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Analytical model for polarization-dependent light propagation in waveguide arrays and applications
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We study the polarization properties of elliptical femtosecond-laser-written waveguide arrays. An analytical
model is presented to explain the asymmetry of the spatial transverse profiles of linearly polarized modes in
these waveguides. This asymmetry produces a polarization-dependent coupling coefficient, between adjacent
waveguides, which strongly affects the propagation of light in a lattice. Our analysis explains how this effect can
be exploited to tune the final intensity distribution of light propagated through the array and links the properties
of a polarizing beam splitter in integrated optical circuits to the geometry of the waveguides.
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I. INTRODUCTION

Integrated photonics is a very promising area of research
for both classical and quantum phenomena due to highly
controllable techniques for fabricating waveguide arrays [1,2].
The study of linearly polarized (LP) modes of the electromag-
netic field in waveguides has mainly been addressed with the
weakly guiding approach [3,4]. This model assumes that the
refractive indices of core and cladding are nearly identical,
simplifying the analysis by replacing the modes’ vectorial
equation with a scalar equation. This leads to a degener-
acy of both fundamental modes polarized along horizontal
(H ) and vertical (V ) directions [4]. Thereby, information
related to the effect of polarization on the spatial transverse
mode profiles is not considered. Nevertheless, differences
between both LP modes are not negligible [5]. In order
to describe this phenomenon, a correction must be added
to the solution of the scalar equation. By considering the
difference between dielectric constants for the core and the
cladding as a perturbative parameter, a first-order correction
was formally proposed in Ref. [6]. However, this approach
does not properly predict the characteristic shape of each LP
modal profile observed in Ref. [5]. An important application
of photonic lattices is the analysis of the impact of disorder
on light propagation, as they offer an ideal physical system
to study the interplay of disorder and periodicity by means
of simple tabletop experiments. In fact, the first experimental
demonstration of Anderson localization was performed using
optical lattices [7,8]. Disordered lattices exhibit a wealth of
transport phenomena, such as disorder-induced edge states [9],
disorder-enhanced transport [10,11], and the interplay between
nonlinearity and disorder [12].

Here, we present an approach for modeling the polarization
dependence of electric field profiles of the tranverse modes
in elliptical waveguide arrays and, consequently, of coupling
constants between neighboring waveguides. Furthermore, we
study the interplay between this latter effect and the inclusion
of disorder. We experimentally corroborate our findings with

femtosecond-laser-written elliptical waveguide arrays in silica
substrates [13] with off-diagonal disorder by controlling the
input polarization of an initially very localized excitation. By
varying the initial polarization vector we are able to tune
the localization volume of the light propagated through the
array. Finally, our model can be applied to design polarizing
beam splitters (PBS) in integrated photonic circuits. In a
PBS, the coupling coefficients define the transmittance for
different polarizations. The model links these transmittances
to the geometrical properties of the waveguides. This result
has multiple applications in the area of quantum information
since a PBS corresponds to a CNOT gate [14,15].

II. POLARIZATION DEPENDENCE OF SPATIAL
MODE PROFILES

The simplest approximation to the LP modes is obtained
with the equation

{∇2
t + [k2n2(x,y) − β2]

}
e(x,y) = 0, (1)

where e(x,y) is a linearly polarized electric field with its
corresponding propagation constant β, ∇2

t is the transversal
Laplacian operator, and k = 2π/λ is the wave number. n(x,y)
is the refractive index, which we consider to have a specific
value for the core and the cladding. We solve the scalar
equation by using a finite-element method and label the
solution as the zero-order approximation ẽ for both, H and V ,
fundamental modes [16]. Then, from Maxwell equations the
longitudinal magnetic component related to the approximated
field ẽ is obtained:

hz = −i

√
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1050-2947/2014/90(6)/063823(5) 063823-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.90.063823


S. ROJAS-ROJAS et al. PHYSICAL REVIEW A 90, 063823 (2014)

18 20 22 24 26 28
0.0

0.5

1.0

1.5

Separation µm

C
ou

pl
in

g
co

ns
ta

nt
cm

1

y [µm]

x [µm]

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

FIG. 1. (Color online) The coupling constant between two adja-
cent waveguides is shown for H (V ) polarization by a blue thick
(orange thin) line. We also show in the insets the amplitudes of the
electric field for the obtained modes, which were used to compute
the coupling constants, and the corresponding contours for the LP
modes. The black dashed line represents the contour of the modal
profile of the zero-order solution ẽ of the scalar equation. The grey
region is the transverse section of the waveguide core.

with the waveguide parameter v defined by kρ
√

n2
core − n2

cladd
and � being the relative difference between the dielectric
constants in the core and the cladding: (n2

core − n2
cladd)/2n2

core.
ρ must be a scale length characteristic of the waveguide, so we
set it as the mean radius of the tranverse section. The notation
h

(1/2)
z is used to denote the whole factor that goes along with

�1/2. The curl in the definition of hz has a clearly different
effect on each polarization. By using Maxwell equations
again, and assuming that the fields are transverse electric,
we obtain a transverse correction of order �, proportional
to ẑ × ∇hz, which also depends on polarization. Thereby, we
obtain a different profile for each mode eH and eV . The shape
of the transverse electric field profile for each LP mode is
shown in the insets of Fig. 1, where we have taken x (y) as
the direction of H (V ) polarization (the relevant parameters
have been chosen to coincide with those of our experiment).
Clearly, each polarization mode has a characteristic and
different profile. In our model, propagating modes of elliptical
waveguides are hybrid, as they have both electric and magnetic
components [17,18].

We are interested in the propagation of light on an array
of waveguides along the x direction. We resort to the coupled
mode theory, where light couples between nearby waveguides
at a rate given by the coupling constant [6]

C = − k

2ncore

∫
dxdy[n(x,y) − ncore]e(x,y)e(x − s,y)∫

dxdy e(x,y)2
, (3)

where e is the transversal electric field corresponding to a
normal mode (either eH or eV ). n(x,y) represents the refractive
index pattern, with the corresponding core and cladding

structure. s corresponds to the separation between neighbor
waveguides. Here, only nearest-neighbor coupling is consid-
ered. From this definition, and our previous results for the
polarization-dependent modal profiles, we obtain two different
coupling constants, CH and CV , for each polarization. Figure 1
shows the value of these constants as a function of the distance
between two neighboring waveguides. In this figure, we
observe clearly how different polarizations experience dif-
ferent coupling coefficients, this being a stronger (weaker)
effect for smaller (larger) separation distances. By extending
the coupled mode approach to an array of waveguides [19],
we arrive at the set of equations that governs the evolution of
the light amplitude un(z), along the propagation direction z, at
the nth guide of the array:

−i
d

dz
uσ

n (z) = Cσ
n,n+1un+1(z) + Cσ

n,n−1un−1(z), (4)

for σ = H,V . The field in each site is given by un(z) · e(x −
xn,y), where xn corresponds to the central position at the nth
site. Cσ

n,n′ is the coupling constant between sites n and n′, for
polarization σ .

III. EXPERIMENTAL RESULTS

First, we study experimentally the propagation of light in
an ordered elliptical waveguide array fabricated in fused silica
by the femtosecond-laser-writing technique [13]. The array
consists of 71 equally spaced waveguides, with a separation of
23 μm and a total propagation length of 10 cm. The waveguides
have an elliptic profile with a major and a minor axis of 12 and
4 μm, respectively. We excite the array by focusing a 637-nm
CW laser beam into a single waveguide (single-site excitation),
and record the output intensity with a CCD camera (see Fig. 2).
As expected, discrete diffraction [2,19] is observed for both H

637 nm
laser

f=1”
lens

HWP

polarizer
mirr. 1

mirr. 2WG
arrays

10x obj.
lens

CCD
camera

(a)

(b)

FIG. 2. (Color online) Experimental setup. (a) A laser beam, with
defined polarization, is focused into a sample with several waveguide
arrays. The output profile is imaged with a 10× objective onto a CCD
camera. (b) Microscope image of the waveguide’s facet for an ordered
(top) and a disordered (bottom) lattice, illuminated with a wide beam
of white light.
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FIG. 3. (Color online) (a) Output profile obtained for an ordered
array: solid areas correspond to experimental data, while black lines
correspond to the theoretical results of Eq. (4). (b) Average output
localization volume versus disorder strength: lines correspond to
theory and squares to the experimental data. Dashed lines (bars)
show the standard deviation of the theoretical (experimental) results
at each point. Blue (top set of data, thick line) [orange (bottom set of
data, thin line)] corresponds to H (V ) polarization.

and V polarizations [see Fig. 3(a)]. If the input waveguide is
n = 0, the field amplitude in each waveguide, at propagation
distance z, can be expressed as [19] uσ

n (z) ∝ inJn(2Cσz),
where Jn is the nth order Bessel function. We experimentally
measure the output profile at zf = 10 cm and determine Cσ . In
order to compare our simulations with the experimental results,
we assume a Gaussian distribution in every waveguide output.
In this way, we get a continuous field distribution, Uσ (x,zf ).
We find the coupling constant to be (0.223 ± 0.001) cm−1 for
H polarization and (0.112 ± 0.001) cm−1 for V polarization,
in close agreement with the theoretical predictions (see curves
in Fig. 1 at separation 23 μm). So, we find a factor close to 2
between the determined coupling constants of both polariza-
tions. The errors of the constants are obtained by minimizing
the squared two-norm of the residuals between analytical and
experimental results. With the coupling constants values, we
estimate the contrast �n between the core and the cladding
refractive indices. We determine that our waveguides have a
refractive index contrast of �n = 9.37 × 10−4, which is in
agreement with the reported values in literature [2]. This value
was obtained under the assumption of a step-index profile. In
practice, waveguides exhibit a continuous but sharp profile,
being that our �n is a good approximation of the contrast
between the core center and the cladding.

We now consider a more complex case, where the coupling
constant depends on the polarization σ , as well as on the

particular pair of neighboring lattice sites, say n and n′. If
the value of the coupling constant Cσ

n,n′ is varied at random
across the array, this introduces disorder in the system. Exper-
imentally, this is achieved by randomly varying the separation
between each pair of waveguides during the fabrication of the
array, in the range s ± ε, where s is the mean separation and the
ε parameter is called the spacing disorder. We study the effect
of disorder on the propagation of a single-site initial excitation
of the form: uσ

n (0) = δn,n0 , with n0 being the input position.
First, we solve numerically the respective set of Eq. (4) up
to a distance of zf = 10 cm. For each degree of disorder,
we average the resulting profile by simulating 1000 different
realizations, i.e., different distributions of separations between
waveguides. To characterize the output profiles, we choose the
localization volume [20], defined as Vc ≡ (

√
12m2 + 1) [μm],

where m2 corresponds to the profile’s second moment,
given by

m2 ≡
∫

(x − x)2|Uσ (x,zf )|2dx∫ |Uσ (x,zf )|2dx
, (5)

with x ≡ ∫
x|U (x)|2dx. The parameter Vc provides an esti-

mation of the distance between the exponential tails of the
profile, and it can be computed directly from the numerical
and the experimental data. The theoretical results, presented
by solid lines in Fig. 3(b), show a decaying tendency of
the localization volume for an increasing degree of disorder,
for both polarizations. This agrees with the known result on
disordered lattices: an extinction of diffusion for an increasing
disorder [7,8,12]. The polarization effect is most prominent in
the ordered lattice due to the different spreading rates of the
ballistic lobes.

As said before, experimental disorder is introduced by
randomly varying the separation between waveguides. We
study a set of nine disordered waveguide arrays, where the
spacing between guides lies in the range 23 ± ε μm, with
ε = 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, and 6 μm [as an example, see
Fig. 2(b)]. Thus, we analyze the effect of weak, intermediate,
and strong disorder. Following the usual method (cf. Ref. [8]),
we used 40 different input waveguides in each array, in order
to have significant statistics. Symbols in Fig. 3(b) show the
experimentally averaged localization volume of the output
profiles. We observe how the initial large difference for Vc,
for the H and V polarized light, decrease due to Anderson
localization in disordered lattices. The exponential decay of
the output profiles far from the input position, characteristic
of this phenomenon, can be appreciated in Fig. 4. Diagrams
of Vc vs disorder exhibit very good agreement between theory
and the experimental results for both H and V polarization,
with a normalized squared Euclidian distance [21] of 0.006
and 0.009, respectively (null distance corresponds to perfect
match and 1 implies no correlation at all).

IV. TUNING THE LOCALIZATION VOLUME

The clear difference observed in the propagation of H

and V polarized beams suggests the possibility to control
the localization volume by tuning the initial polarization
vector. We illuminated a single waveguide in different samples
and varied the polarization angle from 0º(H ) to 90º(V ). On
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FIG. 4. (Color online) Experimental averaged output for H (blue
thick line) and V (orange thin line) polarized light. (a) Ordered
case. (b) Disorder parameter ε = 0.75 μ m. (c) ε = 3 μm. Notice
the exponential decay in both sides of the profile. (d) ε = 6 μm. In
these cases, the decay is more clear and similar for both polarizations.

average, we observe a smooth transition of the localization
volume for weak and intermediate disorder. See an example
in Fig. 5. For H polarized light (0º), the state corresponds to
the excitation of three separated waveguides, one at the input
position (center) and two waveguides three sites away from
the center [see top inset in Fig. 5]. As the polarization flips, a
smooth attenuation of the amplitude on these two surrounding
waveguides occurs, as light begins to keep focused around
the center. For example, for θ = 45º, additional excitation of
two sites next to the center guide is observed [see middle
inset in Fig. 5]. This intermediate state corresponds to a
linear combination of H and V states. For V polarization
(θ = 90º), the state corresponds to essentially three equally
excited neighboring waveguides centered at the input position
[see bottom inset in Fig. 5]. Therefore, we were able to tune
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FIG. 5. (Color online) Localization volume versus polarization
angle for ε = 2 μm. The solid black line describes the averaged
experimental results. The dashed line and insets show the data
obtained for one realization. The thick line shows the averaged
theoretical results.

the localization volume and observe a decrease to a half of the
initial distribution volume.

V. DESIGN OF A POLARIZING BEAM SPLITTER

In order to further test our model, we now consider a
system composed of only two waveguides, i.e., a linear dimer
coupler. In this case, when light is injected into a single
guide, the energy periodically transfers from one waveguide
to the other at a rate given by the coupling constant. That
is, the transmittance will depend on the coupling constant.
With the appropriate values of the coupling constants for
each linear polarization, H and V , it is possible that, after
a fixed propagation length, light with a certain polarization
will propagate in one waveguide and light with the opposite
polarization will propagate in the other waveguide (see Fig. 6).
This idea has been used in previous works to construct
PBS [22,23]. Now we show that with the treatment of Sec. II,
it is possible to find a suitable geometrical configuration of the
waveguides to obtain a PBS with high splitting ratio and an
interaction length in the order of milimeters.

To design a PBS we study the transmittance Tσ of light from
one waveguide to the other. This is a function of the coupling
constant Cσ and the interaction length L by the expression

Tσ = sin2(CσL), (6)

where σ = H and V . In setups where waveguides are brought
together adiabatically through a bending region, a phase term
must be added in the argument of the sine function. Complete
separation of the H and V components of a light beam is
achieved if the following condition is fullfilled:

CV

CH

= m

2n
, (7)

with m being odd and n being an integer. The corresponding
interaction length is then given by Lsplit = πn/CH . Thus, we
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FIG. 6. (Color online) (a) Two-waveguide configuration to pro-
duce a compact, balanced, and deterministic PBS. Density plots of
the transverse electric field profiles are shown. (b) Transmittance of
H (thick blue line) and V (thin orange line) polarized light.
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look for values of the coupling constants which minimize the
Lsplit. In general, the ratio CV /CH has to be approximated to
the rational expression Eq. (7) by an error term δ. From Eq. (6)
it can be seen that up to first order, this error term will propagate
linearly to transmittance. We impose that δ = 5 × 10−4 and
vary the ellipticity and separation between the waveguides. We
find that, with a separation between waveguides of 7 μm and
for semiaxes of 1.70 and 2.56 μm (see Fig. 6), a balanced PBS
can be fabricated with coupling constants CH = 1.8609 mm−1

and CV = 1.6754 mm−1, which lead to an interaction length
of only 8.4 mm. This is consistent with the results reported in
Refs. [22,23].

VI. CONCLUSION

We have presented a model to describe the effects of
polarization on the spatial modes of light propagating in arrays
of waveguides. These theoretical findings are in agreement
with our experimental results obtained using femtosecond-
written elliptical waveguide arrays. It was also possible to
determine the refractive index contrast between the core and
the cladding of the waveguides. The experimentally obtained
parameters were used to analyze the value of the localization
volume depending on the degree of disorder. Consistently,
the localization volume for a fixed disorder degree is smaller
for vertically polarized light, indicating that this type of
polarization produces a stronger localization, although this
effect tends to vanish, as expected, in the strong Anderson
localization regime. We used the dependence of the coupling
constant on the polarization to tune the localization volume.
A potential extension of this work is the study of two-

dimensional (2D) arrays. For 2D systems, we do not expect to
experimentally observe similar results. As a larger disorder is
required to observe localization in 2D lattices [12], the whole
picture will be scaled up and the different polarizations will
essentially show the same. The transition to localization in 1D
is more abrupt and, therefore, the different polarizations really
experience different dynamics.

Finally, our model, which provides a link between the
geometry of the waveguides, the polarization of light, and the
coupling constants, allowed us to find a feasible experimental
configuration to produce a compact and balanced PBS that is
useful for many quantum information tasks. We remark that
although currently there exist PBS cubes of about 5 mm3, there
are great advantages in the use of waveguides to implement
this device [24].
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