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Theory of high gain cavity-enhanced spontaneous parametric down-conversion
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We compute the output of multimode cavity-enhanced spontaneous parametric down-conversion (SPDC)
for subthreshold, but otherwise arbitrary, gain. We find analytic Bogoliubov transformations that allow us to
calculate arbitrary field correlation functions, including the second-order intensity correlation function G(2)(T ).
The results show evidence of increased coherence due to stimulated SPDC. We extend an earlier model [Lu and
Ou, Phys. Rev. A 62, 033804 (2000)] to arbitrary gain and finesse, and show the extension gives accurate results
in most scenarios. The results will allow simple, analytic description of cavity-based nonclassical light sources
for quantum networking, quantum-enhanced sensing of atoms, and generation of highly nonclassical field states.
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I. INTRODUCTION

Cavity-enhanced spontaneous parametric down-conversion
(CESPDC), in which a spontaneous parametric down-
conversion (SPDC) process is resonantly enhanced by placing
the χ (2) medium inside an optical cavity, has been used to
make highly efficient photon pair sources [1,2] of interest
for quantum networking with atomic quantum memories
[3–6] and atomic quantum metrology [7,8], applications that
require both high spectral brightness and narrow line widths.
SPDC sources in combination with coherent states have been
proposed as extremely bright photon pair sources [9], and as
sources of entangled multiphoton states [10,11].

Many calculations of the fields emitted by CESPDC are
based on techniques developed to calculate squeezing in
parametric amplifiers [12,13]. The cavity is described in a
modal expansion and quantum reservoir theory [14] is used
to derive dynamical relationships between cavity, input, and
output fields. When these are solved, the resulting Bogoliubov
transformation expresses the output fields as squeezed versions
of the input fields [15,16]. Using this approach, Lu and Ou
[13] computed G(2)(T ), the second-order intensity correlation
function for type-I CESPDC. Reflecting experimental condi-
tions of the time, that calculation remained in the low-gain
limit and approximated the cavity line shapes as Lorentzian,
as appropriate to high-finesse cavities.

In contemporary applications, there is a trend toward
lower-finesse cavities in CESPDC [17]. The available single-
pass gain has increased, due to periodically poled nonlinear
materials and more powerful pump lasers, and lowering
the finesse allows higher escape efficiencies at the same
system gain level. At these lower finesses, the “tails” of the
modes begin to overlap, and mode shapes deviate from the
simple Lorentzian. At the same time, higher-gain applica-
tions, for example, in the generation of Schrödinger-cat-like
[18] states and other highly nonclassical time-domain states
[19–21] by photon subtraction, are also becoming important.
These higher-gain processes necessarily involve stimulated
SPDC [22], in which a photon or a pair of photons induces
the production of more pairs. These developments motivate
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a new calculation of CESPDC fields beyond the low gain,
single-longitudinal mode, and high-finesse approximations.

Our method is similar to the classic works of Collett and
Gardiner [15] and Gardiner and Savage [16], in that we use
input-output relations for squeezing and cavity in-out coupling
to obtain equations relating input, output, and intracavity
fields. In contrast to those works, we avoid quantum reservoir
theory by posing the problem directly in the time domain. As
we describe below, narrow-band CESPDC is more naturally
and transparently described in this way. We find difference
equations describing the input, output, and cavity fields at
consecutive round-trip times. Eliminating the cavity field
from these equations, we find the Bogoliubov transformation
expressing the output fields in terms of the input fields. To
study the time-domain structure, we calculate the second-
order intensity correlation function G(2)(T ) for a type-I OPO,
including arbitrary finesse and gain. We find an envelope well
approximated by a double exponential with a gain-dependent
decay constant, multiplied by a comb structure with a period
equal to the cavity round-trip time. At low gain and high finesse
this agrees with the calculation of [13]. At higher gains we find
coherence beyond the cavity ring-down time due to stimulated
SPDC.

II. BOGOLIUBOV TRANSFORMATIONS

Let us consider a two-sided ring cavity as in Fig. 1
with round-trip time denoted as τ . We characterize the
cavity amplitude transmission and reflection coefficients with
real numbers ti and ri , where a subscript i = 1,2 indicates
the output coupler and another mirror representing the collec-
tive cavity losses, respectively. For each of the beamsplitters,
there are four numbers describing the input-ouput relation, the
transmission from inside the cavity (“c”) to the exterior (“e”)
ti,ce, the transmission from the exterior to the interior of the
cavity ti,ec, the reflection from inside the cavity ri,cc, and the
reflection from outside the cavity ri,ee. These coefficients are
related by energy conservation: |ti,ce|2 + |ri,ee|2 = |ti,ec|2 +
|ri,cc|2 = 1 and ti,cer

∗
i,ec + ti,ecr

∗
i,cc = 0. We assume that all t

and r coefficients are real, and ti,ec = ti,ce ≡ ti , and ri,cc =
−ri,ee ≡ ri . The intracavity field annihilation operator just
before reaching the output coupler is denoted as a, while the
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FIG. 1. (Color online) An OPO scheme with input, output, and
intracavity field operators for double-sided cavity with a nonlinear
crystal inside.

input fields just before reaching the cavity are ain and bin. We
denote the output field just after exiting the cavity as aout.

The field experiences three relevant transformations during
a round-trip of the cavity. Interaction with the output coupler
produces

a
OC→ r1a + t1ain, (1)

where ain is the input field. Other losses (here lumped together
in a single interaction) produce

a
loss→ r2a + t2bin, (2)

where bin is a bath mode assumed to be in vacuum. Finally
there is the Bogoliubov transformation due to squeezing on a
single pass through the crystal,

a
sq→ a cosh(r) + a† sinh(r), (3)

where r is the squeezing amplitude.
Applying these three transformations in sequence to a(t −

τ ) (understood to be the intracavity field at a location
immediately before the output coupler), we have

a → r1a + t1ain (4)

→ r2(r1a + t1ain) + t2bin (5)

→ cosh(r)[r2(r1a + t1ain) + t2bin]

+ sinh(r)[r2(r1a
† + t1a

†
in) + t2b

†
in]. (6)

Considering that a round-trip takes time τ and the field a(t)
depends only on a(t − τ ), which is true if we neglect the
dispersion and finite bandwidth of the phase matching (see
below), we have

a(t) = r1r2 cosh(r)a(t − τ ) + r1r2 sinh(r)a†(t − τ )

+ t1r2 cosh(r)ain(t − τ ) + t1r2 sinh(r)a†
in(t − τ )

+ t2 cosh(r)bin(t − τ ) + t2 sinh(r)b†in(t − τ ), (7)

with the Hermitian conjugate:

a†(t) = r1r2 cosh(r)a†(t − τ ) + r1r2 sinh(r)a(t − τ )

+ t1r2 cosh(r)a†
in(t − τ ) + t1r2 sinh(r)ain(t − τ )

+ t2 cosh(r)b†in(t − τ ) + t2 sinh(r)bin(t − τ ). (8)

The output field is given by

aout(t) = −r1ain(t) + t1a(t). (9)

Writing

a(t) = 1√
2π

∫ ∞

−∞
a(ω)e−iωtdω

a†(t) = 1√
2π

∫ ∞

−∞
a†(ω)eiωtdω,

and solving Eqs. (7)–(9) for aout, we find the Bogoliubov
transformation,

aout(ω) = A(ω)ain(ω) + B(ω)a†
in(−ω)

+C(ω)bin(ω) + D(ω)b†in(−ω), (10)

where

A(ω) ≡ d(ω)t2
1 r2[e−iωτ cosh(r) − r1r2] − r1, (11)

B(ω) ≡ d(ω) sinh(r)t2
1 r2e

−iωτ , (12)

C(ω) ≡ d(ω)t2t1[e−iωτ cosh(r) − r1r2], (13)

D(ω) ≡ d(ω) sinh(r)t2t1e
−iωτ , (14)

and

d(ω) ≡ 1

[e−iωτ − r1r2 cosh(r)]2 − [r1r2 sinh(r)]2
. (15)

Equations (10)–(15) constitute a full description of the
output of the OPO, in the sense that any correlation function
of interest can be calculated by taking expectation values of
products of aout and a

†
out. For example, the degree of quadrature

squeezing at a side-band frequency of � can be computed as

S(�) ≡ 〈[aout(�) + a
†
out(−�)]2〉, (16)

where the expectation 〈·〉 is taken with respect to vacuum in
both the a and b modes. S(�) is simply a polynomial in A(�)
to D(−�), so analytical results are available for any gain level.

We have neglected dispersion in the cavity and the finite
phase-matching bandwidth of the crystal. In this case the
emission spectrum of the source is not limited by the phase-
matching profile, and depends only on the cavity parameters.
These approximations are justified in typical narrow-band CE-
SPDC scenarios [23], in which the phase-matching bandwidth
is several orders of magnitude larger than the free spectral
range (FSR) of the cavity. Introducing a finite phase-matching
bandwidth would modify the shape of the peaks composing
the multimode G(2)(T ), but at a time scale beyond the
resolution of current electronics. As described in Ref. [23]
the KTP nonlinear crystal introduces a dispersion of dn/dλ =
−0.06 μm−1, which over a phase-matching bandwidth of
100 GHz (≈0.2 nm) changes the refractive index by 10−5,
not shifting any of the resonances by more than 10−3 FSR.
In contrast, broad-band CESPDC experiments are typically
sensitive to the full output bandwidth of the SPDC process
[24], and these approximations would not be justified.

III. MULTIMODE G(2)(T )

Time-domain correlation measurements on OPOs are an
important diagnostic of the spectral content of the output [3–6],
and are often used to demonstrate the quantum nature of the
generated fields [1,2]. In this section we compute the intensity
correlation function G(2)(T ). As with the degree of squeezing,
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this can be computed analytically for any subthreshold gain
level and including all modes.

As described above, this correlation function is computed
as a normally ordered expectation value with respect to the
vacuum state in both input modes:

G(2)(T ) ≡ 〈a†
out(t)a

†
out(t + T )aout(t + T )aout(t)〉 (17)

=
∫

d4ω e−i(ω2+ω3)(t+T )e−i(ω1+ω4)tG(2)( 
ω), (18)

where d4ω ≡ dω1 dω2 dω3 dω4 and

G(2)( 
ω) ≡ 〈a†
out(−ω1)a†

out(−ω2)aout(ω3)aout(ω4)〉.
After the reduction of the operators using the commutation

relation [a(ω),a†(ω′)] = δ(ω − ω′) and knowing that the coef-
ficients A(ω), B(ω), C(ω), and D(ω) are Hermitian functions,
e.g., A(−ω) = A∗(ω), we find the expression under the Fourier
transform,

G(2)( 
ω) = δ(ω1 + ω2)δ(ω3 + ω4)	(ω2,−ω1)	(ω3,−ω4)

+ δ(ω2 + ω3)δ(ω1 + ω4)ϒ(ω1,−ω4)ϒ(ω2,−ω3)

+ δ(ω1 + ω3)δ(ω2 + ω4)ϒ(ω1,−ω3)ϒ(ω2,−ω4),

(19)

where

	(ω,ω′) ≡ A(ω)B(−ω′) + C(ω)D(−ω′), (20)

ϒ(ω,ω′) ≡ B(ω)B(−ω′) + D(ω)D(−ω′). (21)

Performing one integral for each delta function, we arrive to
an expression that is t independent,

G(2)(T ) = {F[	](T )}2 + {F[ϒ](T )}2 + {F[ϒ](0)}2, (22)

where 	(ω) ≡ 	(ω,ω) and ϒ(ω) ≡ ϒ(ω,ω). Knowing that
r2

1 + t2
1 = 1 and r2

2 + t2
2 = 1, from Eqs. (11)–(14) we find

	(ω) = d(ω)d(−ω)t2
1 sinh(r)

× [(
1 + r2

1 r2
2

)
cosh(r) − r1r2e

iωτ − r1r2e
−iωτ

]
, (23)

ϒ(ω) = d(ω)d(−ω)t2
1 sinh(r)2

(
1 − r2

1 r2
2

)
. (24)

The necessary Fourier transforms are computed in the ap-
pendix [see Eqs. (A17) and (A16)], in terms of a function
F (k), defined in Eq. (A5). We find

{F[	](T )}2 = t4
1 sinh(r)2

∞∑
k=−∞

δ(T − kτ )

× [(
1 + r2

1 r2
2

)
cosh(r)F (|k|)

− r1r2F (|k| + 1) − r1r2F (|k| − 1)
]2

, (25)

{F[ϒ](T )}2 = t4
1 sinh(r)4

(
1 − r2

1 r2
2

)2
∞∑

k=−∞
δ(T − kτ )F (|k|)2,

(26)

{F[ϒ](0)}2 = t4
1 sinh(r)4(1 − r2

1 r2
2

)2
F (0)2, (27)

the three terms necessary to calculate G(2)(T ). As shown in
Fig. 2, G(2)(T ) of the multimode cavity output has an envelope
similar to the shape of the double falling exponential and peaks
every cavity round-trip time, resulting from the interference

FIG. 2. (Color online) Theoretical G(2)(T ) calculated for cavity
parameters as for the source presented in Ref. [23] with gain equal to
1% of the OPO threshold. The envelope of the G(2)(T ) is calculated
from Eqs. (22), (25), and (26), and normalized to unity at T = 0. For
the purpose of plotting, the peaks, which in the model are Dirac delta
functions, have been replaced with finite-width Lorentzians.

between the modes. In contrast, the single-mode G(2)(T ) would
also have a double exponential decay, but without the comb
structure [13].

IV. COMPARISON WITH EARLIER WORK

The G(2)(T ) calculation of Lu and Ou [13] found the
multimode G(2)(T ) to be a comb of (approximate) Dirac delta
functions spaced by the cavity round-trip time, multiplied by an
envelope given by the single-mode G(2)(T ). This result has an
appealing simplicity, and is intuitive in the time-domain picture
in which photon pairs are produced simultaneously but may
spend a different number of round trips in the cavity before
escaping. It is interesting to ask whether the same behavior
persists also at higher gains, i.e., in the presence of stimulated
SPDC.

We compare our G(2)(T ), Eq. (22), against the natural
extension of the Lu and Ou model for arbitrary gain, but
still within the high-finesse approximation. In this section we
follow the notation of Refs. [13,15], and write exp[−γiτ ] = ri

to describe losses and 2ε = r to describe gain. The single-
mode Bogoliubov transformations from [15], without the
low-gain approximation, are

Asingle(ω) ≡ (γ1/2)2 − (γ2/2 − iω)2 + |ε|2
(γ1/2 + γ2/2 − iω)2 − |ε|2 , (28)

Bsingle(ω) ≡ γ1ε

(γ1/2 + γ2/2 − iω)2 − |ε|2 , (29)

Csingle(ω) ≡
√

γ1γ2(γ1/2 + γ2/2 − iω)

(γ1/2 + γ2/2 − iω)2 − |ε|2 , (30)

Dsingle(ω) ≡
√

γ1γ2ε

(γ1/2 + γ2/2 − iω)2 − |ε|2 . (31)

We follow the same steps as from Eq. (17) to Eq. (22), to find

G
(2)
single(T ) = {Fsingle[	](T )}2 + {Fsingle[ϒ](T )}2

+{Fsingle[ϒ](0)}2, (32)
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FIG. 3. (Color online) Three envelopes of multimode G(2)(T ),
computed from Eqs. (22), (25), and (26) and normalized to unity
at T = 0. Curves show G(2)(T ) for the gain r equal to 1% (blue),
50% (green, dashed), and 90% (red, dotted) of the threshold gain rth.
Cavity parameters are as for the source presented in Ref. [23].

where

{Fsingle[	](T )}2 = π

2
γ 2

1 ε2(f− + f+)2, (33)

{Fsingle[ϒ](T )}2 = π

2
γ 2

1 ε2(f− − f+)2, (34)

f± ≡ e− 1
2 |T |(γ1+γ2±2ε)

γ1 + γ2 ± 2ε
. (35)

Finally, we multiply by a comb of (approximate) delta
functions. Again following [13], for a multimode cavity with
2N + 1 modes we have

G
(2)
multi(T ) ∝ G

(2)
single(T )

sin2[(2N + 1)πT/τ ]

sin2[πT/τ ]
, (36)

lim
N→∞

G
(2)
multi(T ) ∝ G

(2)
single(T )

∞∑
n=−∞

δ(T − nτ ). (37)

Equation (32), computed by an extension of [13], agrees
very closely with our multimode result Eq. (22), shown in
Fig. 3. The only situation for which the two approaches give
significantly different results is when the output coupler has
high transmission t1. Even so, the difference between the two
calculations does not exceed 7.5% of the value of G(2)(T ),
for r1,r2 > 0.5 and for any subthreshold gain. We conclude
that for many purposes the very simple results of Eq. (32)
can be used, backed by the more accurate calculation given in
Sec. III.

Figure 3 shows the computed shape of the G(2)(T ) envelope
as a function of gain parameter r . This clearly shows a
broadening of the correlations, along with a raising of the
background level, which persists to arbitrarily large |T |. The
background can be understood as a result of “accidental”
coincidences, i.e., correlations among photons that were not
produced in the same SPDC event. The broadening is the
time-domain manifestation of the narrowing of the resonances
with increasing r , visible, e.g., in d(ω). Physically, it can be
understood as the coherent amplification of SPDC photons
already inside the cavity, i.e., stimulated SPDC. This change
in photon temporal distributions is of potential interest in wave-

function matching for nonclassical interference [25], matching
to quantum memories [26], and detection of Schrödinger-cat-
like states and other time-localized nonclassical fields [27].

V. CONCLUSION

We have computed the output of a multimode cavity-
enhanced spontaneous parametric down-conversion source,
including realistic mode structure and subthreshold but oth-
erwise arbitrary gain. Using time-domain difference equations
describing field operators at consecutive round trips, we
find multimode Bogoliubov transformations that describe
the output field. This analytic solution provides a basis for
calculations of any correlation function describing the multi-
mode output. We compute the two-time intensity correlation
function G(2)(T ), and find increased temporal coherence due
to stimulated SPDC in both single and multimode cases.
We extend a calculation by Lu and Ou [13] to arbitrary
gain, and find that it agrees well with our more exact
calculation. The results will be useful in describing high-gain
spontaneous parametric down-conversion, in the context of
quantum networking using atomic quantum memories [3–6]
and studies of small-amplitude Schrödinger-cat-like states and
other exotic nonclassical states [18–21].

ACKNOWLEDGMENTS

This work was supported by the Spanish MINECO
project MAGO (Project. No. FIS2011-23520) and the Eu-
ropean Research Council project AQUMET, and Fundació
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APPENDIX: FOURIER TRANSFORMS FOR � AND ϒ

We first compute F[d(ω)d(−ω)](T ), the Fourier transform
of d(ω)d(−ω), where d is given in Eq. (15). We denote x ≡
(1 + r2

1 r2
2 e2r )/(2r1r2e

r ) and y ≡ (1 + r2
1 r2

2 e−2r )/(2r1r2e
−r ).

In the below-threshold regime we are considering, r < rth =
− ln(r1r2) so that d(ω) is always finite. We find

d(ω)d(−ω) = 1

4r2
1 r2

2

1

x − cos(ωτ )

1

y − cos(ωτ )
. (A1)

Since d(ω)d(−ω) is an even periodic function with a period
of 2π/τ we can write

d(ω)d(−ω) =
∞∑

k=0

F (k) cos(kωτ ), (A2)

where

F (k) = 2

π

∫ π

0
d(ω)d(−ω) cos(kωτ )dω. (A3)

The Fourier transform is then the sum of Dirac delta functions:

F[d(ω)d(−ω)](T ) =
∞∑

k=−∞
F (|k|)δ(T − kτ ). (A4)
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The F (k) can be expressed in terms of hypergeometric
functions,

F (k) = 2

4r2
1 r2

2

1

(x − y)(1 + x)(1 + y)

×
[

(1 + x)
3F2

({
1
2 ,1,1

}
,{1 − k,1 + k}; 2

1+y

)
	(1 − k)	(1 + k)

− (1 + y)
3F2

({
1
2 ,1,1

}
,{1 − k,1 + k}; 2

1+x

)
	(1 − k)	(1 + k)

]
.

(A5)

It follows immediately that the Fourier transform of
d(ω)d(−ω)einωτ is

F[d(ω)d(−ω)einωτ ](T ) =
∞∑

k=−∞
F (|k| + n)δ(T − kτ ).

(A6)

Now in order to compute {F[	](T )}2 and {F[ϒ](T )}2, let
us use the following trick. For a moment, let’s assume
that the bandwidth of the down-conversion is finite, i.e.,
replace squeezing amplitude r by a function rrect(ω/ωbw)
where

rect(x) =
{

1, if |x| < 1/2

0, otherwise
. (A7)

Later we will apply to the final expressions the limit ωbw → ∞
returning to the situation with the infinite bandwidth. In that
case the functions 	bw(ω) and ϒbw(ω) yield

	bw(ω) = rect(ω/ωbw)	(ω), (A8)

ϒbw(ω) = rect(ω/ωbw)ϒ(ω). (A9)

Therefore, if we write ∗ for convolution we find

{F[ϒbw](T )} = ω2
bw√
2π

{F[ϒ](T )} ∗ sinc

(
T ωbw

2π

)
. (A10)

Knowing that

{F[ϒ](T )} = t2
1 sinh(r)2

(
1 − r2

1 r2
2

) ∞∑
k=−∞

δ(T − kτ )F (|k|),

(A11)

we arrive at

{F[ϒbw](T )}2 = t4
1 sinh(r)4

(
1 − r2

1 r2
2

)2

×
[ ∞∑

k=−∞
sinc

(
(T − kτ )ωbw

2π

)
F(|k|)

]2

.

(A12)

Now let’s notice that for k = l,

lim
ωbw→∞ sinc

(
(T − kτ )ωbw

2π

)
sinc

(
(T − lτ )ωbw

2π

)
= 0,

(A13)

and

lim
ωbw→∞

[
sinc

(
T ωbw

2π

)]2

= δ(T ), (A14)

in the sense of a weak limit, i.e.,

lim
ωbw→∞

∫ ∞

∞
dTf (T )

[
sinc

(
T ωbw

2π

)]2

= f (0), (A15)

for any continuous function f with a compact support. It
follows that

{F[ϒ](T )}2 = t4
1 sinh(r)4

(
1 − r2

1 r2
2

)2

×
∞∑

k=−∞
δ(T − kτ )F (|k|)2. (A16)

An analogous argument leads to

{F[	](T )}2

= t4
1 sinh(r)2

∞∑
k=−∞

δ(T − kτ )
[(

1 + r2
1 r2

2

)
cosh(r)F (|k|)

− r1r2F (|k| + 1) − r1r2F (|k| − 1)
]2

. (A17)
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