Multiboson correlation interferometry with multimode thermal sources
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We develop a general description of multiboson interferometry based on correlated measurements in arbitrary
passive linear interferometers for multimode thermal sources with arbitrary spectral distributions. The multiorder
correlation functions describing the multiboson detection probability rates can be expressed in terms of
permanents of positive semidefinite matrices, depending on the interferometer evolution, the spectral distribution
of the sources, and the times when the correlated measurements occur. The permanent structure of these multiorder
probability rates is a manifestation of the underlying physics of multiboson interference and yields an interesting
connection with the so-called boson sampling problem.
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I. MOTIVATION

The Hanbury Brown and Twiss (HBT) experiment in
1956 [1], aimed at measuring the angular size of a star
by performing correlated detections, paved the way for the
development of the field of quantum optics. From 1956 until
now a number of remarkable experiments [2–10] based on
high-order correlation measurements with thermal sources
have been performed and important applications in high-
precision imaging [11–18] and information processing [19]
have been highlighted.

This fast advancement in experimental technologies based
on thermal light interferometry calls for a general description
of multiboson correlation interferometry with thermal sources.
Here we fully analyze HBT-like experiments for arbitrary
orders of correlation measurements, arbitrary passive linear
optical interferometers, and arbitrary spectral distributions of
the thermal sources.

Our analysis also brings up an interesting connection
with the so-called boson sampling problem (BSP) [20–25],
where the probability of finding N single input bosons in
N � M output ports of an M-port interferometer depends on
permanents of random complex matrices [20,26].

Differently from the BSP, multiorder correlation mea-
surements at the output of arbitrary interferometers rely
additionally on the times the detections occur [27–29]. Further,
for multimode thermal input sources, the detection rates are
connected with permanents of positive semidefinite matrices,
whose elements depend not only on the interferometer evolu-
tion but also on the average rate of bosons emitted by each
source and on the detection times. Moreover, we show that
these permanents arise from the interference of all multiphoton
quantum paths from the sources to the detectors.

After giving a general perspective about multiboson cor-
relation interferometry with arbitrary sources in Sec. II, we
perform a full analysis for the case of thermal sources in
Sec. III. In Secs. III A 1 and III A 2, we derive two equivalent,
interesting formulations of the N th-order correlation functions
in terms of matrix permanents depending on the interferom-
eter evolution. Finally, we analyze the probability rates of
multiorder correlation measurements for approximately equal
detection times in Sec. III B, address the trivial case of thermal
sources with equal average boson production rates in Sec. III C,
and conclude with final remarks in Sec. IV.

II. MULTIBOSON CORRELATION INTERFEROMETRY
(MBCI)

The formulation of MBCI experiments of any given order
N is the following (see Fig. 1). First, we prepare a linear M-
port interferometer with bosonic sources; second, we consider
correlated detection events in which N � M single bosons are
detected in an N -port sample DN from the total M output
ports at joint detection times {td}d∈DN

, independently of the
detection outcomes for the remaining M − N detectors.

We consider here the case of photonic sources, although
our results can be easily extended to atomic interferometers
with bosonic sources. The probability rate for an N -fold joint
detection event in a given sample DN of output modes is
proportional to the N th-order correlation function [30–32]

G(N)
({td};DN

) = tr

⎡
⎣ρ̂

∏
d∈DN

Ê
(−)
d (td )

∏
d∈DN

Ê
(+)
d (td )

⎤
⎦ , (1)

where Ê
(±)
d (td ) denotes the positive/negative frequency parts

of the field operator Êd (td ) = Ê
(+)
d (td ) + Ê

(−)
d (td ) at the dth

detector. These field operators are connected with the field
operators at the input ports by a unitary M × M matrix U
describing the interferometer, which we assume for simplicity
to be frequency independent. For a specific set, DN , of
N output ports where a joint detection occurs, the N × M

submatrix

U (DN ) ≡ [
Ud,s

]
d∈DN
s=1,...,M

(2)

of U allows us to express the electric field operators at the
detectors as linear combinations,

Ê
(+)
d (td ) =

M∑
s=1

Ud,sÊ
(+)
s (td ), (3)

of the field operators Ê(+)
s (td ) at the sources. Equivalent

expressions hold for the conjugate fields Ê
(−)
d (td ). In the

next section we address MBCI experiments with multimode
thermal states, while we refer to Refs. [27,33] for the case of
multimode Fock states.
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FIG. 1. Multiboson correlation interferometry of order N with
a random linear interferometer with M � N ports and bosonic
sources. Here, we consider multimode thermal sources with arbitrary
average boson rates r̄s , s = 1, . . . ,M . After the evolution in the
interferometer, described by a unitary random matrix U , correlated
detection events are recorded in the N -port sample DN from the M

output ports independently of the remaining ports.

III. MBCI WITH THERMAL INPUT STATES

One of the most natural optical sources in quantum optics is
a thermal source, which can be easily simulated in a laboratory
by using, for example, a laser beam impinging on a rotating
ground glass [34]. Here, we consider the product state

ρ̂th ≡
M⊗

s=1

ρ̂s (4)

of M independent multimode thermal states [30,35],

ρ̂s =
∫ [∏

ω

d2αs(ω)

]
Ps,th ({αs(ω)})

⊗
ω

|αs(ω)〉〈αs(ω)|,

(5)

at each of the input ports s = 1, . . . ,M , with Glauber-
Sudarshan P representation [36,37]

Ps,th({αs(ω)}) ≡
∏
ω

1

πn̄s(ω)
exp

(
−|αs(ω)|2

n̄s(ω)

)
. (6)

Here, the distribution n̄s(ω) ≡ r̄sξs(ω) of the mean number
of photons for the source s is defined by the normalized
spectral distribution ξs(ω) and the mean rate r̄s of photon
production. For simplicity, we assume equal Gaussian spectral
distributions [30]

ξ (ω) = 1√
2π�ω

exp

(
− (ω − ω0)2

2�ω2

)
, (7)

with central frequency ω0 and bandwidth �ω, and their
respective Fourier transform

χ (u) =
∫ ∞

−∞
dω ξ (ω)e−iωu = e−iω0u exp

(
−u2�ω2

2

)
. (8)

For average photon rates r̄s that are small compared to the
inverse of the time resolution of the detectors, the detection of
more than one photon in any of the output ports is very unlikely;
therefore the use of photon number resolving detectors is not
necessary.

For the state (4), Eq. (1) can be rewritten in terms of first-
order correlation functions

G(1)(td ,td ′ ) ≡ tr
[
ρ̂th Ê

(−)
d (td )Ê(+)

d ′ (td ′)
]

(9)

as [30]

G(N)
({td};DN

) =
∑

σ∈
N

∏
d∈DN

G(1)(td ,tσ (d)), (10)

where σ is an element of the symmetric group 
N of order N .
Since the different sources s are independent, by defin-

ing [30]

G(1)
s (td ,td ′ ) ≡ U∗

d,sUd ′,s tr
[
ρ̂sÊ

(−)
s (td )Ê(+)

s (td ′)
]

= K2U∗
d,sUd ′,s r̄sχs(td ′ − td ), (11)

where we used the narrow bandwidth approximation
�ω � ω0,1 Eq. (9) becomes

G(1)(td ,td ′) =
M∑

s=1

G(1)
s (td ,td ′). (12)

We point out that the N th-order correlation function G(N)

in Eq. (10) corresponds to the permanent of the matrix
[G(1)(td ,td ′ )]d,d ′ with elements defined by Eqs. (12) and (11). In
the following sections, we derive two equivalent formulations
of G(N) in terms of matrix permanents depending on the entries
of U (DN ) in Eq. (2) and emphasize the underlying physics of
multiphoton interference.

A. Nth-order correlation functions and permanents

1. First formulation

A compact expression of G(N)({td};DN ) in Eq. (10) can be
obtained by defining the positive semidefinite matrix

B(DN )
{td } ≡ [

Ad,d ′χ(td ′ − td )
]

d ∈ DN

d ′ ∈ DN

. (13)

Here Ad,d ′ are elements of the positive semidefinite matrix

A(DN ) ≡ U (DN ) diag (r̄1, . . . ,r̄M )U†(DN ), (14)

while the positive semidefinite matrix χ
(DN )
{td } ≡ [χ (td ′ −

td )]d,d ′∈DN
describes the pairwise degree of correlation of the

N detections depending on the detection times.
Moreover, the presence of bothU (DN ) andU†(DN ) is evidence

of the multiphoton interference occurring in the optical
network, as becomes clearer later. When we apply these
definitions together with Eqs. (11) and (12), Eq. (10) becomes

G(N)
({td};DN

) = K2N perm
(
B(DN )

{td }
)
. (15)

Thus, we find that the probability rate for an N -fold detection
in a given sample DN of output ports with thermal sources is
mainly given by a single permanent of a positive semidefinite
N × N matrix B(DN )

{td } . From a physical point of view, while the
matrix A(DN ) contains the interferencelike terms associated
with the interferometer evolution, the time-dependent matrix
χ

(DN )
{td } accounts for the degree of correlation in time between the

different correlated measurements, as described in Sec. III B.

1In this case, the field operators can be approximated [38] as
Ê(+)

s (t) = iK
∫ +∞

−∞ dω âs(ω)e−iωt , with the annihilation operators
âs(ω) and a constant K .
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2. Second formulation

We just demonstrated that the correlation function G(N)

for a given sample DN of output ports is proportional to the
permanent of an N × N matrix, B(DN )

{td } . We notice that B(DN )
{td }

is not a submatrix of the unitary matrix U as in the case
of the BSP with single-photon sources. We now show that
G(N) can also be expressed as a weighted sum of modulus
squared permanents of matrices only built from columns of
the interferometer submatrix U (DN ) in Eq. (2).

By substituting Eq. (12) in Eq. (10), we obtain

G(N)
({td};DN

) =
∑

σ∈
N

∏
d∈DN

M∑
s=1

G(1)
s (td ,tσ (d)). (16)

We now define the sets of ascending elements

SN = {1, . . . ,1︸ ︷︷ ︸
N1 times

, . . . , s, . . . ,s︸ ︷︷ ︸
Ns times

, . . . , M, . . . ,M︸ ︷︷ ︸
NM times

}, (17)

where Ns(SN ) � 0 and
∑M

s=1 Ns(SN ) = N , with the associ-
ated weighting factors

N (SN ) ≡
M∏

s=1

1

Ns(SN )!
. (18)

These definitions allow us to write Eq. (16) as

G(N)
({td};DN

) =
∑
SN

N (SN )
∑

σ∈
N

∑
δ∈�(SN )

∏
d∈DN

G(1)
δ(d)(td ,tσ (d)),

(19)

where �(SN ) is the set of all N ! bijective functions that map
the set DN to the set SN . By using Eq. (11) together with the
matrices

C(DN ,SN )
σ ≡ [

U∗
d,cUσ (d),c

]
d ∈ DN

c ∈ SN

, (20)

containing interferencelike elements, Eq. (19) can be ex-
pressed as

G(N)
({td};DN

) = K2N
∑
SN

⎧⎨
⎩N (SN )

⎡
⎣∏

c∈SN

r̄c

⎤
⎦

×
∑

σ∈
N

⎡
⎣∏

d∈DN

χ(tσ (d)−td )

⎤
⎦perm

(
C(DN ,SN )

σ

)⎫⎬⎭ .

(21)

The correlation function G(N) in Eq. (21) contains all
contributions from the possible configurations SN in Eq. (17)
of ways the N detected photons can originate from the
M sources. In particular, each contribution has a weighting
factor depending on the product of the respective average
photon rates r̄c. Furthermore, each possible configurationSN is
associated with a weighted sum over σ [with weighting factors∏

d∈DN
χ (tσ (d) − td )] of the permanents of the corresponding

“interference” matrices C(DN ,SN )
σ .

B. Uncorrelated versus correlated detections

From the result in Eq. (15) it is evident that the pairwise
degree of correlation between the N detections in an N th-
order correlation measurement is established by the posi-
tive semidefinite matrix χ

(DN )
{td } ≡ [χ (td ′ − td )]d,d ′∈DN

, whose
elements are defined by Eq. (8). Here, we consider the
two extremal cases of completely uncorrelated or correlated
detections.

In particular, the contribution to G(N) in Eq. (15) by a
given pair of detection events at detectors d �= d ′ vanishes
if |td − td ′ |�ω � 1. If |td − td ′ |�ω � 1 for all d,d ′, we find
χ (td ′ − td ) = δd,d ′ and the only contributions to G(N) are the
ones for which d = d ′. In this case, Eq. (15) trivially reduces
to

G(N)(|td − td ′ | �ω � 1;DN ) = K2N
∏

d∈DN

Ad,d

=
∏

d∈DN

G
(1)
d (td ,td ), (22)

where clearly the detections in the N output ports are
physically independent of each other and no multi-photon
interference occurs.

On the other hand, in the condition of approximately
equal detection times (|td − td ′ |�ω � 1), which implies∏

d∈DN
χ (tσ (d) − td ) = 1 ∀σ ∈ 
N , Eq. (15) simplifies to

G(N)(|td − td ′ | �ω � 1;DN ) = K2N perm
(
A(DN )

)
, (23)

which only depends on the mean photon rates of each
source and on the interferometer transformation. Here,
the complete interference between all possible N -photon
multipath contributions to a joint detection emerges from
the permanent structure of the N th-order correlation
function.

In an analogous way, the equivalent expression of G(N) in
Eq. (21) simplifies to the incoherent sum

G(N)(|td − td ′ |�ω � 1;DN )

≈ K2N
∑
SN

⎧⎨
⎩N (SN )

⎡
⎣∏

c∈SN

r̄c

⎤
⎦ ∣∣perm

(
U (DN ,SN ))∣∣2

⎫⎬
⎭ (24)

of weighted modulus squared permanents of the matrices

U (DN ,SN ) ≡ [
Ud,c

]
d ∈ DN

c ∈ SN

. (25)

Each matrix corresponds to a configuration SN defining the
number Ns(SN ) of photons each source contributes to the N -
fold detection and can be obtained by repeating each column s

of the matrix U (DN ) in Eq. (2) Ns times. The terms interfering
in the modulus square of perm (U (DN ,SN )) correspond to all
possible indistinguishable N -photon paths which connect the
N sources SN with the N detectors of a given sample DN , as
illustrated in Fig. 2 in the case N = 2.

In general, the lower the column repetition rate in Eq. (25)
is for a given configuration SN , the higher is the number
of physically interfering N -photon quantum paths and the
corresponding degree of multiphoton interference. In par-
ticular, the only configurations where no column repetition
occurs are the ones where N sources contribute to an N -fold
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y

perm U(D2,S2)
)

= Ux,aUy,b + Uy,aUx,b

a

b

x

y

perm(U(D2,S2)) = 2 Ux,bUy,b

a

b

x

y

perm(U(D2,S2)) = 2 Ux,aUy,a

FIG. 2. (Color online) Possible sets S2 of the source or sources
contributing to an N -fold detection at the N = 2 ports of a given
sampleDN = {x,y} from the M interferometric output ports in Fig. 1,
in the case of average photon rates r̄a,r̄b �= 0 and r̄s = 0 ∀s �= a,b.
In set (a) both sources a and b contribute one photon, leading to two
indistinguishable two-photon quantum paths, each corresponding to
a different term of the associated permanent. In sets (b) and (c), since
both detected photons stem from a single source, only one two-photon
quantum path is possible, corresponding now to a single permanent
term counted twice. Indeed, in both cases the associated matrix is
constructed with two identical columns according to the contributing
source.

detection [see Fig. 2(a) for N = 2], as in the original boson
sampling formulation with single-photon sources. Indeed,
these configurations correspond to N ! interfering N -photon
paths.

C. Equal average photon rates

We now consider the trivial case where all thermal sources
have mean photon rates r̄s = r̄ ∀s and derive two notable
properties for the permanents of the matrices C(DN ,SN )

σ in
Eq. (20) and U (DN ,SN ) in Eq. (25). In this case, we easily find
that the correlation function in Eq. (15) reduces to the constant
expression

G(N)
({td};DN

) = K2N r̄N , (26)

which, as expected [39], is independent of the evolution in
the interferometer. If we compare Eq. (26) with Eq. (21)
in the limit of identical mean photon rates, we find that the
property∑

SN

N (SN ) perm
(
C(DN ,SN )

σ

) =
{

1 σ = 1

0 σ �= 1
(27)

holds for the matrices C(DN ,SN )
σ in Eq. (20). Further, since

Eq. (26) is independent of the detection times td , it must also
correspond to the expression (24) in the condition of equal
mean photon rates. This yields the second property∑

SN

N (SN )
∣∣perm

(
U (DN ,SN ))∣∣2 = 1 (28)

for the matrices U (DN ,SN ) in Eq. (25). These two properties
arise since the photon-counting probability rates for sources

with equal average intensity are physically independent from
the interferometer.

IV. FINAL REMARKS

We performed a full analysis of multiboson correlation
interferometry of arbitrary order N � M , where M is the
number of ports of a random passive linear interferometer,
for thermal sources with arbitrary spectral distributions.

We showed that the probability rates of detecting single
bosons in at least N output ports, with N � M , are pro-
portional to the permanents of positive semidefinite N × N

matrices, leading to an interesting connection with the boson
sampling problem. Each matrix is given by the Hadamard
product (product of the corresponding entries) of a time-
dependent matrix, describing the degree of correlation in time
between the measurements, and the interference-dependent
matrix associated with the interferometer evolution and the
average photon rate of each source.

Moreover, we demonstrated that, for approximately equal
detection times, the N -boson probability rates can be cast as a
time-dependent weighted sum of modulus squared permanents
of matrices with interferencelike elements depending only on
the interferometer evolution. Indeed, each different permanent
is associated with a possible physical configuration for the
number of bosons each source contributes to the detection and
describes the interference of all the corresponding multiboson
quantum paths from the sources to the detectors. The higher
the number of sources contributing to the joint detection is,
the larger the number of corresponding interfering multipath
amplitudes is.

In conclusion, our general analysis of multiboson corre-
lation interferometry with thermal sources provides a deeper
insight into the fundamental physics of multiboson interfer-
ence for arbitrary order HBT-like experiments where highly
interesting correlation effects emerge.

Note added. Recently, related independent research [40]
came to our attention. Differently from the multimode ther-
mal sources addressed in our article, the authors consider
monochromatic thermal sources, which correspond to the limit
considered in Eq. (23). Further they calculate the probability
to find single photons in exactly N of the M output ports and
the vacuum in the others. Differently here we focus on the
determination of experimental probability rates for correlated
detections in an N -port sample DN at arbitrary time sequences
{td}d∈DN

independently of the detection outcomes for the
remaining ports.
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[10] A. Perrin, R. Bücker, S. Manz, T. Betz, C. Koller,

T. Plisson, T. Schumm, and J. Schmiedmayer, Nat. Phys. 8, 195
(2012).

[11] T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko,
Phys. Rev. A 52, R3429 (1995).

[12] R. S. Bennink, S. J. Bentley, and R. W. Boyd, Phys. Rev. Lett.
89, 113601 (2002).

[13] A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, Phys. Rev.
Lett. 94, 063601 (2005).

[14] F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and
L. A. Lugiato, Phys. Rev. Lett. 94, 183602 (2005).

[15] K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, Opt. Lett.
34, 3343 (2009).

[16] Q. Liu, X.-H. Chen, K.-H. Luo, W. Wu, and L.-A. Wu, Phys.
Rev. A 79, 053844 (2009).

[17] Y. Zhou, J. Simon, J. Liu, and Y. Shih, Phys. Rev. A 81, 043831
(2010).

[18] T. Peng, H. Chen, Y. Shih, and M. O. Scully, Phys. Rev. Lett.
112, 180401 (2014).

[19] V. Tamma and J. Seiler, Cnot-Gate Simulation based on Multi-
Photon Interference with Thermal Light (unpublished).

[20] S. Aaronson and A. Arkhipov, in Proceedings of the 43rd Annual
ACM Symposium on Theory of Computing (ACM, New York,
2011), pp. 333–342; ,Theory Comput. 9, 143 (2013).

[21] J. D. Franson, Science 339, 767 (2013).
[22] T. Ralph, Nat. Photonics 7, 514 (2013).
[23] B. T. Gard, K. R. Motes, J. P. Olson, P. P. Rohde, and J. P.

Dowling, arXiv:1406.6767.
[24] A. P. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph, J. L.

O’Brien, and T. C. Ralph, Phys. Rev. Lett. 113, 100502 (2014).
[25] V. Tamma, Int. J. Quantum Inf. 12, 1560017 (2015).
[26] L. G. Valiant, Theor. Comput. Sci. 8, 189 (1979).
[27] V. Tamma and S. Laibacher, arXiv:1410.8121.
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