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Photon distribution function for propagation of two-photon pulses in waveguide-qubit systems
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Propagation of a two-photon pulse in a waveguide coupled to a two-level system (TLS) is studied. The pulse
is formed by two spatially separated identical wave packets. A set of equations governing the dynamics of the
photon distribution in the configuration-momentum space is derived and solved. It is shown that the distribution
function can be negative, which manifests its quasiprobability nature. A spectrum of the reflected light is found
to be narrower than that of the transmitted light that features a pronounced filtering effect. Average numbers of
the transmitted and reflected photons and their variances are shown to be dependent not only on the pulse widths
and the light-TLS interaction but also on the pulse separation that can serve as an effective controlling parameter.
Our approach is generalized for the case of an n-photon Fock state.
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I. INTRODUCTION

The problem of interaction of few-photon pulses with two-
level systems (TLSs) attracts an increasing interest. First, this
is due to the development of quantum information processing
(QIP) devices. The TLSs are the simplest implementations
of the stationary quantum bits (qubits). In practice, various
multilevel systems are used: trapped ions [1,2] or neutral
atoms [3], superconducting Josephson junctions [4], semicon-
ductor quantum dots [5], etc. Nevertheless, in many cases
those multilevel systems can be modeled as TLSs. This
simplification is quite reasonable if the frequency of the
incident radiation is close to the transition frequency between
the corresponding pair of levels.

Recent experiments show that photons can act as transmit-
ters of quantum states between distant stationary qubits [6,7].
Moreover, stationary qubits are able to controllably generate
correlations between photons. The qubits, connected by
optical or microwave waveguides, form scalable chip-based
circuits [8]. These circuits are considered now as a potential
hardware basis for the QIP systems. Properties of photons
propagating in waveguide-qubit systems have attracted in-
creasing interest.

Theoretical description of propagation of few-photon
pulses in waveguides coupled to a TLS can be found in
numerous publications [9–18]. For example, a collision of
two wave packets at a TLS was studied [9]. A striking
difference in the interaction of the Fock-state and coherent-
state wave packets of the same photon number was illustrated.
It was shown that photon-TLS coupling induces correlation
between photons that can be interpreted as their interaction.
This controllable photon-photon interaction may be used for
generation of spatiotemporal entanglement and four-wave
mixing effects [10,11].

Evolution of the photon-TLS was studied in the Heisenberg
picture in Ref. [9]. In contrast, the authors of Refs. [10–16]
preferred the Schrödinger picture. The theoretical analysis
is simplified if the incoming and outgoing radiation fields
are away from the TLS and, accordingly, are outside of the
interaction range. In those regions the evolution of fields is as
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if there is no interaction with the TLS. In this situation the
initial and the final states of the radiation are connected by the
S matrix whose elements can be extracted from the eigenstates
of the full interacting Hamiltonian. Provided that the S matrix
is known, the outgoing field can be expressed via the entering
field. A rigorous program to construct the complete scattering
matrix, which is applicable for two or more photons, was
developed in Refs. [13–16]. Using that technique the physical
quantities such as transmission or reflection coefficients can
be obtained analytically. The above approach was extended in
Ref. [16] for coherent-state wave packets with arbitrary photon
numbers.

Further studies [17,18] were based on the input-output
formalism of quantum optics [19]. One- and two-photon scat-
tering with a TLS was analyzed. The relationship between the
input-output operators, which are inherent for the Heisenberg
picture of the evolution equations, and the photon scattering
matrix was derived. It was shown that these approaches are
equivalent. At the same time the authors of Ref. [17] inferred
that the input-output approach was more elementary than the
techniques developed earlier in Refs. [12–14].

The Heisenberg picture is suitable for using the phase-space
distribution function [20], which provides a comprehensive
description of the system. Within this approach the evolution
of wave packets in the coordinate space as well as in the
momentum space can be analyzed in detail [21]. The operator
of the phase-space distribution function, f̂ (x,p,t), represents
the photon density in the coordinate-momentum (x,p) phase
space. It was shown in Ref. [21] that the average value of
the phase-space distribution function, 〈f̂ (x,p,t)〉, may be
negative at some domains of phase space, which indicates
that 〈f̂ (x,p,t)〉 corresponds to a quasiprobability rather than
the probability of the photon density in the phase space.

In this work, we extend our previous studies [21] to the
case of few-photon Fock states of the ingoing field. We
consider dynamics in the phase space and statistical properties
of two-photon pulses whose initial state is represented by
a sequence of two single-photon wave packets. The initial
distance between them is a free parameter, which controls the
correlation of outgoing photons. Then we outline a general
scheme to study systems with an arbitrary number of photons.

The paper is organized as follows. The model Hamiltonian
and the initial state are drawn in Sec. II. In Sec. III the set
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of equations describing dynamics of the system is derived
and solved. Dynamics of the qubit for different parameters of
the system is analyzed. Evolution of two-photon pulses in the
phase-space is studied. In Sec. IV the statistical properties of
the outgoing photons are investigated. The obtained results are
summarized in Sec. V. Derivation of useful operator relations
used throughout the paper is delegated to Appendix A. In
Appendix B we demonstrate a generalization of the method
for the case of an n-photon Fock-state input.

II. MODEL

A. Hamiltonian of the model

The system we study consists of a TLS (qubit) coupled to
photons propagating in both directions in a one-dimensional
waveguide. Figure 1 displays the scheme of the model system.
Ground and excited states of the TLS are denoted as |g〉 and
|e〉, respectively. The system is modeled by the Hamiltonian

Ĥ = Ĥ0 + Ĥint. (1)

Here Ĥ0 describes the free evolution of a TLS and the field
in the waveguide. Assuming that the waveguide modes form a
one-dimensional continuum [22], it is given by

Ĥ0 = ωa σ+ σ− +
∫

dp
(
ωl

p l†p lp + ωr
p r†p rp

)
, (2)

where ωa is the transition frequency, σ+ = |e〉〈g| and σ− =
|g〉〈e| are raising and lowering operators obeying the Pauli
matrices algebra, l

†
p(lp) and r

†
p(rp) are respectively bosonic

creation (annihilation) operators of the photons propagating in
the waveguide from the left to the right side and vice versa.
In what follows we use terms “l − mode” (“l − photon”) and
“r-mode” (“r-photon”) to denote the left-to-right and right-
to-left propagating modes (photons), respectively. Photon
frequencies, ωl,r

p , linearized with respect to momenta p (see
Ref. [23]) are defined as ωl,r

p = ω0 ± vg p, where ω0 is the
central frequency and vg > 0 is the group velocity. This
Hamiltonian is referred to as the two-mode model [17].
Throughout the paper we set the Planck’s constant � to 1
and, thus, measure momentum and energy in wave number
and frequency units, correspondingly.

FIG. 1. (Color online) Scheme of the system under considera-
tion. A qubit modeled by a TLS is positioned at x = 0 and coupled
equally to waveguide modes propagating from the left to the right
and vice versa. The ingoing two-photon state is represented by two
single-photon pulses, which can be separated by distance L. The
initial positions of the pulses are x0 and x0 − L.

The other constituent of the full Hamiltonian (1) describes
interaction of the radiation field with the TLS. In the rotating-
wave approximation it is given by

Ĥint = g

∫
dp(l†p + r†p)σ− + H.c., (3)

where g is the frequency-independent waveguide-qubit cou-
pling strength.

The total number of excitations in the system is defined by
the operator

N̂ex =
∫

dp[l†p lp + r†p rp] + σ+ σ−, (4)

which, similar to (2), does not contain the interaction terms.
Using the definition (4) the Hamiltonian (2) is rewritten as

Ĥ0 = ω0 N̂ex + �σ+ σ− + vg

∫
dp p[l†p lp − r†p rp],

where � = ωa − ω0 is the detuning between the TLS tran-
sition frequency and the central frequency of the waveguide
modes.

The operator N̂ex commutes with the Hamiltonian,
[N̂ex,Ĥ] ≡ 0. Hence, it is the integral of motion. Thus,
the system can be equivalently described by the modified
Hamiltonian

Ĥ′ = Ĥ − ω0 N̂ex = Ĥ′
0 + Ĥint, (5)

where

Ĥ′
0 = vg

∫
dp p[l†p lp − r†p rp] + �σ+ σ−.

B. Initial state of the system

We consider the dynamics of light propagating from the left
to the right as shown in Fig. 1. It is assumed that initially (at
t = t0) the qubit is in the ground state, |g〉, and the propagating
light is represented by two single-photon pulses |1α〉 and |1β〉.
They are superpositions of single-photon states l

†
p |0〉 weighted

by amplitudes αp and βp:

|1α〉 =
∫

dp αp l†p(t0) |0〉 ≡ a†
α|0〉, (6a)

|1β〉 =
∫

dp βp l†p(t0) |0〉 ≡ a
†
β |0〉, (6b)

where |0〉 is the vacuum state of the system and the factors
αp and βp ensure the normalization conditions for states (6a)
and (6b) ∫

dp|αp|2 =
∫

dp|βp|2 = 1.

It can be verified that |1α,β〉 are the eigenstates of the
operator of the total photon number, N̂l = ∫

dp l
†
p lp, with the

eigenvalues equal to unity

N̂l|1α,β〉 = 1 · |1α,β〉,
which indicates that |1α,β〉 are the single-photon Fock states.
In what follows we set

βp = αp ei p L. (7)
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Then the configuration-space densities of photons in the initial
states |1α,β〉 are related as

〈1β |ρ̂l(x,t0)|1β〉 = 〈1α|ρ̂l(x + L,t0)|1α〉, (8)

where the operator of density of the l photons is given by [21]

ρ̂l(x,t) = 1

2π

∫
dp dk e−i k x l

†
p+k/2(t) lp−k/2(t). (9)

All operators are defined in the Heisenberg representation with
the Hamiltonian given by (5). It can be seen from (8) that the
β and α pulses being separated by L have identical shapes.
Acting by the raising operators a†

α and a
†
β on the vacuum state

|0〉 we obtain a two-photon Fock state

|2αβ〉 = ν a
†
β a†

α|0〉, ν = 1√
1 + |χ |2

. (10)

Parameter χ = ∫
dp α∗

p βp describes the overlap of the single-
photon states (6a) and (6b). When L = 0 the constant ν is equal
to (2!)−1/2 and the definition of a two-photon state coincides
with the usual definition of the n-photon Fock state given by
|nα〉 = (a†

α)n|0〉/√n! [24].
It should be noted that there is another type of two-photon

states named by quantum-correlated photon pairs. They are
defined as (see, for example, Ref. [25])

|2corr〉 = 1√
2

∫
dp

∫
dp′ ψ(p,p′) l†p l

†
p′ |0〉,

where ψ(p,p′) = ψ(p) δ(p + p′ − 2p0) and 2p0 is the total
momentum of the photon pair. These states are referred to as
the twin-beam states and can be obtained from spontaneous
parametric down conversion. The δ function indicates energy
anticorrelation of two photons.

We use here the definition (10). Let us assume that the
ingoing pulses are given by Gaussian distributions. Then αp is
given by

αp = w1/2

π1/4
exp

[
−w2 p2

2
− i p x0

]
, (11)

where w is the pulse width and x0 < 0. Thus, the single-photon
densities are

〈1α|ρ̂l(x,t0)|1α〉 = 1

π1/2 w
e−(x−x0)2/w2

,

(12)
〈1β |ρ̂l(x,t0)|1β〉 = 1

π1/2 w
e−(x+L−x0)2/w2

.

The photon density for the state |2αβ〉 is given by

〈2αβ |ρ̂l(x,t0)|2αβ〉

= ν2

π1/2 w

[
e−(x−x0)2/w2 + e−(x+L−x0)2/w2

+ 2e−L2/2 w2
e−(x−x0+L/2)2/w2]

, (13)

where ν−2 = 1 + e−L2/2 w2
. For large L the coefficient ν2

tends to unity and the last term in the square brackets,
which describes the interference effect, vanishes. In this
case the incoming field is represented by two independent
single-photon pulses.

It can be seen from Eq. (13), illustrated by Fig. 2, that
the densities at x = x0 and x = x0 − L are slightly smaller

x0x0 L
0.0

0.1

0.2

0.3

0.4

0.5

w
2 α

β
ρ

l
x,

t 0
2 α

β

x

FIG. 2. (Color online) The initial photon distributions in the
configuration space for L = 2 w. Solid thin lines indicate the densities
of photons in the states |1α〉 and |1β〉. Dashed line is the sum of these
densities. Solid thick line is the density in the two-photon Fock state
|2αβ〉. The areas under the dashed and solid lines are both equal to 2.
Coordinate x is measured in units of w.

than those given by Eqs. (12). On the contrary, the density
at the intermediate position x = x0 − L/2 increases. This
variation of the photon density is caused by interference of
the incoming fields. Also, this phenomenon can be interpreted
as a photon-photon interaction caused by quantum correlations
of the incoming pulses.

III. EQUATIONS OF MOTION AND EVOLUTION
OF TWO-PHOTON FIELD

Followed from Hamiltonian (5) the Heisenberg equations
of motion for photon variables lp(t) and rp(t) are as follows

(∂t + i vg p)lp = −i g σ−, (14a)

(∂t − i vg p)rp = −i g σ−, (14b)

with solutions

lp(t) = l̃p(t) − i g

∫ t

t0

dτ e−i vg p (t−τ ) σ−(τ ), (15a)

rp(t) = r̃p(t) − i g

∫ t

t0

dτ ei vg p (t−τ ) σ−(τ ), (15b)

where t > t0. Tildes over the operators indicate their free
evolution:

l̃p(t) = lp(t0) e−i vg p (t−t0), r̃p(t) = rp(t0) ei vg p (t−t0). (16)

Using Hamiltonian (5), Eqs. (15a) and (15b), the equations
of motion for the qubit variables take the forms

(∂t + �)σ+σ− = i g

∫
dp(l̃†p + r̃†p)σ− + H.c., (17)

(∂t + i � + �/2)σ− = i g(2 σ+σ− − 1)
∫

dp(l̃p + r̃p), (18)

where � = 4 π g2/vg . Equation (17) indicates that parameter
� is a decay rate of the qubit excitation. Effect of the ingoing
field is accounted by the free-moving photon operators l̃p
and r̃p.
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A. Qubit dynamics

Using Eqs. (17), (18) and the definition of the initial
state (10) we obtain a full set of equations governing the TLS
excitation dynamics:

(∂t + �) 〈σ+ σ−〉
= i g

[
A∗(t)〈1β |σ−|2〉 + B∗(t)〈1α|σ−|2〉] + c.c., (19a)

(∂t + i � + �/2) 〈1α|σ−(t)|2〉
= 2 i g ν 〈1α|σ+(t)|0〉[A(t) 〈0|σ−(t)|1β〉+B(t) 〈0|σ−(t)|1α〉]

− i g ν [χ A(t) + B(t)] , (19b)

where A(t) = ∫
dp e−i vg p t αp and B(t) = ∫

dp e−i vg p t βp.
Here and in what follows the index αβ in the denotation of
the initial state |2αβ〉 is omitted. The equation for 〈1β |σ−(t)|2〉
can be obtained by mutual replacement of α and β as well
as A(t) and B(t) in Eq. (19b). The explicit expression for
〈0|σ−|1α,β〉 follows from Eqs. (18) and (A2) and has the form

〈0|σ−(t)|1α〉 = −i g

∫ t

0
dτ e−(i �+�/2)(t−τ ) A(τ ). (20)

The expression for 〈0|σ−(t)|1β〉 is obtained by replacing A(t)
with B(t). For the sake of brevity, hereinafter we set t0 = 0.

The evolution of the TLS excitation probability 〈σ+ σ−〉 =
(〈σz〉 + 1)/2 for different values of �, � and L is displayed in
Fig. 3. The calculations show that the strongest TLS excitation
is observed when the bandwidth � = vg/w of the ingoing
pulse is close to the TLS decay rate � and L = 0. With decrease
of � the TLS exhibits lower excitation and the lifetime of the
excited state increases. The opposite scenario results in the
inhibition of the TLS excitation and reduction of the excited
state lifetime [see Fig. 3(a)]. Increase of the magnitude of
detuning |�| leads to the reduction of the TLS excitation
as can be seen in Fig. 3(b). In the limit of � � � the TLS
excitation probability tends to zero. Figure 3(c) shows the
qubit evolution for different values of the spatial separation
between the ingoing pulses. For L < �−1 the lifetime of
the TLS excited state grows with increase of L whereas the
maximum excitation probability drops down. Further increase
of L results in the two-peak structure of the TLS excitation
dependence on time. When L � �−1 the TLS is excited as
in the case of single-photon input. In this case the TLS has
sufficient time to relax to the ground state forgetting about the

first photon. Results presented in Fig. 3 show the possibility to
control the state of the qubit by controlling the parameters of
the ingoing pulses and qubit-photon interaction.

B. Phase-space evolution

The operator of the phase-space distribution function for
the l photons is given by [21]

f̂l(x,p,t) = 1

2 π

∫
dk e−i k x l

†
p+k/2(t) lp−k/2(t),

which is similar to those used for description of electrons and
phonons in semiconductors [26].

In order to simplify further considerations we introduce
photon operators l(x,t) and r(x,t) describing, respectively,
annihilation of l photon and r photon at the coordinate x.
They are defined as

l(x,t) = (2 π )−1/2
∫

dp ei p x lp(t),
(21)

r(x,t) = (2 π )−1/2
∫

dp ei p x rp(t).

Substituting expressions (15a) and (15b) into Eq. (21) we
obtain the following relations

l(x,t) = l̃(x,t) − i
√

2 π
g

vg

σ−

(
t − x

vg

)
θ (x) θ

(
t − x

vg

)
,

(22a)

r(x,t) = r̃(x,t) − i
√

2 π
g

vg

σ−

(
t + x

vg

)
θ (−x) θ

(
t + x

vg

)
,

(22b)

where θ (x) is the Heaviside step function. As previously, tildes
indicate the free-propagating operators, which act on the initial
state (10) as

l̃(x,t)|2〉 = (2 π )−1/2 ν

[
A

(
t − x

vg

)
|1β〉 + B

(
t − x

vg

)
|1α〉

]
,

(23a)

r̃(x,t)|2〉 = 0. (23b)
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t x0 vg
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0.2

0.3
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σ
σ
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t x0 vg
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2 0 2 4 6 8 10

t x0 vg

cL 0, 0 2, L 0 2, 0

FIG. 3. (Color online) The TLS excitation dynamics: (a) � = 3�/4 (blue solid line), � = �/4 (black dashed line), � = 5� (red dash-
dotted line); (b) |�| = �/4 (blue solid line), |�| = � (black dashed line), |�| = 5� (red dash-dotted line); (c) L = w (blue solid line),
L = 2 w (black dashed line), L = 5 w (red dash-dotted line).
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Using (21) the operator of the phase-space distribution
function for the l photons takes the form

f̂l(x,p,t) = 1

2 π

∫
dξ ei p ξ l†(x + ξ/2,t) l(x − ξ/2,t). (24)

Substituting expression (22a) into (24) and taking into ac-
count (23a) we obtain the average value of the phase-space
distribution for the l photons as

〈f̂l(x,p,t)〉 = 〈f̃l(x,p,t)〉 + �

2 π

∫ 2x/vg

−2x/vg

dτ e−i vg p τ

〈
σ+

(
t ′ + τ

2

)
σ−

(
t ′ − τ

2

)〉∣∣∣∣
t ′=t−x/vg

− i
g ν

2 π

∫ 2x/vg

2(x/vg−t)
dτ

{
ei vg p τ

[
A∗

(
t ′ − τ

2

)
〈1β | + B∗

(
t ′ − τ

2

)
〈1α|

]
σ−

(
t ′ + τ

2

)
|2〉 − c.c.

}∣∣∣∣
t ′=t−x/vg

. (25)

The first term on the right-hand side of Eq. (25) describes free propagation of the initial pulse. The average value 〈f̃l(x,p,t)〉 for
distributions (7) and (11) is given by

〈f̃l(x,p,t)〉 = ν2

π
e−p2 w2[

e−X2(t)/w2 + e−[X(t)+L]2/w2 + 2 cos(pL) e−L2/4 w2
e−[X(t)+L/2]2/w2]

, (26)

where X(t) = x − x0 − vg t . In this case 〈f̃l(x,p,t)〉 depends
only on two variables, i.e., x − vg t and p. Integration of
〈f̃l(x,p,t)〉 over p gives the configuration-space distribu-
tion (13). Expression (26) shows that for the ingoing Gaussian
pulse the initial phase-space distribution is positive at any point
of phase space.

Figure 4 displays the initial phase-space distribution for
L = 3w. This distribution exhibits a two-peak structure with
maxima at x0 and x0 − L as it follows from (26). The
interference of the single-photon wave packets is described
by the third term in the brackets in Eq. (26). For larger
L the interference becomes less pronounced and the initial
distribution tends to form two solitary peaks. For L = 0 the
initial distribution has the only maximum at x0.

The second and third terms on the right-hand side of Eq. (25)
arise due to interaction of the ingoing pulse with the qubit.
These terms are nonzero only for x > 0. The integration limits
are imposed by the θ functions in Eqs. (22a) and (22b). The
second term in (25) describes the l mode of the field reemitted
by the TLS. The third term on the right-hand side of (25) is
linear with respect to the waveguide-qubit coupling parameter
g. This term describes interference of the ingoing field and the
field reemitted by the TLS.

FIG. 4. (Color online) The initial photon phase-space distribu-
tion for L = 3w exhibiting two-peak structure. Oscillations in the
vicinity of X(t) = −L/2 are damped. Coordinate x and momentum
p are measured in units of w and w−1, respectively.

The operator of the phase-space distribution for the r

photons, f̂r (x,p,t), is defined by replacing l with r in (24).
Taking into account Eqs. (22b) and (23b) we obtain 〈f̂r (x,p,t)〉
as

〈f̂r (x,p,t)〉

= �

2 π

∫ −2x/vg

2x/vg

dτ ei vg p τ

〈
σ+

(
t ′ + τ

2

)
σ−

(
t ′−τ

2

)〉∣∣∣∣
t ′=t+x/vg

.

(27)

This distribution is nonzero for x < 0 and coincides with
the second term on the right-hand side of Eq. (25), with vg

is replaced by −vg , due to the symmetry properties of the
considered system. Expression (27) shows that the reflected
field consists only of the r mode of the field reemitted by the
TLS.

As seen in Eqs. (25) and (27), in order to calculate the
photon phase-space distributions we should know two-time
correlator 〈σ+(t) σ−(t ′)〉 and matrix elements 〈1α,β |σ−(t)|2〉.
As follows from (18) evolution of 〈σ+(t) σ−(t ′)〉 is governed
by the equation

(∂t − i � + �/2) 〈σ+(t) σ−(t ′)〉
= i g ν[A∗(t)〈1β |+B∗(t)〈1α|−2 A∗(t)〈1β |σ+(t)|0〉〈0|σ−(t)

− 2 B∗(t)〈1α|σ+(t)|0〉〈0|σ−(t)]σ−(t ′)|2〉. (28)

The equation of motion for matrix element 〈0|σ−(t) σ−(t ′)|2〉
in the right-hand side of Eq. (28) is given by

(∂t + i � + �/2) 〈0|σ−(t) σ−(t ′)|2〉
= −i g ν[A(t) 〈0|σ−(t ′)|1β〉 + B(t) 〈0|σ−(t ′)|1α〉]. (29)

The property σ−(t)|1α,β〉 = [〈1α,β |σ+(t)]† and the relation

σ−(t)|1α,β〉 = 〈0|σ−(t)|1α,β〉|0〉,
(30)〈1α,β |σ+(t) = 〈0|σ−(t)|1α,β〉∗〈0|

derived in Appendix A are utilized to obtain the right-hand
side of Eqs. (28) and (29).

It is assumed that t > t ′ in Eq. (28). (For t < t ′ the relation
〈σ+(t ′) σ−(t)〉 = 〈σ+(t) σ−(t ′)〉∗ is used.) Thus, for t = t ′ we
get the initial conditions 〈σ+(t) σ−(t ′)〉|t=t ′ = 〈σ+ σ−〉|t and
〈0|σ−(t) σ−(t ′)|2〉|t=t ′ = 0. Generalization of the described
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FIG. 5. (Color online) Phase-space distribution for photons after interaction with TLS for different � and L. All calculations are performed
for t = (10 w + |x0|)/vg , x0 = −10 w and � = 0. The other parameters are the following: (a) � = �, L = 0; (b) � = �, L = 2w; (c) � = �,
L = 5w; (d) � = 2�, L = 0. Phase-space distributions (a)–(c) exhibit negative values while distribution (d) does not.

scheme for the case of an n-photon Fock state is presented
in Appendix B.

Figure 5 shows phase-space distributions of photons after
their interaction with the TLS for different values of L and �. In
contrast to the positive initial distribution (26), the phase-space
distribution of transmitted photons (x > 0) exhibits a distinct
dip, which can form an area of negative values. This is the result
of anticorrelation between the ingoing and reemitted fields.
When single-photon components of the ingoing state (10)
have significant overlap, the dip in the phase-space distribution
is less pronounced than in the case of single-photon input
considered in Ref. [21]. With increase of � the negative
regions in the phase-space distribution vanish. The reason for
this is that for greater coupling g the qubit is excited more
effectively and the term describing the TLS reemission in
Eq. (25) dominates the interference term. With increase of the
spatial separation L the interference between the initial pulses
decays. For large L the problem reduces to the scattering of
independent single-photon pulses.

C. Photon densities and spectra

The average photon densities 〈ρ̂l,r (x,t)〉 can be obtained
by integrating the phase-space distribution functions over
all momenta 〈ρ̂l,r (x,t)〉 = ∫

dp 〈f̂l,r (x,p,t)〉. The results of
calculation of 〈ρ̂l,r (x,t)〉 are shown in Fig. 6.

Increase of the reflection can be seen if the qubit-waveguide
coupling � or pulse width w increases (see, for example,
Refs. [9,16,21]). Stronger waveguide-qubit coupling (or longer
ingoing pulses) results in greater probability of the TLS to be
excited that leads to more pronounced destructive interference
effects in the transmitted field.

0.0
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0.3
0.4
0.5
0.6
0.7

w
ρ l
,r
x,
t

a b

10 5 0 5 10

x w

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

w
ρ l
,r
x,
t

c

10 5 0 5 10

x w

d

L 0, 2 L 0,

L 2w, L 5w,

FIG. 6. (Color online) Configuration-space densities of the trans-
mitted (dashed red lines) and reflected (solid blue lines) photons. The
rest of the parameters are the same as in Fig. 5.
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FIG. 7. (Color online) Spectra of the transmitted (red dashed
lines) and reflected (blue solid lines) light. Parameters are the
following: (a) � = �/2, L = 0, � = 0; (b) � = �, L = 0, � = 0;
(c) � = �, L = 10w, � = 0; (d) � = �/2, L = 0, � = �/5. The
calculations are performed for t � �−1 + |x0|/vg that ensures the
outgoing pulses to be far from the TLS; x0 = −10 w.

Similar reasonings, but expressed in different terms, are
applicable for explanation of the features of the outgoing
photon spectra. Integration of the phase-space distribution
over spatial variable gives the momentum-space distribution.
For linear dependencies of ωl,r on p the relations between
the photon momenta and frequency are given by p = ±(ω −
ω0)/vg , where the sign “+” (“−”) corresponds to the l mode
(r mode), respectively. Thus, the spectra of the outgoing light
are determined as

〈n̂l,r (ω,t)〉 =
∫

dx 〈f̂l,r (x, ± (ω − ω0)/vg,t)〉.

Figure 7 represents the outgoing light spectra for different
parameters of the system.

The TLS emission spectrum has a maximum at ωa with
linewidth �. Thus, the maximal TLS excitation and reflection
occurs at resonance ω0 = ωa . If the bandwidth of the ingoing
wave packet is larger than the linewidth of the TLS emission,
only the frequencies close to the resonance ω − ω0 = �

provide an effective photon-TLS interaction. The portions
of the ingoing wave packet with frequencies far from the
resonance pass the TLS almost freely. That is why the
spectrum of the reflected light has width � and maximum at
ω − ω0 = �. The transmitted light spectrum has a pronounced
minimum at this point. The TLS operates here as a quantum
spectral filter resembling a band-stop filter in radioelectronics.
For � = 0 the spectra of the reflected and transmitted light are
symmetric with respect to the point ω − ω0 = 0. For � 	= 0 the
spectra become asymmetric. When the ingoing state consists
of two strongly overlapping components, 〈n̂l(ω)〉 does not
drop to zero at ω − ω0 = � while for the single-photon input
〈n̂l(ω)〉 = 0 at this frequency (see Ref. [21]). This is because
only one photon can be absorbed by the TLS at a moment.

IV. PHOTON STATISTICS

Photon number fluctuations of the outgoing light are
described by the variances 〈δN̂2

l,r〉 = 〈(N̂l,r − 〈N̂l,r〉)2〉 =
〈N̂2

l,r〉 − 〈N̂l,r〉2. The further consideration is for t �
|x0|/vg + �−1 when the outgoing pulses are far from the TLS.
In this case the average numbers of reflected and transmitted
photons do not depend on time. They are connected by the
relation

〈N̂l〉 = 〈N̂0〉 − 〈N̂r〉, (31)

where N̂0 = N̂l(t = 0) is the operator of the number of ingoing
photons. Using relation (31) and taking into account 〈δN2

0 〉 =
0 for any Fock state we obtain that variances of the reflected
and transmitted photon numbers are equal: 〈δN̂2

l 〉 = 〈δN̂2
r 〉.

To calculate 〈δN̂2
r 〉 the values of 〈N̂2

r 〉 and 〈N̂r〉 are required.
The average number of the reflected photons is defined by

〈N̂r〉 =
∫

dx

∫
dp 〈f̂r (x,p)〉,

which with the help of Eq. (27) gives

〈N̂r〉 = �

2

∫ t

0
dτ 〈σ+ σ−〉τ . (32)

The integrand in (32) is governed by Eq. (19a). For N̂2
r

we can use the representation N̂2
r = ∫

dx1
∫

dx2 r†(x1) r†(x2)
r(x2) r(x1) + N̂r . Taking into account Eqs. (22b) and (23b) we
obtain〈
N̂2

r

〉 = �2

2

∫ t

0
dτ

∫ τ

0
dτ ′ 〈σ+(τ ′) σ+(τ ) σ−(τ ) σ−(τ ′)〉 + 〈N̂r〉.

Using the property

σ−(t) σ−(t ′)|2〉 = 〈0|σ−(t) σ−(t ′)|2〉|0〉, (33)

derived in Appendix A, we get

〈
N̂2

r

〉 = �2

2

∫ t

0
dτ

∫ τ

0
dτ ′ |〈0|σ−(τ ) σ−(τ ′)|2〉|2 + 〈N̂r〉.

(34)

The matrix element 〈0|σ−(t) σ−(t ′)|2〉 in (34) obeys Eq. (29).
The results of calculations shown in Fig. 8 confirm the

tendency of reflectance to increase when the waveguide-TLS
coupling increases. This tendency becomes more pronounced
for greater L. Also we can see that the variance of the reflected
photons is less than the average photon number for any � and
L. This manifests the sub-Poissonian statistics of the reflected
photons, which are emitted one by one by the TLS. In contrast,
the transmitted light can exhibit super-Poissonian statistics.

V. SUMMARY

Our approach provides a detailed picture of the interaction
of two-photon pulses with TLS. This makes it possible to
describe not only the asymptotic characteristics of the outgoing
light, such as transmission and reflection coefficients or photon
scattering probabilities [14–16], but also to investigate the
dynamics of the whole system (see Fig. 5). A full set of
equations describing the evolution of the two-photon state is
derived and solved for different parameters. It is shown that
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FIG. 8. (Color online) Variances of outgoing photon numbers (solid black lines) and the average numbers of reflected (dashed blue lines)
and transmitted (dash-dotted red lines) photons vs � at � = 0 for different (a) L: L = 0, (b) L = 2w, and (c) L = 5w.

along with the coupling strength g and the initial pulse width
the spatial separation between the single-photon components
of the ingoing field strongly affects the dynamics of the system.

The method of photon phase-space operator has an advan-
tage of high universality. Its integration over the momentum
p results in the photon density in the configuration space (see
Fig. 6). Similarly, integration of the phase-space distribution
over the configuration space gives light spectra. Our calcula-
tions show that spectra of the reflected and transmitted photons
have distinct differences due to peculiarities of the TLS re-
sponse. Owing to the saturable behavior of the TLS excitation
the spectra of the outgoing light for the two-photon input differ
from those for the single-photon input (see Ref. [21]).

We have studied photon number fluctuations of the outgoing
light. The corresponding variances for both modes are found
to be equal for any n-photon Fock state. These variances
determine signal-to-noise ratios that describe the possibility
of outgoing light to be utilized. Dependence of the variances
on the coupling parameter g and the separation distance L

is analyzed. Our calculations show the presence of only sub-
Poissonian statistics of the reflected photons regardless of the
choice of � and L. By contrast, the statistics of the transmitted

photons can be sub-Poissonian or super-Poissonian depending
on choice of the parameters � and L.

To summarize, tuning both the waveguide-TLS coupling
and the ingoing pulse separation can control both the state of
the qubit and statistical characteristics of the outgoing light.
This may find applications in quantum information processing.
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APPENDIX A: OPERATOR PROPERTIES

1. Properties of free-moving operators

Here we prove the commutation relations[∫
dp l̃p(t),σ−(t ′)

]
=

[∫
dp r̃p(t),σ−(t ′)

]
= 0, t � t ′.

(A1)

Using the representation l̃p(t) = l̃p(t ′) e−i vg p (t−t ′), equal-time
commutator [lp,σ−] = 0 and Eq. (15a) we obtain

[∫
dp l̃p(t),σ−(t ′)

]
=

∫
dp e−i vg p (t−t ′)

[
lp(t ′) + i g

∫ t ′

0
dτ e−i vg p (t ′−τ ) σ−(τ ),σ−(t ′)

]

= i g

∫
dp

∫ t ′

0
dτ e−i vg p (t−τ )[σ−(τ ),σ−(t ′)] = i

2π g

vg

[σ−(t),σ−(t ′)]θ (t ′ − t).

Presence of the θ function in the last term shows that the
initial expression is equal to zero if t > t ′. When t = t ′
the commutator [σ−(t),σ−(t ′)] is equal to zero. This proves
Eq. (A1). Similar reasonings are applicable for the second
commutator in (A1).

It follows directly from the definitions of the free-moving
operators (15), the single-photon states (6), and the two-photon
states (10) that

∫
dp l̃p(t)|1α〉 = A(t)|0〉,

∫
dp l̃p(t)|1β〉 = B(t)|0〉, (A2)∫

dp l̃p(t)|2〉 = ν[A(t)|1β〉 + B(t)|1α〉] (A3)

and

r̃p(t)|2〉 = r̃p(t)|1α〉 = r̃p(t)|1β〉 = 0. (A4)

These relations are widely used in the paper.

2. Derivation of the relations (30) and (33)

The action of σ−(t) on the states |1α,β〉 gives the state
Cα,β (t)|0〉. To prove this we use the solution of Eq. (18):

σ−(t) = σ̃−(t) + i g

∫ t

t0

dτ e−(i �+�/2)(t−τ )

× (2 σ+ σ−|τ − 1)
∫

dp (l̃p + r̃p)|τ . (A5)
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With account for the relation σ−(t)|0〉 = σ̃−(t)|1α,β〉 = 0 and
Eq. (A5), we have

σ−(t)|1α〉 = −i g

∫ t

t0

dτ e−(i �+�/2)(t−τ ) A(τ )|0〉. (A6)

The expression for the state |1β〉 can be obtained from (A6) by
replacing A(t) with B(t).

As we see, the action of the lowering operator σ−(t) on the
single-photon state |1α,β〉 moves the system into the vacuum
state |0〉

σ−(t)|1α,β〉 = Cα,β(t)|0〉, (A7)

where the factor Cα,β (t) is given by (A6). It follows from
Eq. (A7) that the state σ−(t)|1α,β〉 can be represented in the
equivalent form

σ−(t)|1α,β〉 = 〈0|σ−(t)|1α,β〉|0〉, (A8)

where 〈0|σ−(t)|1α,β〉 ≡ Cα,β(t).
Similarly we can prove that σ−(t) σ−(t ′)|2〉 =

〈0|σ−(t) σ−(t ′)|2〉|0〉. Taking into account (A1), (A3),
and (A4) the equation of motion for σ−(t) σ−(t ′)|2〉 for t > t ′
has the form

(∂t + i � + �/2) σ−(t) σ−(t ′)|2〉
= i g ν (2 σ+ σ−|t − 1) σ−(t ′)[A(t)|1β〉 + B(t)|1α〉], (A9)

with solution

σ−(t) σ−(t ′)|2〉

= i g ν

∫ t

t ′
dτ e−(i �+�/2)(t−τ ) (2 σ+ σ−|τ − 1) σ−(t ′)

× [A(τ )|1β〉 + B(τ )|1α〉].

Due to relation (A8) and property σ+ σ−|0〉 = 0 we obtain

σ−(t) σ−(t ′)|2〉 = −i g ν

∫ t

t ′
dτ e−(i �+�/2)(t−τ )

× [A(τ ) Cβ(t ′) + B(τ ) Cα(t ′)]|0〉. (A10)

Thus, the state σ−(t) σ−(t ′)|2〉 can be represented as

σ−(t) σ−(t ′)|2〉 = 〈0|σ−(t) σ−(t ′)|2〉|0〉. (A11)

APPENDIX B: n-PHOTON FOCK STATE

The previous considerations can be extended for the n-
photon Fock state defined as

∣∣n{αj }
〉 = νn

∏
j=1,n

a†
αj

|0〉, (B1)

where νn is the normalization constant. Fock states form a
subset of more general n-photon states [27] whose interaction
with an arbitrary quantum system is investigates in Ref. [28].
We restrict ourselves with the n-photon Fock states given
by (B1). For simplicity, we consider αj = α and (B1)

reduces to

|nα〉 = 1√
n!

[a†
α]n|0〉. (B2)

For the state (B2) the initial configuration-space density of
photons is given by the single-peak distribution

〈n|ρ̂(x,t = 0)|n〉 = n√
π w

e−(x−x0)2/w2

that coincides with the density in the two-photon state (10)
when n = 2, L = 0, and |1α〉 = |1β〉.

Let us consider calculation of the average number of
reflected and transmitted photons. When t → ∞, the average
numbers of reflected and transmitted photons are coupled by
the condition 〈N̂l〉 = n − 〈N̂r〉, where the average number of
reflected photons is given by

〈N̂r〉 = �

2

∫ ∞

0
dτ 〈n|σ+ σ−|n〉τ . (B3)

The integrand in (B3) is governed by the equation

(∂t + �) 〈n|σ+ σ−|n〉 = i g
√

nA∗(t) 〈n − 1|σ−|n〉 + c.c.,

(B4)

which follows from Eq. (17). In turn, the matrix element 〈n −
1|σ−|n〉 obeys

(∂t + i � + �/2) 〈n − 1|σ−|n〉
= 2 i g

√
n A(t) 〈n − 1|σ+ σ−|n − 1〉 − i g

√
n A(t). (B5)

To obtain Eqs. (B4) and (B5) we have used the relation∫
dp[l̃p(t) + r̃p(t)]|n〉 = √

n A(t) |n − 1〉. (B6)

It can be seen that 〈n|σ+ σ−|n〉 depends on 〈n − 1|σ−|n〉,
which in turn depends on 〈n − 1|σ+ σ−|n − 1〉 and so on
down to 〈1|σ+ σ−|1〉 and 〈0|σ−|1〉. This set of 2n coupled
equations should be complemented by the initial conditions
〈m|σ+ σ−|m〉|t=0 = 〈m − 1|σ−|m〉|t=0 = 0, where 1 � m �
n. For n = 1 we can use (30) and write 〈1|σ+ σ−|1〉 =
〈1|σ+|0〉〈0|σ−|1〉 = |〈0|σ−|1〉|2, where 〈0|σ−|1〉 is given
by (20).

The two-time correlation function 〈n|σ+(t) σ−(t ′)|n〉 is
required for calculation of the phase-space distributions
[see Eqs. (25) and (27)]. The equation of motion for
〈n|σ+(t) σ−(t ′)|n〉 is given by

(∂t − i � + �/2) 〈n|σ+(t) σ−(t ′)|n〉
= −2 i g

√
n A∗(t) 〈n − 1|σ+(t) σ−(t) σ−(t ′)|n〉

+ i g
√

nA∗(t) 〈n − 1|σ−(t ′)|n〉, (B7)

where the initial value 〈n|σ+(t = t ′) σ−(t ′)|n〉 is taken from
solution of Eqs. (B4) and (B5). The evolution of 〈n −
1|σ+(t) σ−(t) σ−(t ′)|n〉 is governed by

(∂t + �) 〈n − 1|σ+(t) σ−(t) σ−(t ′)|n〉
= i g

√
n − 1 A∗(t) 〈n − 2|σ−(t) σ−(t ′)|n〉

− i g
√

n A(t) 〈n − 1|σ+(t) σ−(t ′)|n − 1〉. (B8)
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The equation of motion for 〈n − 1|σ+(t) σ−(t ′)|n − 1〉 entering
the right-hand side of (B8) is

(∂t + i � + �/2) 〈n − 2|σ−(t) σ−(t ′)|n〉
= 2 i g

√
nA(t) 〈n − 2|σ+(t) σ−(t) σ−(t ′)|n − 1〉

−i g
√

n A(t) 〈n − 2|σ−(t ′)|n − 1〉. (B9)

We have used (A1) to derive Eqs. (B7), (B8), and (B9).
Zero-value initial conditions (at t = t ′) should be imposed for
solutions of Eqs. (B8) and (B9). Equations (B7)–(B9) show
that 〈n|σ+(t) σ−(t ′)|n〉 can be expressed via two-time functions
with lower values of n (down to n = 1). For 〈1|σ+(t) σ−(t ′)|1〉
we can use the explicit expression obtained with the use of (30)

and (20):

〈1|σ+(t) σ−(t ′)|1〉 = g2
∫ t

0
dτ e(i �−�/2)(t−τ ) A∗(τ )

×
∫ t ′

0
dτ e−(i �+�/2)(t ′−τ ) A(τ ). (B10)

The two-time correlators 〈σ (t ′) σ (t)〉 are also useful for
calculation of the cross correlations between the TLS and
the reemitted field. The first-order cross-correlation function
can be defined as X(1)

r (τ ) = 〈Ê(−)
r (x,t) σ−(t + τ )〉, where the

negative frequency part of the field is expressed in terms of
photonic operators as Ê(−)

r (x,t) ∝ r†(x,t). Using Eqs. (22) we
obtain X(1)

r (τ ) ∝ 〈σ+(t + x/vg) σ−(t + τ )〉, where the equa-
tion of motion for the right-hand side is given by (B7).
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