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Decay of metastable excited states of two qubits in a waveguide
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For a system of two spatially separated qubits (two-level atoms) coupled to a one-dimensional waveguide
we have described the time evolution of singly or doubly excited states of the atomic subsystem. When the
interatomic distance l takes special (“resonant” or “antiresonant”) values, the singly excited system of resonant
atoms can form metastable (dark) states. If l slightly deviates from one of the special values or the atomic
frequencies do not coincide, the dark states slowly decay and we have calculated the decay rate. Also, we have
found that the doubly excited state of two resonant atoms located at the special positions does not completely
decay but, with a finite probability, can evolve (with the emission of a single photon) to one of the metastable
singly excited states. Metastable states of pairs of qubits may find applications (e.g., as memory elements) in
information processing or as detectors sensitive to external perturbations.
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I. INTRODUCTION AND RESULTS

Qubits talking to each other through a quantum field are
a central object of quantum optics and information process-
ing [1–3]. Possible physical realizations of qubit systems
include two-level atoms (TLAs) interacting through a resonant
electromagnetic field and quantum dots coupled to plasmon
modes of a semiconductor or to Josephson circuits [4–8].
A study of collective effects in TLA systems was initiated
by Dicke [9], who described enhanced spontaneous emission
(a superradiance effect) of some of the excited states of
a multiatomic system located in a domain of a small size
(compared with the resonant wavelength λ), as well as a
reduced emission rate of other excited states (subradiance
effect). Since that time superradiance effects have been
intensively studied in various geometries (see, e.g., the review
in Ref. [10]). Dark (subradiant) collective excited states of
several TLAs (qubits) are also of considerable interest. For
instance, they can be used for information storage. In the
present paper we consider dark states in a system of TLAs
and study their stability.

The simplest system in which dark states may exist consists
of only two TLAs. There have been many investigations of the
dynamics, entanglement, and emission of two TLAs coupled
with an electromagnetic field in free space, in a cavity, and,
in particular, in a one-dimensional (1D) waveguide (see the
review in Refs. [11] and recent papers [12–14]). The latter 1D
case is of special interest: on one hand, in contrast to the case of
a higher dimension, there is no spatial spreading of the emitted
radiation; on the other hand, the electromagnetic field in a thin
1D waveguide comprises an infinite number of modes for right-
and left-moving photons of arbitrary frequencies. Therefore,
one deals with a system where an excited atomic state decays
due to the coupling with an infinite photon thermostat, but at
the same time the field, emitted by one atom in the direction
of another one, propagates without attenuation. Interference
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of different decay channels results in interesting effects. In
particular, as shown in Ref. [15], some of the collective states

∣∣�(1)
in

〉 = C1|e1〉 ⊗ |g2〉 + C2|g1〉 ⊗ |e2〉 (1)

of a singly excited system of two spatially separated identical
TLAs (e and g denote the excited and the ground states of
the corresponding atoms, respectively) in a 1D waveguide are
metastable with respect to the single-photon emission if the
distance l between the two atoms equals an integer number of
λ/2. In the general case, the dynamics of state |�(1)(t)〉, (1), is
characterized by the “fast” decay rate ∼�, where � is the decay
rate of a single TLA in the considered 1D waveguide. However,
as mentioned above, the situation changes when the distance
l between the two resonant TLAs takes one of the special
values lres = 2πNc/ω0 with an integer N [the “antiresonant”
case lres = π (2N + 1)c/ω0 is treated similarly]; here ω0 = ck0

is the TLA transition frequency, k0 is the corresponding wave
vector, and c is the speed of light in the waveguide. In this case
only a specially chosen superposition (C1 = C2) of the two
excited atomic states decays rapidly, while the orthogonal state
(with C1 = −C2) demonstrates a more complicated behavior:
a short stage of a fast partial decay transforms into a stationary
regime where the excited atomic state does not decay any
more. Such a metastable state has been interpreted [15] as
the superposition of the excited atomic state in the absence
of photons and of the ground atomic state in the presence of
a photon bouncing between the TLAs; each atom works as a
perfect mirror for the resonant 1D photon [16].

It is instructive to compare the considered physical situation
with the case of two TLAs located very close to each other
(l → 0). In this elementary case the survival probability of the
symmetric singly excited state (C1 = C2) decays at the rate 2�,
giving the simplest example of the collective (“superradiant”)
emission [9]. On the contrary, the antisymmetric superposition
(C1 = −C2) does not decay at all (due to the zero transition
dipole moment between the excited and the ground state) and
is “absolutely dark” in the sense that the probability of finding
the atomic system in the initial state remains equal to unity
(respectively, no photon is emitted).
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FIG. 1. Two qubits (two-level “atoms”) coupled with a one-
dimensional waveguide

On the contrary, the antisymmetric singly excited state of
two spatially separated TLAs (l �= 0) located at the resonant
distance lres is not absolutely dark: the probability of finding
the atomic system in the initial state is less than unity. At small
values of the parameter �l/c this probability is of the order of
unity, while at large values of �l/c, it is small [∼(c/�l)2]. But
what is important is that this probability remains finite when
the time goes to infinity, so the state can be referred to as a
“mestastable.”

However, these metastable (“dark”) states are fragile with
respect to deviations of the TLA’s positions from the special
ones [15]. Similarly, one can expect a decay of the metastable
states if there is a detuning of the atomic transition frequencies
(hence the “atomic mirrors” are not perfect anymore). The aim
of this paper is to study the decay rates of the metastable (dark)
states in a system of two TLAs coupled to a 1D waveguide
(Fig. 1). We consider two related problems:

(i) the long-time dynamics of the spontaneous decay of a
metastable excited state |�(1)

in 〉, (1), of two spatially separated
TLAs in a 1D waveguide when the interatomic distance l

deviates from the special values lres (so that k0l = k0lres + δ)
and in the case of an inhomogeneous detuning (i.e., when
there is a difference � between the two atomic transition
frequencies) and

(ii) the long-time dynamics of the upper (doubly) excited
state of two TLAs, ∣∣�(2)

in

〉 = |e1〉 ⊗ |e2〉. (2)

For problem (i) we have obtained the following results.
(a) For small deviations (δ � 1) of the interatomic distance

from the “resonant” (or “antiresonant”) value, we have
obtained the expression for the decay rate of a metastable
antisymmetric (or symmetric) state, �δ2/{2[1 + �l/(2c)]3},
which is valid for an arbitrary value of the parameter �l [17].

(b) In the presence of a small frequency detuning �

(|�| � �), the decay rate acquires an additional contribu-
tion, �2/{2�[1 + �l/(2c)]}. These expressions determine the
requirements for the accuracy of locating and tuning TLA
systems in order to have long-lived metastable states.

For problem (ii) we ask and answer the question whether the
doubly excited state |�(2)

in 〉 of two identical TLAs can evolve
to one of the metastable configurations. We have found that for
an arbitrary distance l between the atoms the system will decay
rapidly (with a decay rate on the scale of �) to the ground state
with the emission of two photons. However, when l is close to
one of the special positions lres, the system will rapidly decay

(with the emission of a single photon) to the superposition
of a bright and a dark (metastable) state of type |�(1)

in 〉 with
certain coefficients C1 and C2. The bright component of this
superposition will decay rapidly to the ground atomic state
with the second photon emitted, while the dark state will
remain forever (in the case of ideal resonance conditions)
or decay slowly in accordance with the results for item (i).
For the case �l/c � 1, we have calculated the probability of
the formation of a metastable state. This probability is low
[�l/(2c)]2 and increases quadratically with an increase in l (as
long as l � c/�). This study shows the possibility of creating
metastable states with a strong external pulse.

As in the case of a singly excited state, it is instructive to
compare the described behavior of a doubly excited state of
spatially separated TLAs with that in the case of closely located
TLAs (l → 0). The doubly excited state, (2), is symmetric; it
decays (with the emission of the first photon) to the symmetric
singly excited state, and the latter decays to the ground state
(with the second photon emitted). The antisymmetric singly
excited state (which would be the dark state in the considered
case l = 0) is not involved in the decay process.

For a nonzero interatomic distance (l �= 0) the optical
transition between the doubly excited and the singly excited
antisymmetric states is not strictly forbidden. If the TLAs
are located at a “resonant” distance lres, the antisymmetric
singly excited state becomes a dark metastable one. This is the
physical mechanism of the possibility of an incomplete decay
of the doubly excited state of two spatially separated TLAs.

This paper has the following structure. In Sec. II, we
describe the model and write the Hamiltonian of our system.
In Sec. III we consider the evolution of the singly excited
state |�(1)

in 〉 of two TLAs and obtain results for the metastable
decay rate briefly described above [item (i)]. To study the
more complicated case of the doubly excited state |�(2)

in 〉
we introduce the Weyl basis and write the basic equations
(Sec. IV). These equations are solved in Sec. V, where we
describe the time evolution of the state. Finally, the probability
of the formation of a metastable state is calculated in Sec. VI.
In the last section (Sec. VII) we summarize the obtained results
and discuss possible applications and extensions.

II. DESCRIPTION OF TWO QUBITS
IN A WAVEGUIDE MODEL

To study the dynamics of a system of TLAs coupled to
1D photons [18] we use the Hamiltonian formalism, which
allows one to describe simultaneously the atomic and the
photon systems, while the alternative density matrix approach
excludes the photon degrees of freedom. The Hamiltonian
approach has been successfully explored [19,20] to show the
integrability of a model with an arbitrary number of TLAs
coupled with a chiral waveguide, where photons propagate in
only one direction [21]. In the usual nonchiral waveguides
with right- and left-propagating photons, the dynamics is
more complicated due to multiple reflections of photons,
so that a general description of the system dynamics is
considerably more difficult. Nevertheless, some particular
problems can still be described explicitly. Among them is
the problem of photon scattering by a system of few TLAs
where the (inelastic) scattering matrix of several photons
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can be explicitly found [12,14,22–25]. However, the problem
of the spontaneous decay of an initially excited system of
TLAs is more difficult because it requires describing the
system in time rather than in the spectral domain, and the
transition from one to another is quite sophisticated. To
describe the 1D propagation of an electromagnetic field
in a waveguide we use the coordinate representation for
“smooth” (envelope) field operators rather than the momentum
representation. This widely implemented approach (see, for
instance, [3,14,18,20,22,23,25]) is well suited for the nonper-
turbative treatment of multiple absorption-emission-reflection
events in a system with spatially separated TLAs. The more
traditional momentum representation is usually applied for
configurations where there is no back-and-forth propagation
of photons between the TLAs (e.g., for collocated TLAs [12],
chiral waveguides [24], etc.).

The system we study is shown schematically in Fig. 1. It
consists of a waveguide of infinite length where two kinds of
photons (left and right) can propagate, coupled with two TLAs
located at the points x = ±l/2 along the waveguide axis (x
axis). Assuming that l is greater than the resonant wavelength
λ one may neglect the short-range dipole-dipole interaction.
Restricting the consideration to the lowest transverse mode of
the thin waveguide we consider only 1D propagation of the
field and represent the field operator in the following form:

A(x) → aR(x)eik0x + aL(x)e−ik0x. (3)

The envelope functions aR(x) and aL(x) are the operators of
right- and left-moving photons (R- and L-photons), respec-
tively. They obey the usual commutation relations:

[ai(x),a†
j (x ′)] = δij δ(x − x ′), i,j = (R,L). (4)

TLAs at the points x = −l/2 and x = l/2 can be represented
by the spin- 1

2 operators 	S1 and 	S2, with the commutation
relations

[S+
a ,S−

b ] = 2δabS
z
a,

[
Sz

a,S
±
b

] = ±δabS
±
a , (5)

where S±
a = Sx

a ± iS
y
a , a,b = (1,2).

The Hamiltonian of the system has the form

Ĥ = −ic

∫
dxa

†
R(x)∂xaR(x) + ic

∫
dxa

†
L(x)∂xaL(x)

+√
γ c{S+

1 [aR(−l/2)e−ik0l/2 + aL(−l/2)eik0l/2]

+ S+
2 [aR(l/2)eik0l/2 + aL(l/2)e−ik0l/2] + H.c.}

+ �

2

(
Sz

1 − Sz
2

)
. (6)

Here the first line corresponds to free photons, the second
and third lines describe the interaction of photons with the
TLAs, and the last line introduces the detuning � between
the transition frequencies of the two TLAs. The interaction
constant γ is the amplitude decay rate connected with the
decay rate � = 2γ of the survival probability

P (t) = exp(−�t) (7)

of the excited state of a single TLA coupled with the waveguide
modes.

The ground state |0〉 = |g〉 ⊗ |0〉ph of the system is the
product of the photon vacuum state (no photons) |0〉ph and

of the ground state |g〉 ≡ |g1〉 ⊗ |g2〉 of the two-atom system.
The considered spin representation of TLAs is chosen so that
the state |gi〉 (i = 1,2) corresponds to the ith “spin” state
|↓〉, so the ground state |g〉 of the two TLAs system in “spin
language” is represented as |↓,↓〉. We are interested in the
time evolution of initial states with singly or doubly excited
atomic systems, |�(1)

in 〉, (1), or |�(2)
in 〉, (2), respectively. In the

next section we consider the initial state |�(1)
in 〉, (1).

III. DECAY OF METASTABLE STATES IN A SYSTEM
WITH ONE EXCITATION

We search the time-dependent state |�(t)〉 which corre-
sponds to the initial state |�(1)

in 〉, (1), with the normalization
condition |C1|2 + |C2|2 = 1. The state |�(t)〉 can be repre-
sented in the form

|�(t)〉 = A1(t)S+
1 |0〉 + A2(t)S+

2 |0〉

+
∫

dxB1(x,t)a†
R(x)|0〉 +

∫
dxB2(x,t)a†

L(x)|0〉.
(8)

It is convenient to use the Laplace transform in Eq. (8),

|�(t)〉 → |�̃[s]〉 =
∫ ∞

0
dt e−st |�(t)〉, (9)

so that the time-dependent Schrödinger equation transforms
as

i
∂

∂t
|�(t)〉 = Ĥ |�(t)〉 → s|�̃[s]〉

− |�(t = 0)〉 = −iH |�̃[s]〉, (10)

where |�(t = 0)〉 is given by (1). Equation (10) is equivalent
to the system of equations for the Laplace transforms of the
amplitudes:

sÃ1[s] − C1 = −i
√

γ cB̃1[−l/2,s]e−ik0l/2

− i
√

γ cB̃2[−l/2,s]eik0l/2 − i�/2Ã1[s];

(11)

sÃ2[s] − C2 = −i
√

γ cB̃1[l/2,s]eik0l/2

− i
√

γ cB̃2[l/2,s]e−ik0l/2 + i�/2Ã2[s];

(12)

sB̃1[x,s] = −c∂xB̃1[x,s] − i
√

γ cÃ1[s]δ(x + l/2)eik0l/2

− i
√

γ cÃ2[s]δ(x − l/2)e−ik0l/2; (13)

sB̃2[x,s] = c∂xB̃2[x,s] − i
√

γ cÃ1[s]δ(x + l/2)e−ik0l/2

− i
√

γ cÃ2[s]δ(x − l/2)eik0l/2. (14)

As there are no photons in the initial state, (1), no right-
moving photons can appear in the domain x < −l/2 and
no left-moving photons can appear in the domain x > l/2.
This means that B1(x < −l/2,t) = 0 = B2(x > l/2,t) for
any t , and therefore, B̃1[x < −l/2,s] = 0 = B̃2[x > l/2,s].
Accounting for these conditions, the solutions of Eqs. (13)
and (14) for B̃1[x,s] and B̃2[x,s], for all points except ±l/2,
are determined by linear homogeneous equations and have the
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form

B̃1[x,s] =
⎧⎨
⎩

0 if x < −l/2,

D1le
−sx/c if − l/2 < x < l/2,

DRe−sx/c if x > l/2
(15)

and

B̃2[x,s] =
⎧⎨
⎩

DLesx/c if x < −l/2,

D2le
sx/c if − l/2 < x < l/2

0 if x > l/2,

, (16)

where D1l , D2l , DR , and DL are some undefined coefficients.
Because of the δ-function singularities in Eqs. (13) and (14),
the functions B̃1,2 are discontinuous at points x = ±l/2. The
jumps of B̃1,2 at these points are obtained by integration of
Eqs. (13) and (14) over an infinitesimal interval around the
points x = ±l/2,

B̃1[±l/2 + 0,s] − B̃1[±l/2 − 0,s]

= −i

√
γ

c
Ã2(1)[s]e∓ik0l/2, (17)

B̃2[±l/2 + 0,s] − B̃2[±l/2 − 0,s]

= i

√
γ

c
Ã2(1)[s]e±ik0l/2, (18)

where the subscript in parentheses corresponds to the lower
sign. The values of the functions B̃1,2 at the singular points
x = ±l/2 are defined by the following smooth regularization:

B̃1,2[±l/2,s] = B̃1,2[±l/2 + 0,s] + B̃1,2[±l/2− 0,s]

2
. (19)

Applying the matching conditions, (17) and (18), to expres-
sions (15) (starting from the domain x < −l/2) and (16)
(starting from the domain x > l/2), we express all the
coefficients in Eqs. (15) and (16) in terms of the functions
Ã1,2[s]. Then using the regularization, (19), we find B̃1,2[x,s]
at the points x = ±l/2:

B̃1[−l/2,s] = − i

2

√
γ

c
Ã1[s]eik0l/2,

B̃1[l/2,s] = − i

2

√
γ

c
(2Ã1[s]eik0l/2−sl/c + Ã2[s]e−ik0l/2),

B̃2[−l/2,s] = − i

2

√
γ

c
(Ã1[s]e−ik0l/2 + 2Ã2[s]eik0l/2−sl/c),

B̃2[l/2,s] = − i

2

√
γ

c
Ã2[s]eik0l/2. (20)

Substituting these expressions into the first two equations in
system (11), we get a closed system for functions Ã1,2. Its
solution is

Ã1[s] = C1(s + γ − i�/2) − C2γ eik0l−sl/c

(s + γ )2 + �2/4 − γ 2e2ik0l−2sl/c
, (21)

Ã2[s] = C2(s + γ + i�/2) − C1γ eik0l−sl/c

(s + γ )2 + �2/4 − γ 2e2ik0l−2sl/c
. (22)

The time evolution of the amplitudes A1(2)(t) is given by the
inverse Laplace transform

A1(2)(t) =
∫ +i∞+0

−i∞+0

ds

2πi
Ã1(2)[s]est . (23)

The integration cannot be performed analytically and we
restrict the analysis to a long-time regime. When the TLAs
are located at arbitrary positions, the typical long-time regime
corresponds to the rapid decay (at the rate of the order of γ )
of both amplitudes A1(2)(t). However, if the atomic transition
frequencies coincide (i.e., � = 0) and the distance l between
the two TLAs takes one of the special values such that eik0l = 1
(we refer to this case as the “resonant” one) or eik0l = −1
(referred to as the “antiresonant” case), the amplitudes A1(2)(t)
may have parts which remain finite in the limit t → ∞ [15].
Indeed, considering, for instance, the resonant case, one sees
that the denominator D[s] of expressions (21) and (22) has the
root s = 0:

D[s; � = 0,l = lres]

= [s + γ (1 − e−sl/c)][s + γ (1 + e−sl/c)]

= 2γ s(1 + γ l/c)[1 + O(sl/c,s/γ )]. (24)

The contribution of this root to the contour integral, (23), de-
termines the nonvanishing (at t → ∞) parts of the amplitudes:

A1(t → ∞) = C1 − C2

2(1 + γ l/c)
= −A2(t → ∞). (25)

This result shows that only the symmetric initial atomic
state, (1), with C1 = C2 = 1/

√
2, can decay completely, while

its counterpart, the antisymmetric atomic state with C1 =
−C2 = 1/

√
2, decays only partially, so that there remains a

finite probability of finding the atomic system in the excited
state at long times. Similarly, when the distance l takes an
antiresonant value (so that eik0l = −1), only the antisymmetric
initial atomic state, (1), with C1 = −C2 = 1/

√
2, can decay

completely, while the symmetric atomic state with C1 = C2 =
1/

√
2 remains finite at t → ∞.

These stable states become metastable in the presence of a
transition frequency detuning (� �= 0) or of a deviation of the
interatomic distance from a resonant (antiresonant) value. Our
next task is to calculate the decay rate of the metastable states
in such situations.

We start our consideration with the case where there is
no frequency detuning (� = 0) but the interatomic distance
l slightly deviates from a resonant position, k0l = k0lres + δ,
where we have introduced the phase parameter δ (δ < π ), so
that eik0l = eiδ . In what follows we assume a small deviation,
so that δ � 1.

Now the denominator in Eqs. (21) and (22) does not
vanish at s = 0, which means that no part A1(2)(t) remains
finite at t → ∞, i.e., the antisymmetric (C1 = −C2 = 1/

√
2)

superposition, (1), is no more stable. For the antisymmetric
state, the expressions for the amplitudes, (21) and (22), can be
rewritten in the form

Ã1[s] = −Ã2[s] = 1√
2(s + γ − γ eiδ−sl/c)

. (26)

The long-time behavior of the amplitudes is determined by
the domain of small real part s ′ in the integral, (23), over
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the complex variable s = s ′ + is ′′. We assume (and find the
necessary conditions later) that the function, (26), has a
complex pole sp = s ′

p + is ′′
p such that s ′

pl/c � 1. Keeping
only the first-order terms in s ′

pl/c in the denominator of
function (26) we obtain the system of equations

s ′
p

[
1 + γ l

c
cos

(
δ − s ′′

pl

c

)]
= −γ

[
1 − cos

(
δ − s ′′

pl

c

)]
,

(27)

s ′′
p − γ

(
1 − s ′

pl

c

)
sin

(
δ − s ′′

pl

c

)
= 0. (28)

Interested in the case of slow decay (compared to spontaneous
decay) of the metastable state, we assume s ′

p � γ . To provide
this inequality the cosine term on the right-hand side of (27)
should be close to 1, hence |sin(δ − s ′′

pl/c)| � 1. This means
that the argument of the sinus function is either small or
very close to πn, n �= 0. The second variant would mean that
s ′′l/c ≈ πn; according to (28) this can be realized only at very
large values of the parameter γ l/c � 1/δ. Restricting our-
selves to small or moderately large (1 � γ l/c � 1/δ) values
of this parameter, we deal only with the first variant, when the
argument of the sinus function is small. Replacing the sinus
term in Eq. (28) with its argument and neglecting the term s ′

pl/c

compared to unity, we find s ′′
p = γ δ/(1 + γ l/c) and, as a con-

sequence, s ′
p = −γ δ2/[2(1 + γ l/c)3]. In the vicinity of sp the

denominator in Eq. (26) takes the form
√

2(1 + γ l/c)(s − sp),
so the pole contribution to the integral, (23), takes the form

A1(t → ∞) = −A2(t → ∞)

= 1√
2(1 + γ l/c)

× exp

([
i

γ δ

1 + γ l/c
− γ δ2

2(1 + γ l/c)3

]
t

)
.

(29)

Thus, the probability of finding the system in the metastable
(antisymmetric for the case of an almost-“resonant” distance l)
state behaves as e−�δt , where the decay rate �δ is given by

�δ = γ δ2

(1 + γ l/c)3
. (30)

In the case γ l/c � 1 this expression reduces to γ δ2 ob-
tained in Ref. [15]. The assumptions used in the deriva-
tion of (30)—|δ − s ′′

pl/c| � 1, s ′
pl/c � 1, and s ′

p � γ —
mean that δ/(1 + γ l/c) � 1, (γ lδ2/c)/(1 + γ l/c)3 � 1, and
δ2/(1 + γ l/c)3 � 1. The strongest of these inequalities is
the first one, δ/(1 + γ l/c) � 1, which is fulfilled by the
above assumption, δ � 1. Note that for large interatomic
distances l (when γ l/c � 1) the amplitude of a slowly
decaying part, (29), diminishes with the increase in γ l/c.
Finally, we indicate the obvious connection between δ and
the corresponding deviation �l = l − lres of the interatomic
distance l from the resonant value lres: �l = δ/k0 = 2πδλ.

Now we move to the second situation: when there is no
deviation of the interatomic distance from the resonant one
(i.e., eik0l = 1) but there is a small but finite frequency detuning
�. We assume that � � γ . Then expressions (21) and (22)

for the metastable antisymmetric state take the form

Ã1[s] = −Ã2[s] = 1√
2

γ [1 + e−sl/c]

(s + γ )2 + �2/4 − γ 2e−2sl/c
. (31)

Searching for a small root of the denominator, such that
|sl/c| � 1, we find straightforwardly s = −�2/[8γ (1 +
γ l/c)], with the corresponding restriction on the interatomic
distance �2l/[cγ (1 + γ l/c)] � 1. This results in the expo-
nential decay of the antisymmetric state amplitude:

A1(t) = −A2(t) = 1√
2

1

(1+γ l/c)
exp

[
− �2t

8γ (1 + γ l)

]
. (32)

Hence the probability of finding the system in the metastable
antisymmetric (for resonant distance l) state behaves as e−��t ,
where the decay rate �� is given by

�� = �2

4γ (1 + γ l/c)
. (33)

The obtained results, (30) and (33), for the decay rates of
the antisymmetric (C1 = −C2) metastable state of a singly
excited state, (1), of the two-TLA system separated by the
almost-resonant distance l (eik0l = 1), remain valid for the
decay of the symmetric metastable state (C1 = C2) of TLAs
separated by an antiresonant distance (eik0l = −1).

Expressed in terms of the single TLA probability decay
rate � = 2γ [see (7)] expressions (30) and (33) coincide with
the results for a singly excited state of two TLAs reported in
Sec. I. In the next sections we consider the decay of the doubly
excited state, (2).

IV. DOUBLY EXCITED SYSTEM OF TWO-LEVEL ATOMS:
WEYL BASIS

Here we study the decay of the doubly excited state, (2).
The question we address is whether this decay can result in
the formation of a stable singly excited state of a system of
TLAs. In the limiting case where two identical TLAs are
located “at the same point” (i.e., at a distance small compared
to the resonance wavelength λ) and the short-ranged dipole
interaction is not accounted for, the answer is negative: the
interaction of TLAs with light [∼S+A(0) + H.c.] is governed
by the total “spin” S+ = S+

1 + S+
2 , thus the decay of the

completely (doubly in this case) excited TLA system goes
down along the ladder of the collective Dicke states generated
by subsequent actions of the operator S− on the excited
state [9]. In the considered case of two TLAs this corresponds
to rapid decays to the lower—symmetric—singly excited state,
which, in turn, decays rapidly to the ground state [26]. The
answer is not obvious when the distance l between TLAs
coupled to a 1D waveguide is much greater than λ.

Looking for possible stable states we assume the absence
of frequency detuning (� = 0). There are various decay
channels for a doubly excited system of two TLAs. To simplify
calculations we use the symmetry of the model and introduce
new photon operators (referred to as the Weyl basis [27]):

bS(x) = 1√
2

[aR(x) + aL(−x)], (34)

bA(x) = 1√
2

[aR(x) − aL(−x)], (35)
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which obey the usual boson commutation relations:

[bS(x),b†S(x ′)] = δ(x − x ′) = [bA(x),b†A(x ′)], (36)

[bS(x),b†A(x)] = 0. (37)

The system Hamiltonian, (6), in this basis is given by

ĤW = −ic

∫
dxb

†
S(x)∂xbS(x) − ic

∫
dxb

†
A(x)∂xbA(x)

+√
γ c{S+

S [bS(l/2)eik0l/2 + bS(−l/2)e−ik0l/2]

+ S+
A [bA(l/2)eik0l/2 − bA(l/2)e−ik0l/2] + H.c.}. (38)

As shown by the first line, both bS and bA photons are
right-moving, which considerably simplifies the problem. In
Eq. (38) we have introduced new operators:

	SS = 1√
2

(	S1 + 	S2), 	SA = 1√
2

(	S2 − 	S1). (39)

The action of the operators S−
S and S−

A on the doubly
excited state |e〉 = |e1〉 ⊗ |e2〉, (2), of two TLAs creates singly
excited states, (1), symmetric |S〉 (with C1 = C2 = 1/

√
2) and

antisymmetric |A〉 (with C1 = −C2 = 1/
√

2), respectively:
|S〉 = S−

S |e〉 and |A〉 = S−
A |e〉. These states are generated also

by the action of S+
S and S+

A on the ground state |g〉 = |g1〉 ⊗
|g2〉 of the two-TLA system: |S〉 = S+

S |g〉 and |A〉 = −S+
A |g〉.

Further action of S+
S and S+

A on these states is given by

S+
S |S〉 = S+

A |A〉 = |e〉, S+
S |A〉 = S+

A |S〉 = 0 . (40)

The omitted frequency detuning term �(Sz
1 − Sz

2) would
cause the mutual transformation of the states |S〉 ↔ |A〉. In
the absence of detuning (i.e., � = 0), the doubly excited
state, (2), decays along two channels: through the singly
excited symmetric state |S〉 with the emission of a bS photon
or through the singly excited antisymmetric state |A〉 with the
emission of a bA photon; in general, these intermediate states
decay further with the emission of either a bS or a bA photon,
respectively. However, it may be that one of the intermediate
states corresponds to one of the metastable states studied in
the previous section. Our task is to find the probability of the
formation of such states.

V. TIME EVOLUTION OF THE DOUBLY
EXCITED SYSTEM

A. System of equations for amplitudes

We search the time-dependent state of the doubly excited
system in the form

|�(t)〉 = A(t)|e〉 ⊗ |0〉ph + |S〉 ⊗
∫

dxBS(x,t)b†S(x)|0〉ph

+ |A〉 ⊗
∫

dxBA(x,t)b†A(x)|0〉ph

+ |g〉 ⊗
∫

dx1dx2CS(x1,x2,t)b
†
S(x1)b†S(x2)|0〉ph

+ |g〉 ⊗
∫

dx1dx2CA(x1,x2,t)b
†
A(x1)b†A(x2)|0〉ph,

(41)

where |0〉ph denotes the vacuum state of the photon subsystem.
The initial state, (2), corresponds to the initial condition
A(t = 0) = 1, while all the other amplitudes at t = 0 vanish.

In the general case, i.e., for an arbitrary interatomic distance
l, the amplitudes A(t) and BS(A)(t) tend to 0 at t → ∞; i.e., the
system evolves to a state with atoms in their ground states and
two emitted photons. However, if the atoms are in one of the
special, “resonant” or “antiresonant” positions (so that eik0l =
1 or −1), one may expect that one of the intermediate states—
with only one emitted photon [i.e., described by the amplitude
BA(x,t) or BS(x,t)]—does not vanish in the long-time limit.
To be more precise, one may expect that the probability of
finding the system in one of these “intermediate” states,

PS(A)(t) =
∫ ∞

−∞
|BS(A)(x,t)|2dx, (42)

remains finite in the limit t → ∞. Our task is to calculate these
quantities. In what follows we describe the method of finding
the state, (41), for an arbitrary case (having in mind possible
applications beyond the problem studied in the present paper)
and later we concentrate on the particular case of interest.

After the Laplace transformation, (9), the Schrödinger
equation for (41) takes the form

sÃ[s] − 1 = −i
√

γ c{B̃S[l/2,s]eik0l/2 + B̃S[−l/2,s]e−ik0l/2 + B̃A[l/2,s]eik0l/2 + B̃A[−l/2,s]e−ik0l/2}, (43)

sB̃S[x,s] = −c∂xB̃S[x,s] − i
√

γ cÃ[s][δ(x + l/2)eik0l/2 + δ(x − l/2)e−ik0l/2]

− 2i
√

γ c{C̃S[l/2,x,s]eik0l/2 + C̃S[−l/2,x,s]e−ik0l/2}, (44)

sB̃A[x,s] = −c∂xB̃A[x,s] − i
√

γ cÃ[s][δ(x − l/2)e−ik0l/2 − δ(x + l/2)eik0l/2]

+ 2i
√

γ c{C̃A[l/2,x,s]eik0l/2 − C̃A[−l/2,x,s]e−ik0l/2}, (45)

sC̃S[x1,x2,s] = −c∂x1C̃S[x1,x2,s] − c∂x2C̃S[x1,x2,s] − i

√
γ c

2
B̃S[x2,s][δ(x1 − l/2)e−ik0l/2 + δ(x1 + l/2)eik0l/2]

− i

√
γ c

2
B̃S[x1,s][δ(x2 − l/2)e−ik0l/2 + δ(x2 + l/2)eik0l/2], (46)

sC̃A[x1,x2,s] = −c∂x1C̃A[x1,x2,s] − c∂x2C̃A[x1,x2,s] + i

√
γ c

2
B̃A[x2,s][δ(x1 − l/2)e−ik0l/2 − δ(x1 + l/2)eik0l/2]

+ i

√
γ c

2
B̃A[x1,s][δ(x2 − l/2)e−ik0l/2 − δ(x2 + l/2)eik0l/2]. (47)
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As mentioned after Eq. (38), bS and bA photons are right-
moving. As there were no photons in the initial state, (2), no
photons can appear in the domain x < −l/2 at any time. This
means that

B̃A(S)[x,s] = 0 if x < −l/2; (48)

C̃A(S)[x1,x2,s] = 0 if x1 < −l/2 or x2 < −l/2. (49)

These relations provide the boundary condition for the system
of equations (43)–(47). We solve this system following the
“down-up” direction; i.e., first, using (46) and (47), we express
the amplitudes C̃S(A)[x1,x2,s] in terms of the amplitudes B̃S(A),
which, in turn, is expressed via Ã with the use of (44) and (45).
Next the amplitude Ã is obtained from (43). This program
is realized in the following subsections for the general case
of an arbitrary interatomic distance l. Later we consider a
particular (resonant) case and derive explicit expressions for
the probability (42).

B. Amplitudes C̃S(A)[x1,x2,s]

We start to solve this system by finding the amplitudes
C̃S[x1,x2,s] and C̃A[x1,x2,s]. These functions have disconti-
nuities at the points ±l/2. For instance, integrating (46) over
an infinitesimal interval around the singular point x2 = −l/2,
we find

C̃S[x1,−l/2 + 0,s] − C̃S[x1,−l/2 − 0,s]

= − i

2

√
γ

c
B̃S[x1,s]eik0l/2. (50)

Due to the symmetry C̃S(A)[x1,x2,s] = C̃S(A)[x2,x1,s] it is
sufficient to consider only the sector x1 > x2. This sector is
split into several subsectors (see Fig. 2), where the amplitudes
are continuous and obey the simple equation

sC̃S(A)[x1,x2,s] = −c[∂x1 + ∂x2 ]C̃S(A)[x1,x2,s]

= −c∂ξ C̃S(A)[x1 = ξ+η/2,x2 = ξ−η/2,s],

(51)

where the new coordinates ξ = (x1 + x2)/2 and η = x1 − x2

have been introduced.
Its general solution is

C̃S(A)[x1,x2,s] = e−s(x1+x2)/(2c)fS(A)(x1 − x2), (52)

FIG. 2. Possible arrangements of photon coordinates.

where the functions fS(A)(x1 − x2) depend on the considered
subsector. Actually, for our purposes we need to find the
solution only in the first two subsectors in Fig. 2. The functions
fS(A)(x1 − x2) are easily determined step by step by using the
matching conditions at the boundaries of the subsectors. For
instance, consider the matching condition, (50), at x2 = −l/2,
while −l/2 < x1 < l/2. Having in mind that CS[x1,x2,s] = 0
at x2 < −l/2, we immediately obtain from (50) the expression
for CS[x1,−l/2 + 0,s] in terms of the function B̃S[x1,s]. Now
we use the fact that when the variable x1 varies within the
interval −l/2 < x1 < l/2 (and x2 = −l/2 + 0 lies in the same
interval), Eq. (46) is free of singularities and reduces to (51)
with the general solution (52). Using (52) at x2 = −l/2 + 0
we rewrite (50) in the form

fS(x1 + l/2)e−s(x1/2−l/4) = − i

2

√
γ

c
B̃S[x1,s]eik0l/2. (53)

Replacing here x1 → x1 − x2 − l/2, we find the sought
function fS(x1 − x2) in the subsector −l/2 < x2 < x1 < l/2,

fS(x1 − x2)

= − i

2

√
γ

c
B̃S[x1 − x2 − l/2,s]es(x1−x2−l)/(2c)eik0l/2. (54)

Therefore, the function CS[x1,x2,s], (52), in the subsector
−l/2 < x2 < x1 < l/2 is given by

CS[x1,x2,s]

= − i

2

√
γ

c
B̃S[x1 − x2 − l/2,s]e−s(x2+l/2)/ceik0l/2. (55)

Continuing this procedure, we find the function CS[x1,x2,s]
in the sector −l/2 < x2 < l/2 < x1. To this end we use the
matching condition at the point x1 = l/2,

C̃S[l/2 + 0,x2,s]

= C̃S[l/2 − 0,x2,s] − i

2

√
γ

c
B̃S[x2,s]e−ik0l/2, (56)

which follows from integrating (46) over an infinitesimal inter-
val around the point x1 = l/2. For the term C̃S[l/2 − 0,x2,s]
on the right-hand side of (56) we use the earlier obtained
expression, (55), at x1 = l/2 − 0. The arguments of the
function C̃S[l/2 + 0,x2,s] belong to the interval −l/2 < x2 <

l/2 < x1, where Eq. (46) is free of singularities, so that
its general solution is (52) with an unknown function fS .
Putting (52) (at x1 = l/2 + 0) into (56) we get

e−(l/2+x2)s/(2c)fS(l/2 − x2)

= − i

2

√
γ

c
{B̃S[−x2,s]eik0l/2−s(l/2+x2)/c + B̃S[x2,s]e−ik0l/2}.

(57)

Shifting here the variable x2 → x2 − x1 + l/2 we find the
function fS(l/2 − x2) and then, according to (52), the function
C̃S[x1,x2,s] in the sector −l/2 < x2 < l/2 < x1:

C̃S[x1,x2,s] = − i

2

√
γ

c
{B̃S[x1 − x2 − l/2,s]eik0l/2−s(l/2+x2)/c

+ B̃S[l/2 − x1 + x2,s]e−ik0l/2+s(l/2−x1)/c}.
(58)
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In a similar way we obtain the amplitude CA[x1,x2,s] in the
subsector −l/2 < x2 < x1 < l/2,

C̃A[x1,x2,s]

= − i

2

√
γ

c
B̃A[x1 − x2 − l/2,s]eik0l/2−s(l/2+x2)/c, (59)

and in the subsector −l/2 < x2 < l/2 < x1,

C̃A[x1,x2,s] = − i

2

√
γ

c
{B̃A[x1 − x2 − l/2,s]

× eik0l/2−s(l/2+x2)/c − B̃A[l/2 − x1 + x2,s]

× e−ik0l/2+s(l/2−x1)/c}. (60)

These expressions allow one to obtain the amplitudes
C̃S(A)[x1,x2,s] in the case where one of the coordinates equals
±l/2. Using a regularization similar to (19) we find

C̃S[x, − l/2,s] = − i

4

√
γ

c
B̃S[x,s]eik0l/2 (61)

and

C̃S[l/2,x,s]

= − i

2

√
γ

c

{
B̃S[−x,s]eik0l/2−s(l/2+x)/c + 1

2
B̃S[x,s]e−ik0l/2

}
.

(62)
Similarly,

C̃A[x,−l/2,s] = − i

4

√
γ

c
B̃A[x,s]eik0l/2 (63)

and

C̃A[l/2,x,s]

= − i

2

√
γ

c

{
B̃A[−x,s]eik0l/2−s(l/2+x)/c − 1

2
B̃A[x,s]e−ik0l/2

}
.

(64)

The argument x in Eqs. (61)–(64) belongs to the interval
(−l/2,l/2).

C. Amplitudes B̃S(A)[x,s] in the interval −l/2 < x < l/2

Putting expressions (61)–(64) into Eqs. (44) and (45), we can
rewrite these equations in the form

[s + γ + c∂x]B̃S[x,s]

= −γ B̃S[−x,s]eik0l−s(l/2+x) − i
√

γ c[δ(x + l/2)eik0l/2

+ δ(x − l/2)e−ik0l/2]Ã[s], (65)

[s + γ + c∂x]B̃A[x,s]

= γ B̃A[−x,s]eik0l−s(l/2+x) − i
√

γ c[δ(x − l/2)e−ik0l/2

− δ(x + l/2)eik0l/2]Ã[s]. (66)

First, consider these equations in the interval −l/2 < x < l/2.
As they contain simultaneously the functions B̃S(A)[x,s] and
B̃S(A)[−x,s], we add another couple of equations which are
obtained from (65) and (66) by the inversion x → −x. For

instance, the functions B̃S[x,s] and B̃S[−x,s] obey the system
of equations

[c∂x + γ + s/2](B̃S[x,s]esx/(2c))

= −γ (B̃S[−x,s]e−sx/(2c))eik0l−sl/(2c), (67)

[c∂x − γ − s/(2c)](B̃S[−x,s]e−sx/(2c))

= γ (B̃S[x,s]esx/(2c))eik0l−sl/(2c), (68)

which is the system of ordinary differential equations with
constant coefficients for the functions B̃S[x,s]esx/(2c) and
B̃S[−x,s]e−sx/(2c). A similar system can be constructed for the
function B̃A[x,s]. The solutions to these systems of equations
in the interval −l/2 < x < l/2 have the form

B̃S[x,s] = e−s(x/2+l/4)/cB̃S[−l/2 + 0,s]DS[x,s], (69)

B̃A[x,s] = e−s(x/2+l/4)/cB̃A[−l/2 + 0,s]DA[x,s], (70)

where the functions DS(A)[x,s] are given by

DS[x,s] = Q− cosh(qx) − Q+ sinh(qx)

Q− cosh(ql/2) + Q+ sinh(ql/2)
, (71)

DA[x,s] = Q+ cosh(qx) − Q− sinh(qx)

Q+ cosh(ql/2) + Q− sinh(ql/2)
. (72)

Here we have introduced the notation

Q± =
√

γ + s/2 ± γ eik0l−sl/(2c), (73)

q = 1

c

√
(γ + s/2)2 − γ 2e2ik0l−sl/c = Q+Q−

c
. (74)

At x → l/2 + 0, the functions DS(A)[x,s] → 1, thus justifying
representations (69) and (70) for the solutions. The functions
B̃S(A)[−l/2 + 0,s] which determine these solutions are fixed
by the jump of the functions B̃S(A)[x,s] at the singular point
x = −l/2 of Eqs. (44) and (45). Having in mind condition (48)
(no right-moving photons at x < −l/2), we immediately find,
from (44) and (45),

B̃S[−l/2 + 0,s] = −i

√
γ

c
eik0l/2Ã[s], (75)

B̃A[−l/2 + 0,s] = i

√
γ

c
eik0l/2Ã[s]. (76)

Thus the functions B̃S(A)[x,s] are expressed in terms of the
amplitude Ã[s], still unknown. This amplitude is derived and
discussed in the next subsection.

D. Amplitude Ã[s]

The amplitude Ã[s] of finding the atomic system in
the doubly excited state is determined by Eq. (43), which
includes the amplitudes B̃S(A)[x,s] at points x = ±l/2. As
the functions B̃S(A)[x,s] are discontinuous at these points, the
values B̃S(A)[±l/2,s] are defined by a smooth regularization
similar to (19). In this way we find, at point x = −l/2,

B̃S(A)[−l/2,s] = ∓ i

2

√
γ

c
eik0l/2Ã[s]. (77)

To find the functions B̃S(A)[x,s] at point x = l/2, we use
expressions (69) and (70) at x = l/2 + 0 together with the
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jump values at point x = l/2 [see Eqs. (44) and (45)],

B̃S(A)[l/2 + 0,s] − B̃S(A)[l/2 − 0,s] = −i

√
γ

c
e−ik0l/2Ã[s].

(78)

As a result, we get

B̃S[l/2,s] = − i

2

√
γ

c
[e−sl/(2c)eik0l/2DS[l/2,s] + e−ik0l/2]Ã[s],

(79)

B̃A[l/2,s] = i

2

√
γ

c
[e−sl/(2c)eik0l/2DA[l/2,s] − e−ik0l/2]Ã[s].

(80)

Putting these expressions into (43) we get a closed equation
for Ã[s] with the solution

Ã[s] = 1

s + 2γ + γ e−sl/(2c)+ik0l�D[l/2,s]
, (81)

where �D[l/2,s] ≡ DS[l/2,s] − DA[l/2,s] and the functions
DS(A)[x,s] are given by (71) and (72). Being put in the
earlier obtained expressions for the amplitudes B̃S(A)[x,s]
and C̃S(A)[x1,x2; s], the amplitude Ã[s] determines these
amplitudes in the considered spatial intervals. In particular,
the expressions for B̃S(A)[x,s] have been derived for the
interval (−l/2,l/2). However, the quantity of our interest,
the probability, (42), of finding the system in one of the
intermediate states, we need to know the amplitudes B̃S(A)[x,s]
also at x > l/2. Therefore, we postpone the analysis of
particular physical situations and proceed, in the following
subsection, with the derivation of general expressions for these
amplitudes.

E. Amplitudes B̃S(A)[x,s] in the interval l/2 < x

For brevity, we present an explicit calculation only for the
amplitude of the symmetric mode B̃S[x,s]. It obeys Eq. (44),
which contains the functions C̃S[x,−l/2,s] and C̃S[x,l/2,s]
with x > l/2. To find them we exploit the derived equa-
tion, (58), for the interval (−l/2 < x2 < l/2 < x1). Taking
there the limit x2 → −l/2 + 0 and using condition (49) for
x2 = −l/2 − 0, we find the regularized [similar to (19)]
amplitude

C̃S[x,−l/2,s] = − i

4

√
γ

c
{B̃S[x,s]eik0l/2

+ B̃S[−x,s]e−ik0l/2+s(l/2−x)/c}. (82)

Similarly, taking the limit in Eq. (58), we get x2 → l/2 − 0
C̃S[x1,x2 = l/2 − 0,s]; then we integrate (46) over an in-
finitesimal interval around x2 = l/2 to obtain

C̃S[x1,x2 = l/2 + 0,s] = C̃S[x1,x2 = l/2 − 0,s]

− i

2c

√
γ

c
B̃S[x1,s]e−ik0l/2. (83)

Finally, we find C̃S[x1,x2 = l/2,s], defined [similar to (19)]
as the half-sum of the left (at x2 = l/2 − 0) and right
(at x2 = l/2 + 0) values:

C̃S[x,l/2,s] = − i

2c

√
γ

c

{
B̃S[x − l,s]eik0l/2−sl/c

+ B̃S[l − x,s]e−ik0l/2+s(l/2−x)/c

+ 1

2
B̃S[x,s]e−ik0l/2

}
. (84)

Putting (82) and (84) into (44), we obtain the equation for
B̃S[x,s] in the interval x > l/2:

(c∂x + s + γ )B̃S[x,s] = −γ e(ik0−s/c)l B̃S[x − l,s]

− γ e(l/2−x)s/cB̃S[l − x,s]. (85)

Note that the term B̃S[−x,s] in Eq. (82) vanishes at x > l/2
according to the boundary condition, (48).

Equation (85) is a nonlocal (functional) equation, which
relates the unknown function to different values of the
argument. To get its formal solution we introduce a new
function,

F [z,s] =
∫ ∞

l/2
e−zxB̃S[x,s]dx, (86)

which is a Laplace transform of B̃S[x,s] over the variable
x. Since ∂xB̃S[x,s] → zF [z,s] − B̃S[l/2 + 0,s], the equation
for F [z,s] has the form

[cz + s + γ + γ e(ik0−s/c−z)l]F [z,s]

= B̃S[l/2 + 0,s] − γ e(ik0−s/c−z)lG[z]

− γ e−[s/(2c)+z]lG[−z − s/c], (87)

where the function G[z] is defined by

G[z] =
∫ l/2

−l/2
e−zxB̃S[x,s]dx. (88)

This function is determined by the amplitude B̃S[x,s] in
the interval −l/2 < x < l/2, which has been calculated in
Sec. V C (with Ã[s] determined in Sec. V D). The solution to

(87) reads

F [z,s] = cB̃S[l/2 + 0,s] − γ e−zl(e(ik0−s/c)lG[z] + e−sl/(2c)G[−z − s/c])

cz + s + γ + γ e(ik0−s/c−z)l
. (89)

Finally, we make the inverse Laplace transform and find the
amplitude of interest, B̃S[x,s], for x > l/2:

B̃S[x,s] =
∫ +i∞+0

−i∞+0

dz

2πi
F [z,s]ezx. (90)

This expression together with the results in Sec. V C com-
pletely determine the amplitude B̃S[x,s] and thus allow one
to calculate the probability PS(t), (42). This is done for a
particular case of interest in the following section.
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VI. PROBABILITY OF REACHING
A METASTABLE DARK STATE

The general formalism developed in the previous section
completely describes the dynamics of the doubly excited
system of TLAs in the case of an arbitrary interatomic distance.
However, on one hand, this dynamics is so sophisticated that it
is hardly possible to describe it with explicit expressions. On
the other hand, the general case is of restricted interest because
the TLA system merely decays to the ground state with two
photons emitted. Albeit the formalism allows one, in principle,
to calculate the correlation functions and entanglement of these
photons, we do not pursue this objective in the current paper.
Instead, we concentrate on answering the question whether the
system can decay only partially, with the emission of only a
single photon and the formation of a dark metastable singly
excited state. Apparently this is not a general but an exclusive
situation which can be realized at special interatomic distances
l. Namely, to form a symmetric (S) dark state the two atoms
should be separated by the distance l such that eik0l = −1,
while an antisymmetric state may occur when eik0l = 1.
Here we consider the first configurations with eik0l = −1
and calculate the probability PS(t → ∞), (42), of finding
the system in the dark S state. For simplicity we restrict our
analysis to the case γ l/c � 1 (but at the same time k0l � 1).

First, let us analyze the time behavior of the amplitude A(t)
of finding the doubly excited system in its initial state. The
Laplace transform Ã[s], (81), remains finite, Ã[s] ≈ 1/(2γ ),
when s → 0, hence A(t) → 0 in the limit t → ∞. This (quite
expectably) means that the doubly excited state of two TLAs
completely decays. As shown below, characteristic values of
the Laplace variable s, which determine the fast decay rate of
the amplitude A(t), are of the order of γ ; i.e., sl/c ∼ γ l/c �
1. Indeed, estimating the functions DS(A)[l/2,s] determined
by (71) and (72), at sl/c,γ l/c � 1, we find

DS[l/2,s] ≈ 1 − sl

2c
, DA[l/2,s] ≈ 1 − 4γ + s

2c
, (91)

�D[l/2,s] = DS[l/2,s] − DA[l/2,s] ≈ 2γ l/c � 1. (92)

Using (92) we arrive at a simplified expression for (81) at small
γ l/c and sl/c:

Ã[s] ≈ 1

s + 2γ
. (93)

From this expression we see that the characteristic values of the
Laplace variable s, which determine the decay of the amplitude
A(t), are of the order of γ , which confirms self-consistently the
expansion in sl/c ∼ γ l/c � 1. Expression (93) corresponds
to the “superradiant” decay [9,26], |A(t)|2 ≈ e−4γ t = e−2�t .

In contrast to the simple decay law for the amplitude
A(t) of the upper excited state |e〉, the time evolution of
the intermediate states of the decaying system is less trivial.
Consider the amplitude BS(x,t), which describes one of the
intermediate states, namely, the atomic system in a singly
excited symmetric state with a photon at position x. In the
limit of interest t → ∞ expression (42) reduces to

PS(t → ∞) =
∫ ∞

l/2
|BS(x,t → ∞)|2dx, (94)

while the omitted integral from −l/2 to l/2 decays expo-
nentially with time. This decay is caused by the simple fact
that the emitted photon escapes from the interatomic interval
(−l/2,l/2).

The term B̃S[l/2 + 0,s] in Eq. (89) is determined by
Eqs. (78), (69), and (75) and reads explicitly

B̃S[l/2 + 0,s]

= −i

√
γ

c
e−ik0l/2Ã[s][1 + eik0le−sl/(2c)DS[l/2,s]]. (95)

In the considered particular case of the “antiresonant” inter-
atomic distance (eik0l = −1) and γ l/c � 1, expression (91)
gives DS[l/2,s] ≈ 1 − sl/(2c), so that

B̃S[l/2 + 0,s] ≈ −i

√
γ

c
e−ik0l/2slÃ[s], (96)

where it is taken into account that the characteristic values
of s are of the order of γ ; i.e., sl/c � 1. The other terms in
the numerator of (89) are parametrically smaller than (96).
Indeed, for typical values z ∼ γ /c (see below) these terms
are proportional to the difference G[z] − e−sl/(2c)G[−z − s/c]
of two slightly distinct integrals, (88), each of them already
being proportional to the small interval length l. Thus, for the
considered antiresonant case expression (89) reduces to

F [z,s] ≈ −i

√
γ

c

slÃ[s]e−ik0l/2

cz + s + γ [1 − e−(z+s/c)l]
. (97)

This function has a pole at z = −s/c so the leading contribu-
tion to (90) is

B̃S[x,s] = − i
√

γ

c3/2
e−ik0l/2 sl

s + 2γ
e−sx/c, (98)

where expression (93) for Ã[s] was used. Now, using the
inverse Laplace transformation [similar to (23)], we return
to the time-dependent amplitude

B̃S[x,t] = 2ie−ik0l/2

(
γ

c

)3/2

le−2γ (t−x/c)θ (ct − x), (99)

where the θ function provides vanishing of the amplitude
outside the “light cone” x = ct . Putting (99) into integral (94)
we find the desired expression for the probability of getting to
a dark (symmetric) state:

PS(t → ∞) =
(

γ l

c

)2

= 1

4

(
�l

c

)2

. (100)

Thus, we have arrived at a remarkable conclusion: when the
interatomic distance l between two TLAs corresponds to an
“antiresonance” (i.e., eik0l = −1), the doubly excited state, (2),
of the atomic subsystem does not necessarily decay to the
ground state (with two photons emitted). Instead, there is a
finite probability of reaching a stable dark state with only
one emitted photon. This stable state for the antiresonant
location of atoms corresponds to the symmetric combination
(C1 = C2) of singly excited states, (1). Similarly, there is a
finite probability of the doubly excited system’s reaching the
stable antisymmetric state, if the interatomic distance takes a
“resonant” value (i.e., eik0l = 1).
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Of course, as discussed in Sec. III, if the distance l deviates
from the antiresonant one or the atomic transition frequencies
are not equal, the dark state becomes only metastable and
slowly (for a small deviation) decays to the ground state.
Nevertheless, the found finiteness of the transition probability
from the doubly excited state, (2), to a (meta)stable singly
excited state, (1), make sense and can be observed because
the typical time of this transition, ∼1/γ [to be more precise,
1/(4γ )], is much shorter than the subsequent decay time of the
metastable state.

The probability, (100), has been obtained for the simplified
case γ l/c � 1, where PS is small. However, the simplification
has been chosen only for obtaining the explicit analytical
result. When γ l/c ∼ 1 one may expect this probability to
become appreciable (�1). But this situation requires a more
sophisticated analysis. Larger values of γ l/c (γ l/c � 1)
are not favorable for the formation of the dark state, as its
probability is reduced in accordance with (25).

VII. CONCLUSION

We have studied a system of two qubits (TLAs) coupled
to a 1D waveguide. We have described the time evolution of
the initial state of the system; this initial state corresponds to
a singly or doubly excited atomic subsystem in the absence
of waveguide photons. The evolution is rather complicated,
because the system possesses both dissipative (due to the
possibility of photons flying away from the atoms) and
dynamical (due to the coherent photon exchange between the
atoms) features.

Our first goal was to calculate the decay rates of metastable
(dark) states, which can be realized in a singly excited system
of two TLAs when the interatomic distance l takes special
(“resonant” or “antiresonant”) values. The decay of these
metastable states may be caused by deviations of the inter-
atomic distance from the special ones or by frequency detuning
(i.e., unequal frequencies of the transition of the two TLAs).
The corresponding decay rates for both decay mechanisms are
given by expressions (30) and (33), respectively. For a small
deviation or detuning, the decay rate of metastable states can
be much lower than the usual decay rate � = 2γ of a single
excited TLA.

Our second goal was to answer the question whether the
doubly excited state |�(2)

in 〉 of two identical TLAs can evolve
to one of the metastable configurations. We have found that
for an arbitrary distance l between the atoms, the atomic
subsystem excitation decays rapidly (with a decay rate on
the scale of �) to the ground state with the emission of two
photons. However, when l coincides with one of the special
positions, the system decays rapidly (with the emission of

a single photon) to a superposition of a bright and a dark
(metastable) state of type |�(1)

in 〉. The bright component of
this superposition decays rapidly to the ground atomic state
with the second photon emitted, while the dark state remains
stable (for ideal resonance conditions) or decays slowly in
accordance with the results of the previous point. Remarkably,
the probability of the formation of the dark metastable state is
finite even for well-separated TLAs. For the case �l/c � 1,
we have been able to find an explicit expression, (100), for
this probability. In the considered limit this probability is
low [�l/(2c)]2 but increases quadratically with an increase
in l as long as �l/c � 1. Larger values of �l/c (�l/c � 1)
are not favorable for the formation of the dark state, as its
probability is reduced in accordance with (25). Thus, the most
favorable condition for observation of metastable dark states
formed upon the decay of the doubly excited two-TLA system
corresponds to the parameter values �l/c1.

There are several reasons for interest in the metastable states
of the two qubits. An academic one is due to the somewhat
counterintuitive stability of some excited states of an open
multiparticle system. On the other hand, such metastable states
of pairs of qubits may find application as memory storage
elements in information processing. They can be used also
as detectors sensitive to external perturbations, e.g., to those
which cause a detuning of the TLA frequencies and thus
initiate the decay of the metastable state.

As mentioned in Sec. I, a system of qubits talking through
a 1D waveguide can be realized not only with resonant atoms
interacting with optical waveguide photons but also with
quantum dots connected through a plasmon-carrying wire,
Josephson junctions, etc. One of the challenging experimental
problems connected with realizations of such systems remains
the suppression of parasitic emission of photons to the
surrounding space. When the rate of these losses becomes
lower than the single-atom decay rate due to the emission of
waveguide photons, the effects studied in the present paper
may become observable.

Finally, we note that the formalism used in this paper is
based on the direct solution of equations for amplitudes of
quantum states, without the approximate exclusion of the
photon degrees of freedom in favor of the reduced density
matrix of the atomic subsystem. Therefore the explored
formalism allows one to describe also correlation functions
of emitted photons (entanglement, etc.).
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