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We consider a system subject to a quantum optical master equation at finite temperature and study a class
of conditional dynamics obtained by monitoring its totally or partially purified environment. More specifically,
drawing from the notion that the thermal state of the environment may be regarded as the local state of a
lossy and noisy two-mode squeezed state, we consider conditional dynamics (“unravellings”) resulting from the
homodyne detection of the two modes of such a state. Thus, we identify a class of unravellings parametrized
by the loss rate suffered by the environmental two-mode state, which interpolate between direct detection of
the environmental mode alone (occurring for total loss, whereby no correlation between the two environmental
modes is left) and full access to the purification of the bath (occurring when no loss is acting and the two-mode
state of the environment is pure). We hence show that, while direct detection of the bath is not able to reach the
maximal steady-state squeezing allowed by general-dyne unravellings, such optimal values can be obtained when
a fully purified bath is accessible. More generally we show that, within our framework, any degree of access
to the bath purification improves the performance of filtering protocols in terms of achievable squeezing and
entanglement.
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I. MOTIVATION AND SUMMARY

A thorough understanding of the possibilities offered by
conditional quantum dynamics, as well as a classification
of the measurements that enact them, are paramount to the
design of protocols for the coherent control of open quantum
systems. Over the last thirty years, much progress has been
made toward a comprehensive description of the quantum
filtering of systems described by continuous, canonical degrees
of freedom [1–12]. In particular, a very general theoretical
framework has been identified encompassing all diffusive
conditional dynamics on such systems, that is, all conditional
dynamics that can be described by multivariate quantum
Wiener processes [13–15]. Such dynamics are conditioned
by continuous general-dyne detections of the environment.
General-dyne detection schemes form a class that can be
implemented by adding ancillary modes in a Gaussian state,
applying a Gaussian unitary transformation on the dilated
system, and then performing any possible homodyne detection
on it [15,16]. They are hence experimentally viable and include
the well-known homodyne and heterodyne detection schemes.
Let us remind the reader that, in the quantum optical literature,
the term “homodyne detection” refers to the projective mea-
surement on the eigenbasis of a canonical degree of freedom,
such as the spectral measurement associated to the position or
momentum operators x̂ or p̂.

For systems with quadratic (in x̂ and p̂) Hamiltonians
and linear couplings to the environment, filtering through
general-dyne detection preserves the Gaussian character of
the system’s state, and allows for the analytical treatment and
optimization of several figures of merit, including squeezing
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and quantum correlations (if quantified by a measure that is
computable on Gaussian states, such as the logarithmic neg-
ativity [17,18]). It is particularly interesting to optimize such
quantities at steady state, in that in such a regime the filtering
operation implies the added advantage of stabilizing the state
of the open quantum system in the face of noise [19–23].

In [23], the optimization of squeezing—as well as the
closely related one of entanglement in terms of logarithmic
negativity—was addressed for a quantum optical master
equation at finite temperature. There, it was shown that
a higher temperature of the bath would in principle lead
to higher steady-state squeezing under the optimal general-
dyne filtering. This result was in part befuddling in that,
although higher temperature does mean more energy available
to achieve higher squeezing, there were strong heuristic
reasons to believe the monitoring of the environment would
not be able to take advantage of an incoherent resource,
such as thermal noise, to increase a coherent one, such as
squeezing along a given phase-space direction. In particular
those results, although concerned with finite temperatures,
seemed somewhat at odds with the well-known no-go
theorem of [6], establishing that homodyne filtering of a
zero-temperature bath would not allow one to generate any
squeezing.

In this paper, we reconsider conditional dynamics resulting
from monitoring a bath whose unconditional effect on the
system is described by a quantum optical master equation. We
define a class of such dynamics that correspond to different
incarnations of the monitored bath. At one end [see Fig. 1(a)],
one has the continuous homodyne detection of a single-mode
bath in a mixed thermal state, leading at steady state to a
thermal state with the same temperature as the environment.
At the other end [Fig. 1(b)], one has a bath comprising a
thermal mode interacting with the system as well as a second
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FIG. 1. (Color online) Depiction of the configurations consid-
ered in the paper. Figure 1(a) describes the case of total loss
(γ = 0), where only the environmental mode interacting with the
system, initially in a thermal state, is measured after the interaction.
Figure 1(b) describes the cases with purified or partially purified
environment (γ > 0), where one measures both the environmental
mode interacting with the system and an additional mode entangled
with it (in the case γ = 1 the two modes are in a global pure state).
Access to a purification of the environment allows for larger degrees
of asymptotic squeezing.

mode that purifies the whole environment, and a filtering based
on measuring both modes. In between, one has partial degrees
of purification of the bath, parametrized by a nominal loss rate.

We will hence shed light on the apparent inconsistency that
higher temperature leads to higher squeezing under the optimal
monitoring, by showing that the latter requires the access to
a purification of the bath (a global pure state that subsumes
the bath thermal state as a local state). More generally, by
considering a two-mode bath state resulting from sending
the purification above through a lossy channel (with fixed
local single-mode states), we will show that any degree of
access to a purification of the bath is capable of improving
the performance of filtering processes in terms of asymptotic
squeezing. Specifically, the conditional dynamics leads to
the maximum amount of steady-state squeezing allowed by
general-dyne detections only through access to the complete
purification (i.e., in the case of zero loss). We will also show
that a given level of purification of the bath (i.e., a loss below
a certain threshold) is needed in order to observe quantum
squeezing for a fixed value of the thermal excitations number.

Notice that our findings may be viewed as a case of en-
tanglement assistance, in the sense that a higher entanglement
in the environment modes allows one to improve interesting
figures of merit. Going beyond the system-bath paradigm,
our results are hence relevant to systems where several
controlled degrees of freedom coexist in various entangled
configurations, such as optomechanical setups where light
modes interact with coupled mechanical oscillators [24,25].

II. THERMAL MASTER EQUATION
AND STOCHASTIC UNRAVELLINGS

We consider here a quantum harmonic oscillator described
by bosonic operators [c,c†] = 1, interacting with a nonzero
temperature bath with an average thermal photon number N .
The corresponding time evolution is described by the Lindblad

master equation [1]:

d� = Lth� dt

= (N + 1)D[c]� dt + ND[c†]� dt, (1)

where D[A]� = A�A† − (A†A� + �A†A)/2. We assume
continuous monitoring of the environment on time scales
which are much shorter than the typical system’s response
time, by means of weak measurements. These positive-
operator valued measures (POVMs) are usually referred
to as “general-dyne detections” [1,4] and encompass both
homodyne and heterodyne detection on the bath degrees of
freedom. The evolution of the conditional state is described
by a stochastic master equation (SME) which is univocally
determined by the POVM describing the continuous monitor-
ing. If the measurement outcomes are not recorded, one has
to average over all the possible conditional states obtaining
an evolution described by the original master equation [in our
case, Eq. (1)]. For this reason each SME is referred to as an
“unravelling” of the Lindblad master equation [1,26,27].

Here, we shall define a class of unravellings of the thermal
master equation able to interpolate between two extremal
cases. At one extremum, one recovers the SME corresponding
to continuous homodyne detection of the bath in a mixed
thermal state, leading at steady state to a thermal state with the
same temperature as the environment. At the other extremum,
one obtains an unravelling based on accessing and measuring
both the environmental mode that interacts with the system
and the mode that purifies the latter.

III. GENERIC STOCHASTIC UNRAVELLING
OF THE THERMAL MASTER EQUATION

The master equation (1) can be obtained by considering a
harmonic oscillator interacting by a beam splitting interaction
with a bath mode in a thermal state at nonzero temperature,
with N thermal photons on average. Equivalently, one can
consider this bath mode being part of a two-mode bath,
which is in a pure two-mode squeezed vacuum state with N

average photons in each mode. If we trace out the bath mode
noninteracting with the system, we indeed have a thermal state,
and if no information is extracted from the bath the evolution
is described by the master equation introduced before. For
Gaussian states, all the properties we are interested in are de-
termined by the covariance matrix, whose elements are defined
as σjk = 〈r̂j r̂k + r̂k r̂j 〉 − 2〈r̂j 〉〈r̂k〉, where 〈Â〉 = Tr[�Â] and
r̂ = (x̂1,p̂1, . . . ,x̂m,p̂m)T is the vector of quadrature operators
for m oscillators. In the case of a two-mode squeezed vacuum
state, the covariance matrix reads

σ TMS =
(

(2N + 1)12 2
√

N (N + 1)σz

2
√

N (N + 1)σz (2N + 1)12

)
, (2)

where 12 is the two-dimensional identity matrix and σz is the
Pauli z matrix. One can also consider the intermediate case
where the bath is described by a two-mode state having a
covariance matrix

σ γ = γσ TMS + (1 − γ )σ Th ⊕ σ Th

=
(

(2N + 1)12 2γ
√

N (N + 1)σz

2γ
√

N (N + 1)σz (2N + 1)12

)
, (3)
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where σ Th = (2N + 1)12 represents the covariance matrix of
a single-mode thermal state. For any value 0 � γ � 1, the
passive interaction between one mode of the bath with the
system under exam leads to the thermal master equation (1).
We notice that Eq. (3) can be interpreted as the evolution
of a two-mode squeezed state in a thermal environment. The
parameter γ gradually kills the correlations between the two
modes of the environment, ranging from a pure maximally
correlated state for γ = 1 to two uncorrelated single-mode
states for γ = 0. Clearly, in the latter case measurements on
the second mode of the bath will not carry any information
about the system (which only interacts with the first mode).

Following this picture, and exploiting the features of the
two-mode bath, we will look for measurement schemes able
to interpolate between the two extreme cases described in the
previous section.

Let us consider at time t the quantum state R(t) = �(t) ⊗
μ(t), where �(t) and μ(t) represent, respectively, the state of
the system and of the (two-mode) bath. In order to describe the
effect due to a continuous measurement of the bath, we will
follow the procedure used in [28]. We start by transforming
the bath state into a Wigner probability distribution obtaining
the operator (in the system Hilbert space)

W̃ (t) =
∫

d2λ1d
2λ2

π4

× TrB[R(t) e{λ1(a†−α∗)−λ∗
1(a−α)+λ2(b†−β∗)−λ∗

2(b−β)}]

= W
(2)
t (α,β)�(t), (4)

where we denoted the Wigner function of a two-mode state
having the covariance matrix (3) as

W
(2)
t (α,β) = 4

π2f (N,γ )
exp{−2(2N + 1)(|α|2 + |β|2)

+ 8γ
√

N (N + 1)(αRβR − αIβI )}, (5)

with

f (N,γ ) = √
det[σ γ ] = 1 + 4N (N + 1)(1 − γ 2).

Above in Eq. (4) we have introduced the bosonic operators
a = √

dte1(t) and b = √
dte2(t), satisfying the commutation

relations [a,a†] = [b,b†] = 1, while the operators ej , which
describe the (two-mode) reservoir with infinite bandwidth,
satisfy [ej (t),ek(t ′)] = δ(t − t ′)δjk .

After an infinitesimal time dt the system and the bath evolve
according to the interaction Hamiltonian HSB = −i[e1(t)†c −
c†e1(t)], such that

R(t + dt) = R(t) + dt[e1(t)†c−c†e1(t),R(t)]+O(dt2) (6)

= R(t) +
√

dt[a†c − c†a,R(t)] + O(dt), (7)

which in the Wigner function picture reads

W̃ (t + dt) = W̃ (t) +
√

dt

[(
α∗ − 1

2
∂α

)
cW̃ (t)

−
(

α + 1

2
∂α∗

)
c†W̃ (t) −

(
α∗ + 1

2
∂α

)
W̃ (t)c

+
(

α − 1

2
∂α∗

)
W̃ (t)c†

]
+ O(dt). (8)

We now consider the simultaneous measurement of the quadra-
tures q̂A = a + a† and q̂B = b + b†, corresponding to the two
different modes characterizing the bath. Notice that a more
general Gaussian measurement might be considered, such as
the general-dyne measurement of the operators a + ϒaa

† and
b + ϒbb

†, with −1 � ϒa,b � 1 (see, e.g., [16]). However, in
this case simple homodyne measurements will prove apt to get
the results desired. The (un-normalized) conditional state of
the system can be obtained through the equation

W̃c(t + dt) =
∫

d2αd2βW̃ (t + dt)δ(2αR − qA)δ(2βR − qB).

(9)

By performing the derivatives and the integrals one obtains

W̃c(t + dt) = p(qA,qB ; t)

{
�(t) + {h1(N,γ )(N + 1)[c�(t)

+ �(t)c†] + h2(N,γ )N [c†�(t) + �(t)c]}

×
√

dt qA

f (N,γ )
− γ

√
N (N + 1)[c�(t) + �(t)c†

+ c†�(t) + �(t)c]

√
dt qB

f (N,γ )

}
+ O(dt), (10)

where the probability of measuring qA and qB at time t

p(qA,qB ; t) is a two-variable Gaussian distribution centered
in zero and having a covariance matrix:

C =
(

2N + 1 2γ
√

N (N + 1)
2γ

√
N (N + 1) 2N + 1

)
, (11)

and we have defined the functions

h1(N,γ ) = 1 + 2N (1 − γ 2), (12)

h2(N,γ ) = 2γ 2 − 1 + 2N (γ 2 − 1). (13)

Consequently the probability of measuring qA and qB at time
t + dt can be calculated, obtaining

p(qA,qB ; t + dt) = Trs[W̃c(t + dt)] (14)

= p(qA,qB ; t)

{
1 + 2N + 1

f (N,γ )
〈c + c†〉

√
dtqA

− 2

√
N (N + 1)

f (N,γ )
〈c + c†〉

√
dtqB

}
+O(dt). (15)

We can thus write the two quadratures of the bath as Gaussian
random variables satisfying

√
dt qA = 〈c + c†〉dt + dwA, (16)

√
dt qB = dwB, (17)

where we defined the correlated Wiener increments such that(
dw2

A dwAdwB

dwAdwB dw2
B

)
= C dt, (18)
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with the covariance matrix C defined in Eq. (11). Hence the
normalized conditional state can be written as

�c(t + dt) = W̃c(t + dt)

p(qA,qB ; t + dt)
(19)

=
{

1 + H[h1(N,γ )(N + 1)c + h2(N,γ )Nc†]

×
√

dt qA

f (N,γ )
− γH[

√
N (N + 1)(c + c†)]

×
√

dt qB

f (N,γ )

}
�(t) + O(dt), (20)

where H[A]� = A� + �A† − Tr[(A + A†)�]�. Substituting
qA and qB by using Eqs. (16) and (17) one obtains the stochastic
master equation (SME) corresponding to this measurement
scheme:

d�c(t + dt) = �c(t + dt) − �c(t)

= H[h1(N,γ )(N + 1)c + h2(N,γ )Nc†]�c(t)

× dwA

f (N,γ )
− H[γ

√
N (N + 1)(c + c†)]�c(t)

× dwB

f (N,γ )
+ O(dt). (21)

We remark that, as the average of all the terms we have
explicitly derived is zero, the O(dt) term must equal the
right-hand side of Eq. (1). One can now recast the obtained
SME (21) in terms of uncorrelated Wiener increments:(

dw̃A

dw̃B

)
= M−1

(
dwA

dwB

)
, (22)

where the matrix

M =
(

m+(N,γ ) m−(N,γ )
m−(N,γ ) m+(N,γ )

)
, (23)

with

m±(N,γ ) =
√

1 + 2N ± √
f (N,γ )

2
, (24)

is such that C = MMT , and, as said above,(
dw̃2

A dw̃Adw̃B

dw̃Adw̃B dw̃2
B

)
= 1 dt. (25)

By substituting the previous Wiener increments with the new
ones, we finally obtain

d�c(t + dt)= m+(N,γ )

f (N,γ )
H[h1(N,γ )(N + 1)c+h2(N,γ )Nc†]

×�c(t)dw̃A − m−(N,γ )

f (N,γ )
H[γ

√
N (N + 1)

×(c + c†)]�c(t)dw̃A + m−(N,γ )

f (N,γ )
H[h1(N,γ )

×(N + 1)c + h2(N,γ )Nc†]�c(t)dw̃B

− m+(N,γ )

f (N,γ )
H[γ

√
N (N+1)(c+c†)]�c(t)dw̃B

+O(dt). (26)

If we set γ = 0, that is, by considering that the bath is in
an uncorrelated thermal state, the monitoring of the ancillary
mode b cannot influence the system’s evolution, and the
corresponding SME reads

d�c(t) = H[(N + 1)c − Nc†]�c(t)
dw̃A√

(1 + 2N )
+ O(dt),

(27)

which is the well-known unravelling due to continuous
homodyne detection on the mixed thermal bath [1,16,28]. On
the other hand for γ = 1, that is, when the two-mode bath is
in a maximally entangled two-mode squeezed vacuum state,
we have

d�c(t + dt) = √
N + 1 H[c]�(t) dw̃A +

−
√

N H[c†]�(t) dw̃B + O(dt). (28)

This indeed corresponds to the optimal unravelling proposed
in [23], achieving at steady state the maximum amount of
squeezing in the quadrature X̂ = c + c†. Such squeezing
saturates the inequality

Vx ≡ 〈X̂2〉 − 〈X̂〉2 � 1

2N + 1
, (29)

which holds at steady state for all unravellings of Eq. (1). Note
that, here, we refer to maximum achievable squeezing as to
the minimum variance of a quadrature operator.

IV. ANALYSIS OF THE PURIFIED STOCHASTIC
UNRAVELLINGS

To fully understand the properties of the general SME (26)
in terms of the free parameter γ , let us now study the behavior
of the indirectly monitored quadrature X̂, studying in particular
its variance at steady state. We recall that in the presence of
the master equation (1) the evolutions of the average value 〈X̂〉
and its variance Vx = 〈X̂2〉 − 〈X̂〉2 read

d〈X̂〉 = −〈X̂〉
2

dt, (30)

dVx = (2N + 1 − Vx)dt. (31)

If we rather consider the SME (26), by using the formulas

Tr[H[c]�(c + c†)] = Vx − 1, (32)

Tr[H[c†]�(c + c†)] = Vx + 1, (33)

we obtain

d〈X〉 = −〈X〉
2

dt + [A1(N,γ )Vx + A2(N,γ )] dw̃A

+ [B1(N,γ )Vx + B2(N,γ )] dw̃B, (34)
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where

A1(N,γ ) = m+(N,γ )[(N + 1)h1(N,γ ) + Nh2(N,γ )] − 2γm−(N,γ )
√

N (N + 1)

f (N,γ )

A2(N,γ ) = m+(N,γ )[(N + 1)h1(N,γ ) − Nh2(N,γ )]

f (N,γ )

B1(N,γ ) = m−(N,γ )[(N + 1)h1(N,γ ) + Nh2(N,γ )] − 2γm+(N,γ )
√

N (N + 1)

f (N,γ )

B2(N,γ ) = m−(N,γ )[(N + 1)h1(N,γ ) − Nh2(N,γ )]

f (N,γ )
.

Consequently, by considering an input Gaussian state and by
using Ito calculus, the evolution equation for the variance reads

dVx = d〈X2〉 − 2〈X〉d〈X〉 − (d〈X〉)2 (35)

= {2N + 1 − Vx − [A1(N,γ )Vx + A2(N,γ )]2 +
− [B1(N,γ )Vx + B2(N,γ )]2}dt. (36)

Notice that for Gaussian states the stochastic master
equation (26) gives a deterministic evolution of the second
moments [14], and no Wiener increments are present in the
corresponding equation. By posing the steady-state condition
dVx/dt = 0, we obtain as the only physical solution

V (SS)
x = 2N + 1 − γ 2 4N (N + 1)

2N + 1
. (37)

As expected, varying the parameter γ , V (SS)
x decreases

monotonically from the thermal variance Vx = 2N + 1 to the
optimal squeezed variance Vx = 1/(2N + 1), which saturates
the bound derived in [23] (notice that it must be optimal, as a
diagonal entry of a matrix must be larger than or equal to the
smallest eigenvalue). Moreover we observe that, in order to
obtain quantum squeezing, i.e., quadrature fluctuations below
the vacuum level, one needs a value of γ above the threshold:

γ > γth(N ) =
√

2N + 1

2(N + 1)
. (38)

0 1 2 3 4 5
N

0.6

0.7

0.8

0.9

1.0
γ th

FIG. 2. (Color online) Threshold value for the purification pa-
rameter γth(N ) needed to observe quantum squeezing, as a function
of the number of thermal excitations N .

As one can observe from Fig. 2, γth(N ) has as a minimum
value γ = 1/

√
2 and is an increasing function of the number of

thermal excitations N , showing how a less noisy purification
of the bath is needed at higher temperatures. If we rather fix
the value of γ , we find that for γ < 1/

√
2 the variance Vx is

an increasing function of the number of thermal excitations N ,
such that the minimum value achievable is Vx,min = 1 and, as
mentioned above, no squeezing can be obtained. On the other
hand for a larger loss factor, γ > 1/

√
2, a minimum in the

variance is observed for a certain N = Nopt: Such an optimal
(minimum) value of the achievable variance reads

Vx,min = 2γ
√

1 − γ 2. (39)

Its behavior is reported in Fig. 3, where we observe that
it decreases monotonically to zero with γ . Analogously,
in the inset we plot the behavior of Nopt, which increases
monotonically to infinity as γ tends to one.

The same procedure can be used in order to derive
the evolution equation for the variance of the conjugated
quadrature Vp and for the covariance Vxp. One then obtains
the steady-state values V (SS)

p = 2N + 1, and V (SS)
xp = 0 for all

values of γ , which correspond to the case without continuous
measurement. We can calculate the purity μ(SS) = Tr�(SS)2 of
the steady-state Gaussian state �(SS), obtaining

μ(SS) = 1√
1 + 4N (N + 1)(1 − γ 2)

, (40)

0.75 0.80 0.85 0.90 0.95 1.00
γ

0.2

0.4

0.6

0.8

1.0

Vx,min

0.8 0.9 1.
γ

0.5

1.0

1.5

2.0

Nopt

FIG. 3. (Color online) Minimum variance Vx,min achievable for a
fixed value of the purification parameter γ . Inset: Optimal value of
the thermal excitations number Nopt minimizing the variance Vx for
a given value of γ .
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which is equal to one only for N = 0 (∀γ ) or γ = 1 (∀N ).
Let us briefly remind the reader that the purity of a single-
mode Gaussian state � with covariance matrix σ is given by
μ = 1/

√
Detσ .

The derived SME is able now to shed light on the counterin-
tuitive claim that higher temperature of the bath can in principle
lead to a larger amount of squeezing at steady state. It is now
clear that, in order to achieve the aforementioned bound, one
needs to be able to access and monitor the purification of the
bath (in this case, the two-mode squeezed vacuum state). In
particular, in order to obtain a steady-state variance smaller
than the thermal one, Vx = 2N + 1, one needs a value of
γ > 0, that is, one needs to access information on the ancillary
bath mode, while an even larger value γ > γth(N ) is needed
in order to observe quantum squeezing.

V. CONCLUSIONS

Our study emphasizes that, when the environment is in
a thermal state at nonzero temperature, the class of the
possible unravellings comprises the possibility to monitor
a (complete or partial) purification of the environment. In
particular the maximal asymptotic squeezing allowed by
general-dyne detection is only achievable when a complete
purification is accessible. As is immediately clear from
the treatment of [23], the same argument applies to the

asymptotic Gaussian entanglement. More generally, any level
of purification will help with respect to what is allowed by
accessing the mode interacting with the system alone (which,
in the absence of interactions for the system, does not allow
for any squeezing at all, in line with what was already known
at zero temperature [6]). Furthermore, a threshold value on
the purification parameter is derived such that, at a given
temperature, quantum squeezing of the bath can be observed
only for γ > γth(N ).

Our results shed considerable light on the control possibil-
ities allowed by quantum filtering through Gaussian measure-
ments. Particularly they put forward the idea of entanglement
assisted feedback control and they might be also of interest to
systems where a few canonical degrees of freedom are under
control, several of which can be simultaneously monitored.
This could be the case, for instance, in quantum optomechanics
where the interactions of several light and mechanical modes
can in principle be brought under control.
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