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Photon-number statistics from resonance fluorescence of a two-level atom near
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The photon-number statistics from resonance fluorescence of a two-level atom near a metal nanosphere driven
by a laser field with finite bandwidth is studied theoretically. Our analysis shows that all interesting physics
here takes place in a small area around the nanosphere where the near field and the atom-nanosphere coupling
essentially affect the radiative properties of the atom. Computer modeling estimates this area roughly as r � 2a

(r is the distance from the center of the nanosphere to the atom), with a being the radius of the nanosphere. At the
larger distances, the influence of the nanoparticle vanishes and the atom tends to behave similarly to that in free
space. It is shown that the distribution function p(n,T ) of the emission probability of n photons in a given time
interval T in steady-state resonance fluorescence drastically depends on the atom location around the nanosphere
for r � 2a, featuring a characteristic twist in the ridgelike dependence and a convergence time of up to 9 μs, two
orders of magnitude slower than for the atom in free space. At large distances, the distribution converges to a
Gaussian one, as for the atom in free space. The typical convergence time scale at large distances r > 2a tends to
the convergence time of the atom in free space. There are also two areas symmetrical around the nanosphere in
which � ∼ γ and the convergence time goes to zero. This behavior is determined by the interplay of the radiative
and nonradiative decay rates of the atom due to the coupling with the metal nanosphere and by the near-field
intensity. Additional parameters are the normalized laser frequency detuning from the atomic resonance and the
bandwidth of the incoming laser field.
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I. INTRODUCTION

The nonclassical behavior of light has been revealed at
the single-atom level in resonance fluorescence as the sub-
Poissonian behavior of the photon-number statistics and the
phenomenon of antibunching of scattered photons [1–3]. The
first experimental confirmation of the antibunching of photons
in resonance fluorescence was made by Kimble et al. [4] and
the sub-Poissonian photon-number statistics was later verified
by Short and Mandel [5]. Observation of the nonclassical
properties of resonance fluorescence from a single trapped
atomic ion was made by Diedrich and Walther [6].

Over the two past decades, such a single-atom level of ex-
periments for studying nonclassical light from isolated atoms
or ions was also achieved in the emerging field of nanopho-
tonics [7], which demonstrates reliable sources of nonclassical
light from single molecules [8,9], quantum dots [10–14], and
nitrogen-vacancy centers in nanodiamonds [15,16], including
those embedded in different nanostructures. In this case,
the radiative properties of an emitter (atom, molecule, or
quantum dot) are strongly modified in confined geome-
tries [17–19]. Plasmonic nanostructures, specifically metal
nanoparticles [20–22], not only convert the incoming radiation
to localized [23], but also change the radiative frequency
of the emitter and its decay rate [19]. This leads to one of
the important applications of nano-optics: using plasmonic
nanostructures for changing and controlling fluorescence.

The resonance fluorescence, which features the nonclas-
sical behavior of fluorescent light, occurs when the quantum
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emitter is driven by an electromagnetic field with the frequency
close to the emitter’s resonant frequency [24] and studying
the resonance fluorescence of a quantum emitter near a
metal nanoparticle is just at the initial stages [25–28]. These
few theoretical papers target the spectrum of resonance
fluorescence and not much attention has been paid so far to
the nonclassical behavior of scattered light.

In this paper we study the photon-number statistics in
resonance fluorescence of a two-level atom near a metal
nanoparticle, which we consider for simplicity a metal
nanosphere, driven by a laser field with finite bandwidth, as
a function of the atom’s location around the nanoparticle,
the intensity of the incident laser field, its bandwidth, and
the detuning from the atomic resonance. We have restricted
ourselves to the case of a two-level atom because we want
to study the principal features of the nonclassical light from
resonance fluorescence near a metal nanoparticle. However,
our approach can also be generalized to multilevel atoms in a
manner analogous to the method applied for multilevel atoms
in free space [29–31].

The arrangement of the problem is given in Fig. 1. A
two-level atom with a dipole moment d is placed in close
proximity to the metal nanosphere of radius a = 20 nm located
at the origin of the coordinate system. The atom’s location is
defined by its radial coordinate |r| and the polar angle θ (in the
spherical coordinate system); ε and ε1 are the permittivities
of the metal the nanosphere is made of and the space our
atom-nanosphere system is placed in, respectively. For further
calculations we assume that the nanosphere is made of silver:
Its permittivity is equal to ε = −15.37 + i0.231 and the
wavelength of the incident laser field λ = 632.8 nm. We also
assume for simplicity that ε1 = 1. The incoming z-polarized
laser radiation E0 with the frequency ωL, which is close to
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FIG. 1. (Color online) Arrangement of the metal nanosphere plus
atom system driving by the incident laser field E0. The resonance
fluorescence is detected by a 4π photodetector in the far field. The
sizes of the metal nanoparticle and the atom are shown not to scale.

the frequency ω0 of the atomic dipole transition, has the wave
vector k directed along the y axis. We will also assume that
the incident laser radiation has a Lorentzian spectral profile
with the finite bandwidth 	ωL = 1 MHz and the electric field
equal to E = 1000 V/m.

It is also important to note that the direction of the atomic
dipole moment coincides with the direction of the near field
created around the metal nanoparticle at the point of space
the atom is located. This would not be correct for the case
of a molecule or a quantum dot, however the generalization
of our results to other types of a quantum emitter (molecule,
molecular cluster, and quantum dot), which are not pointlike
and whose direction of the dipole moment does not coincide
with that of the near-field polarization at the point of space the
emitter is located, is straightforward.

The paper is organized as follows. In Sec. II we give an
overview of the mechanisms of modification of the near field
and radiative and nonradiative decay rates of the two-level
atom located in close proximity to a metal nanosphere.
Simple analytical expressions are given for the near-field
enhancement, the modified total decay rate of the atom near
the metal nanosphere, and the frequency shift of the atomic
transition. Section III A is targeted at the analysis of the
photon-number statistics of light from resonance fluorescence
in our system. It is shown that the distribution function p(n,T )
of the emission probability of n photons in a given time interval
T strongly depends on the near-field intensity at the point of
space the atom is located and can be controlled by a few key
parameters: the atom’s location around the metal nanosphere,
the intensity of the incident laser field, its bandwidth, and
detuning from the atomic resonance. Analytical expressions
for the mean and the variance of the number of photons
are derived for the case when T is much longer than the
atomic transition lifetime. It is also shown that by analogy
with the atom in free space [3], this distribution function
converges in the distribution to a Gaussian one when T is
longer than the natural lifetime of the excited atom modified
by the nanoparticle. A detailed computer analysis of the
convergence time, the distribution function, the mean value,
and the variance is given in Sec. III B. It is shown that the
typical convergence time scale is up to two orders of magnitude
longer than for the case of an atom in free space. In Sec. IV
we summarize the results obtained and discuss some possible
applications.

II. THE ATOM’S RADIATIVE AND NONRADIATIVE
DECAY RATES AND TRANSITION FREQUENCY SHIFT

NEAR THE METAL NANOSPHERE

In this section we briefly discuss the modification of the near
field of a metal nanoparticle and the decay rate and the radiative
frequency shift of a two-level atom, which is located in close
proximity to the nanoparticle, driven by a near resonance to the
atomic transition laser field. For all these values, which depend
on the spherical coordinates of the atom near the nanosphere,
frequency, intensity, and polarization of the incident laser field
and the parameters of the nanosphere and the atom, we give
simple analytical formulas.

The electric-field intensity in close proximity to the
nanosphere, whose size is significantly less than the wave-
length λ = 632.8 nm of the incoming field, can be calculated
in the quasistatic approximation, which implies that no
retardation effects are taken into account. For the nanosphere
of radius a = 20 nm in the homogeneous incident electric
field, only dipole modes with n = 1 are excited [32] and the
field outside the nanosphere is equal to

E = Er n̂r + Eθ n̂θ

= E0(cos θ n̂r − sin θ n̂θ )

+E0
a3

r3

ε(ω) − 1

ε(ω) + 2
(2 cos θ n̂r + sin θ n̂θ ), (1)

where E0 is the amplitude of the incident filed, n̂r and n̂θ are
the unit vectors in the spherical coordinate system, and ε(ω) is
the permittivity of the metal nanosphere at the frequency ω. It
is also worth noting here that in the case of a sphere Eϕ = 0.

From this expression it follows that the near field has ellip-
tical polarization as ε(ω) is a complex number. We can neglect
this in the case of a linearly polarized plane electromagnetic
incident field, when the phase difference between the principal
components of the ellipsoid of polarization of the near field
is almost equal to zero. However, it is worth noting that for
the case of an elliptically polarized incident field the near
field is elliptical too. Moreover, the metal nanosphere strongly
modifies the degree of polarization of the incident field [33].

From Eq. (1) it also follows that the direction of the near
field and its intensity strongly depend on r, so the Rabi
frequency � also depends on r and can be written as

�(r) = d

�

√
|Er |2 + |Eθ |2 + |Eϕ|2,

where the absolute values of the field components are equal to

|Er | =
∣∣∣∣E0 cos θ

(
2a3

r3

ε(ω) − 1

ε(ω) + 2
+ 1

)∣∣∣∣,
|Eθ | =

∣∣∣∣E0 sin θ

(
a3

r3

ε(ω) − 1

ε(ω) + 2
− 1

)∣∣∣∣,
|Eϕ| = 0

and the atomic dipole transition moment is equal to

d =
(

1

4πε0

3γ0�c3

4ω3
vac

)1/2

,
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where ωvac is the frequency of the atomic dipole transition and
γ0 is the radiative decay rate of the atom in free space [24]. We
will assume in all our further calculations that γ0 = 20 MHz.

In a quasistatic, quasiclassical approximation, the total
normalized decay rate of the atom located at the point in
space with radius vector r and with the atomic dipole moment
directed along the direction of the near field at this point can
be defined as (see Sec. 6.3 of Ref. [19])

γ

γ0
= |Er |2(γ /γ0)rad + |Eθ |2(γ /γ0)tan

|Er |2 + |Eθ |2 , (2)

where (γ /γ0)rad and (γ /γ0)tan are the total normalized decay
rates for the radial and tangential orientations of the atomic
dipole, respectively,(

γ

γ0

)
rad

|k|a→0−−−−→ 3

2(|k||r|)3
Im

∞∑
n=1

(n + 1)2

(
a

|r|
)2n+1

αn

a2n+1

+ Re

(
1 + 2α1

|r|3
)2

+ O

(
1

|k|a
)

, (3)

(
γ

γ0

)
tan

|k|a→0−−−−→ 3

4(|k||r|)3
Im

∞∑
n=1

n(n + 1)

(
a

|r|
)2n+1

αn

a2n+1

+ Re

(
1 − α1

|r|3
)2

+ O

(
1

|k|a
)

, (4)

where αn are the multipole polarizabilities of the metal sphere
of nth order

αn = a2n+1 ε(ω) − ε1

ε(ω) + ε1(n + 1)/n
.

From Eqs. (3) and (4) it follows that (γ /γ0)tan goes to zero
when the atom approaches the surface of the nanosphere.
This is due to the fact that the dipole moment induced in the
metal nanosphere is almost equal in amplitude to the atomic
dipole moment, but oppositely directed. As a result, an atom
with dipole moment orientation tangential to the nanosphere
surface has a slow decay rate, whereas an atom with a normal
orientation of the atomic dipole moment to the nanosphere
surface has a rather high decay rate.

The first terms in Eqs. (3) and (4) describe the nonradiative
atomic decay rate, i.e., that part of the atom’s energy that
is converted to heat. The radiative decay rate of the atom
is defined actually by the second terms in Eqs. (3) and (4).
Figure 2 shows how the radiative, nonradiative, and total decay
rates correspond to each other for the silver nanosphere we use
in our calculations.

Figure 3(a) illustrates how the normalized Rabi frequency
of the atomic transition depends on the spherical coordinates
of the atom in the vicinity of a silver nanosphere. One can
clearly see that the normalized Rabi frequency follows the
distribution of the near field around the nanosphere revealing
the local maximum at θ = π/2 and increases with an increase
of r , reaching the value of about �/γ ≈ 6 at large r � a

distances.
In the vicinity of a metal nanoparticle, the frequency

of the dipole transition is shifted (the so-called radia-

(nm)

FIG. 2. Radial components of the normalized radiative (dotted
line), nonradiative (dashed line), and total (solid line) decay rates for
an atom coupled to the silver nanosphere of radius a = 20 nm at
λ = 632.8 nm (see Fig. 1).

tive frequency shift [34]) and for a two-level atom is
equal to

	ω0 = ω0 − ωvac

= −γ0
3

8

ε(ω) − 1

(r|k|)4

∞∑
n=1

n(n + 1)

(ε + 1)n + 1

(
a

r

)2n

× [2(n + 2)a|k| cos2 ξ + n|k|r sin2 ξ ], (5)

where ωvac = 632.8 nm is the atomic transition frequency
in vacuum and ξ is the angle between the directions of
the dipole moment and r. The behavior of 	ω0 versus
the spherical coordinates of the atom in the vicinity of a
silver nanosphere is illustrated in Fig. 3(b). One can see
that the normalized radiative frequency shift monotonically
increases with decreasing distance between the atom and
the nanosphere, showing a sharp drop in the vicinity of the
angle θ = π/2, which is vanishing at distances r � 40 nm.
It is also worth noting that despite the radiative shift being
rather small, it enters the analytical formula for the correlation
functions for the photon-number statistics we calculate in
the following sections as a dimensionless frequency shift, so
its contribution to the nonclassical properties of light from
resonance fluorescence will be essential.

Also important to mention is that, despite all formulas in
this section for the decay rate and the radiative frequency shift
of a two-level atom in close proximity to a metal nanosphere
being derived in a very simple quasistatic, quasiclassical
model, they fit well at a distance between the emitter and the
surface of the nanoparticle not less than a few (2–5) nm, the
results of a more detailed theoretical and numerical treatment
within classical electrodynamics [35,36] and, recently, of
fully quantum consideration [37–39]. The latter allows for
a correct description of the strong coupling between the
quantum emitter and a metal nanoparticle at very small
distances to the nanoparticle’s surface as well as accounting
for the self-coupling of the quantum emitter through the metal
nanoparticle [39].
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FIG. 3. (Color online) (a) Normalized Rabi frequency and (b) radiative frequency shift of the atomic transition versus the spherical
coordinates of the atom in the vicinity of a silver nanosphere. All the parameters are the same as in Fig. 2.

III. RESONANCE FLUORESCENCE PHOTON-NUMBER
STATISTICS OF A TWO-LEVEL ATOM NEAR

A METAL NANOSPHERE

A. Theory

The photon-number statistics in resonance fluorescence
from a two-level atom in free space driving by a monochro-
matic electromagnetic field was first considered by Mandel [2]
and Lenstra [3]. Following these works, we will calculate the
flux of the fluorescent photons registered in the far field in 4π ,
taking into account that the radiation properties of the atom
are affected by a metal nanosphere and that the laser driving
the system has a spectral width of 	ωL.

We start by calculating the intensity of the fluorescent light
at point r at time t ,

〈Î ′(r,t)〉 =
(

1

4πε0

ω2
0d

c2r

)2(
1 − 1

2
sin2 θ

)

×
[〈

R̂3

(
t − r

c

)〉
+ 1

2

]
, (6)

where 〈R̂3(t)〉 = 1
2 [b̂†(t) + b̂(t)], b̂†(t) and b̂(t) are the raising

and lowering operators, respectively, and the expression for
b̂(t) for the arbitrary initial conditions can be found, for
example, in [24]. Then the fluorescent photon flux density
(in photons/m2 s) operator [40]

Î ′′(r,t) = 2ε0〈Î ′(r,t)〉c
�ω0

(7)

and its integration over a spherical angle gives the total photon
flux in the corresponding spherical sector of radius r ,

Î ′′
sec(r,θ1,θ2,φ1,φ2,t)

=
∫ φ2

φ1

dφ

∫ θ2

θ1

Î ′′(r,t) sin θ dθ

= 2ε0c

�ω0

(
1

4πε0

ω2
0d

c2r

)2[〈
R̂3

(
t − r

c

)〉
+ 1

2

]

×
∫ φ2

φ1

dφ

∫ θ2

θ1

(
1 − 1

2
sin2 θ

)
sin θ dθ. (8)

The total fluorescence photon flux in 4π is then equal to

Î (r,t) = 8π

3
Î ′′(r,t). (9)

The probability that n photons are emitted by an atom driven
by an incident electromagnetic field within the time interval t

to t + T in 4π can be written as [2]

p(n,t,T ) =
〈
T :

1

n!

[ ∫ t+T

t

dt
′
Î (r,t)

]n

× exp

[
−

∫ t+T

t

dt
′
Î (r,t)

]
:

〉
, (10)

where T is the time-ordering symbol, : : stands for normal
ordering, and 〈 〉 denotes the expectation value for the total
state of the atom plus nanoparticle plus driving field system.
Correspondingly, the probability of photon emission in a
spherical sector of radius r can be calculated using Eq. (10) by
replacing Î (r,t) with Î ′′

sec. From now on, we will consider
collecting the fluorescent photons in 4π . In this work we
limit our consideration to a steady-state fluorescence, so
p(n,t,T ) = p(n,T ) in Eq. (10).

Following the derivation of formulas for the mean value
of the fluorescent photons and the variance, we discuss now
at what time scale the statistical distribution of fluorescent
photons p(n,T ) converges in the distribution to the Gaussian
one. In this paper we take into account that the atomic radiation
properties are affected by the closely located metal nanosphere
and that the incident laser has a spectral width 	ωL.

The statistical properties of the fluorescent radiation are
described by a simple cumulant-generating function [3]

G(z,T ) =
∞∑

n=0

znp(n,T ), (11)

where the distribution p(n,t) is given by Eq. (10). The
rth factorial moment 〈n(r)〉 can then be calculated from the
generating function as

〈n(r)〉 = dr

dz′ G(z,T )

∣∣∣∣
z=1

, (12)
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resulting in analytical formulas for 〈n(r)〉 given in the Ap-
pendix. The mean 〈n〉=〈n(1)〉 can be readily calculated from
Eq. (12) and results in

〈n〉 = T 〈Î 〉, (13)

where 〈Î 〉 is the total flux of the fluorescence photons at t → ∞
equal to

〈Î 〉 = (1/2)β�2(1 + 	ωL/β)

(1/2)�2(1 + 	ωL/β) + (β + 	ωL)2 + β2D2
. (14)

Here β = γ /2 [γ is the total decay rate of the two-level atom
in close proximity to the metal nanosphere; see Eq. (2)] and
D = (ωL − ω0)/β is the dimensionless frequency detuning.
Similarly, the variance is equal to

σ 2 = 〈n2〉 − 〈n〉2

= 〈n(2)〉 + 〈n〉 − 〈n〉2

=
3∑

i=1,i 
=j 
=k

Ĩi

pi

T −
3∑

i=1,i 
=j 
=k

Ĩi

p2
i

(
epiT − 1

) + 〈Î 〉T , (15)

where

Ĩi = �2(1 + 	ωL/β)/2 + (β + 	ωL)2 + β2D2

β�2(1 + 	ωL/β)/4

× β(2β + pi)[(β + 	ωL + pi)2 + β2D2]

2pi(pi − pj )(pi − pk)
, (16)

with 〈Î 〉 being the steady-state fluorescence intensity defined
by Eq. (14). For large T (�5/β) we can neglect the exponential
terms so that Eq. (15) simplifies to

σ 2 =
3∑

i=1,i 
=j 
=k

Ĩi

pi

(
T + 1

pi

)
+ 〈Î 〉T

=
3∑

i=1,i 
=j 
=k

Ĩi

pi

(
T + 1

pi

)
+ 〈n〉. (17)

Analysis of Eqs. (13) and (17) for the mean 〈n〉 and the variance
σ 2, respectively, clearly shows that both the mean and the
variance are proportional to T for large values of T , which is
in agreement with the results of Ref. [41].

As follows from Eq. (10), the function p(n,T ) can be
rewritten as

p(m,T ) = 1

m!

∞∑
r=0

(−1)r

r!
〈n(m+r)〉, (18)

where 〈n(0)〉 = 1. Analytical expressions for 〈n(r)〉 and p(n,T )
for the arbitrary values of T and n are cumbersome and can
hardly be used for a direct analysis. Instead, we will analyze
the behavior of the distribution function in the limit of large
counting times T . This can be suitably done by using the
normalized variable

xn = n − 〈n〉
σ

(n = 0,1,2, . . .) (19)

and the corresponding cumulant generating function, which is
related to G(z,T ) as

K(y,T ) = ln

[ ∞∑
n=0

ey(n−〈n〉)/σ p(n,T )

]

= −〈n〉y/σ + ln[G(ey/σ ,T )].

Expanding this function by powers of y, we have

K(y,T ) = K1y + K2y
2 + K3y

3 + K4y
4 + · · · , (20)

where Kk ∼ (T k−2)−1/2 [3].
This distribution function must converge with increasing

counting time T , as we expect from the central limit theorem,
to the Gaussian one

p(n,T ) = 1

2πσ 2
exp

[−(n − 〈n〉)2

2σ 2

]
.

In the limit of T → ∞, when there is a Gaussian-like
distribution, all coefficients Ki = 0 for i � 3, whereas at small
counting times basically all Ki 
= 0 and the slowest decreasing
cumulant in Eq. (20) is the third one.

Therefore, in our analysis of the time scale at which the
distribution function converges to the Gaussian one, the most
crucial role is played by the third cumulant K3 for which our
calculations give

K3 = 1

6
[s(1) + 6s(2) + 6s(3)]T (y/σ )3

= 1

6

[
s(1) + 6s(2) + 6s(3)

6(s(1) + 2s(2))3/2

]
T −1/2, (21)

where

s(1) = β�2(β + 	ωL)

2β(β + 	ωL)2 + 2β3D2 + �2(β + 	ωL)
,

s(2) = β�2s(1) − [(β + 	ωL)2 + β2D2 + 4β(β + 	ωL) + �2](s(1))2

2β(β + 	ωL)2 + 2β3D2 + �2(β + 	ωL)
,

s(3) = β�2(s(2))2

2β(β + 	ωL)2 + 2β3D2 + �2(β + 	ωL)
− 2[(β + 	ωL)2 +β2D2 + 4β(β + 	ωL) + �2]s(1)s(2) + (4β + 2	ωL)(s(1))3

2β(β + 	ωL)2 + 2β3D2 + �2(β + 	ωL)
,

where D is the frequency detuning from the atomic transition normalized to γ0. A simple check of the formula (21) and
expressions for s(i) without the metal nanoparticle and in the limit of 	ωL → 0 shows that our equations coincide with those for
a two-level atom in free space [3].

063831-5



PASTUKHOV, VLADIMIROVA, AND ZADKOV PHYSICAL REVIEW A 90, 063831 (2014)

FIG. 4. (Color online) Dependence of the typical convergence time Tconv versus the atomic coordinates r (left) and θ (right) around the
nanosphere and the normalized frequency detuning (a) D = 0, (b) D = 1, and (c) D = 5 at 	ωL = 1 MHz.

Let us assume that the skewness (third normalized central
moment) 〈(

n − 〈n〉
σ

)3〉
= 6K3

is a measure for the deviation of the actual distribution function
p(n,T ) from its asymptotic Gaussian form. Then, as follows
from Eq. (21), the typical time scale Tconv at which the
distribution function converges to the Gaussian form is equal
to

Tconv = (s(1) + 6s(2) + 6s(3))2

(s(1) + 2s(2))3
. (22)

B. Computer analysis

For further analysis of the analytical formulas for the
convergence time, the distribution function, the mean value,
and the variance, which we derived in the previous section,
we will assume as in Sec. II that the plasmonic nanosphere is
made of silver and has a radius of r = 20 nm and the incident
laser field is linearly polarized along the z axis, has a bandwidth
	ωL � γ , and is detuned from the atomic transition at Dγ . We
will also limit our analysis to the distances between the atom
and the nanoparticle’s surface not less than 3 nm due to the
restrictions imposed by the quasiclassical atom-nanoparticle
coupling model we use (see Sec. II).

We start with analysis of Eq. (22) for the convergence time
Tconv, which depends on the parameters �, γ , D and 	ωL,
i.e., on the location of the atom around the nanosphere, in a
complicated way. Note, for reference, that for the atom in free
space Tconv = 0.1 μs.

Figure 4 illustrates the behavior of Tconv on the atomic
coordinates r and θ around the nanosphere and the normalized
detuning D for a finite bandwidth of the incident laser field.

It shows that the convergence time essentially depends on
the atomic coordinates around the nanosphere at the distances
r � 50 nm for D = 0, 40 nm for D = 1, and 30 nm for D = 5,
which essentially reflects the area where the near field of the
metal nanosphere is essential. In the vicinity of θ = π/2 the
convergence time reaches its global maximum at r = 23 nm
(we do not make our analysis at smaller distances, as our
model for the decay rate is invalid there): T max

conv = 0.3 μs for
D = 0 to T max

conv = 9 μs at D = 5, which is up to two orders of
magnitude longer than for the atom in free space. Surely, at
distances r � a, when the influence of the metal nanosphere
is negligible, the convergence time approaches its value for the
atom in free space, i.e., Iconv → 0.1 μs, which is clearly seen
in Fig. 4.

In the areas around the nanosphere with �/γ � 1 [see
Fig. 3(a)], Eq. (22) simplifies to Tconv ≈ 1/β = 2/γ , i.e., the
convergence time inversely depends on the modified decay rate
of the atom coupled to the metal nanosphere. This behavior
determines the local minimum in the three-dimensional graphs
in Fig. 4 for Tconv at 23 � r � 40 nm, which is more
pronounced at D = 0 [Fig. 4(a)] and vanishes with increasing
D to the value of 5 [Fig. 4(c)].

In the areas of �/γ � 1 [see Fig. 3(a)], the resonance
fluorescence spectrum features only one central peak [26,28]
and studying the statistics of photons emitted in resonance
fluorescence reveals information about the atom’s location
around the nanosphere and its coupling to the nanosphere.
In this case, Eq. (22) simplifies to

Tconv ≈ 1

s(1)

= 2β(β + 	ωL)2 + 2β3D2 + �2(β + 	ωL)

β�2(β + 	ωL)
, (23)
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FIG. 5. (Color online) Probability p(n,T ) versus the radial coordinate r of the atom around the nanosphere at the azimuthal angles (from
left to right) θ = 0, π/6, π/3, and π/2 rad and for three values of the normalized frequency detuning (from top to bottom) D = 0, 3, and 5 for
T = 9 μs and 	ωL = 1 MHz.

which shows almost linear behavior versus the bandwidth
	ωL and quadratic behavior versus the normalized frequency
detuning D.

Analysis of the near field of the metal nanosphere shows
also that there are two symmetrical areas in which � ∼ γ and
Tconv ≈ 0, which means that if the atom is located in such areas
the photon-number distribution function will be Gaussian for

any T . One of these areas has the polar coordinates (27 nm,
0.426 rad); the other one is located radially symmetrical.

The probability distribution function p(n,T ) for the steady-
state resonance fluorescence versus the atom’s location around
the nanosphere is shown in Fig. 5. From this figure one can see
that p(n) drastically depends on the atom’s location around
the nanosphere, but preserves a characteristic twist in the

10-3 10-3

FIG. 6. (Color online) Probability p(n,T ) versus the radial coordinate r of the atom around the nanosphere for the case of an ideal sphere
with ε = −∞ (left) and for a silver sphere with ε = −15.37 + i0.231 (right) at the azimuthal angle θ = π/6 rad for T = 9 μs, D = 0, and
	ωL = 1 MHz.
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FIG. 7. (Color online) Mean value versus atomic coordinates r and θ around the nanosphere for the counting time T = 9 μs, 	ωL =
1 MHz, and (a) D = 0, (b) D = 1, and (c) D = 5.

FIG. 8. (Color online) Variance versus atomic coordinates r and θ around the nanosphere for the counting time T = 9 μs, 	ωL = 1 MHz,
and (a) D = 0, (b) D = 1, and (c) D = 5.
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ridgelike dependence. In order to clarify the origin of this
twist we calculated p(n,T ) for the fixed parameters D = 0
and θ = π/6 (as for one of the plots in Fig. 5), but assuming
that the nanosphere is made of either an ideal metal or silver.
The results of these calculations are shown in Fig. 6. From
this figure one can clearly see that the twist in the ridgelike
dependence p(n,T ) is caused by the nonradiative part of the
decay rate of the atom coupled to the metal nanosphere, which
is essential in the range of 23 � r � 40 nm and vanishes at
larger distances (see Sec. II).

Further analysis of Fig. 5 reveals that with increasing
normalized frequency detuning the drastic behavior of p(n,T )
at the atom’s location around the nanosphere largely vanishes;
it remains only as a visible dependence on r at 23 � r � 30,
where p(n) reaches a minimum at smaller D and for θ = 0
to π/6. This is again due to the interference between the
radiative and nonradiative decay rates of the atom coupled
to the metal nanosphere. Also important to note is that
increasing the normalized frequency detuning D increases the
number of counted photons from areas of the atom’s location
around the nanosphere with 23 � r � 25–28 nm, depending
on θ .

The mean value and the variance for p(n,T ) are illustrated
in Figs. 7 and 8. One can clearly see that a small change in the
atomic coordinates leads to significant changes of the mean
value and the variance, so these values are very sensitive to the
atom’s location.

In the areas around the nanosphere where �/γ � 1 [see
Fig. 3(a)], the mean value, as follows from Eqs. (12) and (14),
can be approximated as

〈n〉 = Tβ = T γ/2, (24)

so at these conditions it is entirely determined by the obser-
vation time and the normalized atomic decay rate of the atom
coupled to the metal nanosphere (see Fig. 2). Besides the fact
that the total number of fluorescent photons counted during the
convergence time is increased, in contrast to the case of a weak
near-field limit, it is worth noting here that for these conditions
the probability distribution function strongly depends on the
normalized frequency detuning D of the incident laser field
from the atomic resonance.

IV. CONCLUSION

In this paper we have studied theoretically how the photon-
number statistics from resonance fluorescence of a two-level
atom driven near resonance by a laser radiation of finite
bandwidth is affected by a metal nanosphere in close proximity
to the atom. Our analysis shows that all the interesting physics
here takes place in a small area around the nanosphere
where the near field and the atom-nanosphere coupling
essentially affect the radiative properties of the atom. Our
theoretical estimations and numerical modeling evaluate this
area roughly as r � 2a, double the radius of the nanosphere.
At larger distances, the influence of the nanoparticle vanishes
and the atom tends to behave similarly to that in free
space.

It was shown that the behavior of the convergence time
in the area of r � 2a is determined by the interplay of the

radiative and nonradiative decay rates of the atom due to
the coupling with the metal nanosphere and by the near-
field intensity. Additional parameters are the normalized
laser frequency detuning from the atomic resonance and the
bandwidth of the incoming laser field.

Our atom-nanoparticle coupling model is not valid at
distances between the atom and the particle’s surface less than
a few nanometers [42] (see Sec. II), so we limited our analysis
to those distances for which at θ = π/2 the convergence time
features its global maximum of up to Tconv = 9 μs (at D = 5),
two orders of magnitude slower than for the atom in free
space. In the area around the metal nanosphere with �/γ � 1,
the convergence time Tconv = 2/γ and depends only on the
decay rate. In the areas with �/γ � 1 the convergence time
depends linearly on 	ωL and quadratically on D. There are
also two areas symmetrical around the nanosphere (at r =
27 nm, θ = 0.426 rad, and radially symmetrical) in which
� ∼ γ and Tconv ≈ 0.

The distribution function p(n,T ) of the emission proba-
bility of n photons in a given time interval T in steady-
state resonance fluorescence also drastically depends on the
atom location around the nanosphere for r � 2a, featuring a
characteristic twist in the ridgelike dependence, and for r � a

tends to that of the atom in free space, converging to a Gaussian
distribution when T is much longer than the natural lifetime
of the excited atom modified by the nanoparticle. The typical
convergence time scale at large distances r > 2a tends to the
convergence time of the atom in free space Tconv → 0.1 μs.
Similarly to the convergence time, this behavior is due to the
interplay of the radiative and nonradiative decay rates of the
atom and the near-field intensity. By increasing the normal-
ized frequency detuning D from 0 to 5, this effect largely
vanishes.

The mean value and the variance behave similarly, showing
the peculiar dependence on the radial coordinates for r � 2a

and coinciding with those for the atom in free space for r � a.
In the areas with �/γ � 1, the mean value 〈n〉 = T γ/2 and
is entirely determined by the observation time and the atomic
decay rate. It is important also to mention that a small change
in the atomic coordinates leads to significant changes of the
mean value and the variance, so these values are very sensitive
to the atom’s location.

Finally, we intentionally used in our computer simulations
the incident laser field wavelength λ = 632.8 nm, which is
far from the plasmon resonance in the silver nanosphere of
20 nm radius that is achieved at ≈360 nm, as this is a regular ex-
perimental situation, when driving the atom-nanoparticle laser
field system cannot be resonant with both the atomic transition
and the plasmon resonance of the plasmonic nanoparticle.
However, analysis of the atom–plasmonic-nanoparticle sys-
tem, when the plasmon resonance in the nanoparticle is excited
with the help of a laser field and the atom is driven by another
near resonance to the atomic transition laser field, is also within
the realm of experimental techniques and deserves separate
consideration.

In conclusion, we demonstrated that quantum-optical prop-
erties of photons from an atom in a confined geometry
driven by a near-resonance laser provide valuable and sen-
sitive information about the coupling of an atom with the
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nanoenvironment and should stimulate future experiments in
this field.
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APPENDIX: CALCULATION OF THE
CUMULANT-GENERATING FUNCTION G(z,T )

Statistical properties of the fluorescent radiation are de-
scribed by a simple cumulant-generating function [3]

G(z,T ) =
∞∑

n=0

znp(n,T ),

where the distribution p(n,t) is given by Eq. (10). Keep-
ing in mind that the nth-order correlation function can be
interpreted as the joint probability of the photon emission
at n different successive moments t1 < t2 < · · · < tn and
assuming that the atom returns to the ground state after
each spontaneous emission and has no memory of the
earlier event, the generation function (11) further simplifies

to

G(z,T ) = 1 + 2β(z − 1)
∫ T

0
dtf (t) +

∞∑
n=2

(2β)n(z − 1)n

×
∫ T

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t2

0
dt1f0(tn − tn−1)

× f0(tn−1 − tn−2) · · · f0(t2 − t1)f (t1), (A1)

where f (t) = 〈Î (t)〉/2β and f0(t) = 〈Î (t)〉0;G/2β are the
dimensionless functions (t � 0) and the notation 〈 〉t ;G stands
for the expectation value for the atom in the ground state at t .

Multiple integration in Eq. (A1) can be handled with the
help of the Laplace transformation [43], which after applying
it to both sides of Eq. (A1) with respect to T gives

G̃(z,s) = C(s) + β(z − 1)B(s)

sC(s) − β�2(z − 1)(s + β + 	ωL)
, (A2)

with

C(s) = s3 + s2(4β + 2	ωL)

+ s[(β + 	ωL)2 + β2D2 + 4β(β + 	ωL) + �2]

+ [2β(β + 	ωL)2 + 2β3D + �2(β + 	ωL)],

B(s) = 2β[f̃ (s) − f̃0(s)]C(s),

where f̃ (s) and f̃0(s) are the Laplace transforms for f (t) and
f0(t) in Eq. (A1), respectively. The generation function G(z,T )
can be obtained then by applying the inverse Laplace transform
to Eq. (A2) [43].
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