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We study numerically the spectrum of the non-Hermitian effective Hamiltonian that describes the dipolar
interaction of a gas of N � 1 atoms with the radiation field. We analyze the interplay between cooperative
effects and disorder for both scalar and vectorial radiation fields. We show that for dense gases, the resonance
width distribution follows, both in the scalar and vectorial cases, a power law P (�) ∼ �−4/3 that originates
from cooperative effects between more than two atoms. This power law is different from the P (�) ∼ �−1

behavior, which has been considered as a signature of Anderson localization of light in random systems.
We show that in dilute clouds, the center of the energy distribution is described by Wigner’s semicircle
law in the scalar and vectorial cases. For dense gases, this law is replaced in the vectorial case by the
Laplace distribution. Finally, we show that in the scalar case the degree of resonance overlap increases as
a power law of the system size for dilute gases, but decays exponentially with the system size for dense
clouds.
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I. INTRODUCTION

Photon localization in cold atomic gases shows up as an
overall decrease of photon escape rates from disordered media.
The different roles played by cooperative effects, such as
superradiance and subradiance [1,2], and disorder [3,4] in
d-dimensional atomic gases have been recently investigated
[5–7]. In two and three dimensions, by considering the photon
escape rate, it has been shown that photon localization, namely
the trapping of a photon inside the gas for long periods of
time, is primarily determined by cooperative effects rather
than disorder. Moreover, localization occurs as a smooth
crossover between delocalized and localized photons and not
as a disorder-driven phase transition as expected on the basis
of Anderson localization [5,7,8]. In one dimension, due to
cooperative effects and not disorder, the single-atom limit is
never reached and the photons are always localized in the gas
[6]. We note that these studies on photon escape rates have
considered the interaction of a scalar radiation field with the
atoms.

Photon escape rates from an atomic gas are determined by
the time evolution of the ground-state population associated
with the reduced atomic density operator of the gas. This time
evolution is governed by the spectrum of the imaginary part
of the effective Hamiltonian that describes the atomic system
[5]. Unlike previous studies mentioned above, in this paper we
investigate the eigenvalues of the total effective Hamiltonian.
It should be noted that for an ensemble of more than two
atoms, the imaginary parts of the eigenvalues (width of the
eigenstates) of the total effective Hamiltonian do not coincide
with the eigenvalues of the imaginary part of the effective
Hamiltonian. Furthermore, we consider the more realistic
case where the vectorial properties of the electromagnetic
wave are taken into account and compare the results to a
scalar description of the light-matter interaction. By a numeric
diagonalization of the non-Hermitian effective Hamiltonian,
we analyze the interplay between cooperative effects and

disorder in the vectorial case and compare the findings to
those of the scalar case. We will show that for dense gases,
the resonance width distribution, P (�), obeys, both in the
scalar and vectorial cases, a power law P (�) ∼ �−4/3 that
originates from cooperative effects between more than two
atoms. This power law is different from the known P (�) ∼
�−1 distribution, which is interpreted as an unambiguous
signature of Anderson localization of light in random systems
[9]. We will also show that in dilute clouds the center
of the energy distribution, P (E), is described by Wigner’s
semicircle law in the scalar and vectorial cases. For dense
gases, Wigner’s semicircle law is replaced in the vectorial
case by the Laplace distribution. In all cases, however, P (E)
is dominated by cooperative effects, i.e., it is determined by the
optical thickness of the sample and not by its spatial density.
Finally, we will define a scaling quantity very much in the spirit
of the scaling conductance g introduced originally by Thouless
[10]. The quantity g we consider, measures, for the effective
Hamiltonian, the degree of overlap between the modes. We will
show that in the scalar case the degree of resonance overlap
increases as a power law of the system size for dilute gases,
but decays exponentially with the system size for dense clouds.
In the vectorial case the degree of resonance overlap always
increases as a power law of the system size for both dilute and
dense gases. Those results could be interpreted as a hint for
the existence of a phase transition in the scalar case.

The paper is organized as follows: we start, in Sec. II,
by describing the model which consists of N � 1 identical
two-level atoms placed at random positions in an external
radiation field. Then, in Sec. III, the effective Hamiltonian
is introduced both in the scalar and vectorial cases, and in
Sec. IV its spectrum is considered in the complex plane.
Later, in Secs. V and VI, the distributions P (�) and P (E)
are investigated. The effect of cooperative states of more than
two atoms is studied in Sec. VII and the degree of resonance
overlap is investigated in Sec. VIII. Finally, the results are
discussed in Sec. IX.
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II. MODEL

Atoms are taken as degenerate, two-level systems denoted
by |g〉 = |Jg = 0,mg = 0〉 for the ground state and |e〉 =
|Je = 1,me = 0,±1〉 for the excited state, where J is the
quantum number of the total angular momentum and m is
its projection on a quantization axis, taken as the ẑ axis. The
energy separation between the two levels, including radiative
shift, is �ω0 and the natural width of the excited level is ��0.

We consider an ensemble of N � 1 identical atoms,
uniformly distributed at random positions ri in an external
radiation field. The corresponding Hamiltonian is H = H0 +
V , with

H0 = �ω0

N∑
i=1

1∑
me=−1

(|Jeme〉〈Jeme|)i +
∑
kε

�ωka
†
kεakε. (1)

The light-matter interaction term V , expressed in the electric
dipole approximation, is

V = −
N∑

i=1

di · E(ri), (2)

where E(r) is the electric-field operator at position r,

E(r) = i
∑
kε

√
�ωk

2ε0�
(akεε̂ke

ik·r − a
†
kεε̂

∗
ke

−ik·r), (3)

and di = eri is the electric dipole moment operator of the
ith atom. akε and a

†
kε are, respectively, the annihilation and

creation operators of a mode of the field of wave vector
k, polarization ε̂k, and angular frequency ωk = ck. � is a
quantization volume, ε0 is the vacuum dielectric constant, and
c is the light speed in vacuum.

We assume that the typical speed of the atoms is small
compared to �0/k but large compared to �k/μ where μ

is the mass of the atom, so that it is possible to neglect
the Doppler shift and recoil effects. In addition, retardation
effects are neglected; thus each atom can influence the others
instantaneously.

III. EFFECTIVE HAMILTONIAN

When tracing over the radiation degrees of freedom of the
Hamiltonian H , the following non-Hermitian Hamiltonian is
obtained for the case of a single excitation [5,11]:

Heff =
(

�ω0 − i�
�0

2

) N∑
i=1

(|e〉〈e|)i + �
�0

2

∑
i �=j

Vij�
+
i �−

j .

(4)

The operators �+
i = (|e〉〈g|)i and �−

i = (|g〉〈e|)i are, re-
spectively, the atomic raising and lowering operators. The
complex-valued random interaction potential Vij = βij − iγij

is given by

βij = 3

2

[
−pij

cos k0rij

k0rij

+ qij

(
cos k0rij

(k0rij )3
+ sin k0rij

(k0rij )2

)]
(5)

and

γij = 3

2

[
pij

sin k0rij

k0rij

− qij

(
sin k0rij

(k0rij )3
− cos k0rij

(k0rij )2

)]
. (6)

For me = 0

pij = sin2 θij , qij = 1 − 3 cos2 θij , (7)

while, for me = ±1,

pij = 1
2 (1 + cos2 θij ), qij = 1

2 (3 cos2 θij − 1). (8)

Here rij = |ri − rj | and θij = cos−1(ẑ · r̂ij ). The effective
Hamiltonian has two components. The first part is the single-
atom Hamiltonian including the natural width of the excited
state. The second component is the contribution of cooperative
effects between any two atoms [12,13] when retardation
is neglected [14]. Equation (5) gives the cooperative level
shift, while Eq. (6) gives the cooperative correction to the
single-atom spontaneous emission rate.

Averaging Vij over the random orientations of the pairs of
atoms leads to [15,16]

βij = −cos k0rij

k0rij

(9)

and

γij = sin k0rij

k0rij

, (10)

namely, the cooperative level shift and the cooperative correc-
tion to the spontaneous emission rate in the case where the
atoms are coupled to a scalar radiation field [17].

In order to study the complex eigenvalues En − i��n/2 of
Heff, we define the complex-valued quantities �n by

En − i��n/2 = �ω0 + ��0�n. (11)

The real part of �n corresponds to the (properly rescaled)
energy of a collective state relative to a single-atom resonance
and its imaginary part is related to the decay rate of this
eigenstate. For a single atom (N = 1), we thus have �1 =
−i/2.

In the case of a cooperative pair (N = 2), namely, two
atoms separated by a distance r = |r1 − r2|, the spectrum of
Heff can be obtained explicitly. In the scalar case it is given by
[18]

�
(s)
± = −1

2

(
i ± eik0r

k0r

)
. (12)

In the vectorial case, two of the eigenvalues of Heff are of a
single multiplicity

�
(v1)
± = −1

2

[
i ± 3

2
eik0r

(
− 2i

(k0r)2
+ 2

(k0r)3

)]
, (13)

and the other two are of a double multiplicity

�
(v2)
± = −1

2

[
i ± 3

2
eik0r

(
1

k0r
+ i

(k0r)2
− 1

(k0r)3

)]
. (14)

Let us examine the limiting cases. When the atoms are
well separated (k0r � 1), then �

(s)
± = �

(v1)
± = �

(v2)
± = −i/2

and the single-atom spontaneous emission rate is recovered.
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For k0r � 1, namely in the Dicke regime, the spectrum is
approximated by

�
(s)
± 	 −1

2

[
i ±

(
i + 1

k0r

)]
, (15)

�
(v1)
± 	 −1

2

[
i ±

(
i + 3

(k0r)3

)]
, (16)

and

�
(v2)
± 	 −1

2

[
i ±

(
i − 3

2(k0r)3

)]
. (17)

In all cases, the imaginary part of the �+’s (�−’s) accounts
for the superradiant (subradiant) mode.

In order to obtain numerically the spectrum of Heff in (4)
beyond the case of two atoms, we consider N � 1 atoms
enclosed in a cubic volume L3. The atoms are distributed with
a uniform density ρ = N/L3. With the help of the resonant
radiation wavelength, λ = 2π/k0, we define the dimensionless
density ρλ3. Next, we introduce the Ioffe-Regel number [19],
k0l, where l is the photon elastic mean free path, namely l =
1/ρσ , and σ is the average single-scattering cross section. For
resonant scattering, the average single-scattering cross section
varies as λ2, so that the Ioffe-Regel number can be written as
k0l

(s) = 2π2/ρλ3 in the scalar case and k0l
(v) = (2/3)k0l

(s) in
the vectorial case [20]. Finally, we define the (on resonance)
optical thickness, b0, as the ratio between the system size L and
the photon elastic mean free path l. Using the definitions above,
one obtains b

(s)
0 = N1/3(ρλ3)2/3/π and b

(v)
0 = (3/2)b(s)

0 .
While the Ioffe-Regel number accounts for disorder effects,

cooperative effects are more accurately described by the
optical thickness [5,8,21–23]. Therefore, we will use these
two parameters in order to investigate the distinctive roles of
disorder and cooperative effects in atomic gases.

IV. SPECTRUM OF THE EFFECTIVE HAMILTONIAN

The complex-valued spectrum of Heff in (4) for optically
and spatially dilute gases (b0 � 1 and ρλ3 � 1) is displayed
in Fig. 1 for the scalar case (top) and the vectorial case
(bottom). The spiral branches (magenta curves) in the scalar
case represent the eigenvalues of cooperative pairs (12), while
the branches in the vectorial case [green (light gray) and blue
(dark gray) curves] represent the eigenvalues of cooperative
pairs (13) and (14). Eigenvalues of states of more than two
atoms are concentrated within an ellipse on the complex plane.
The parameters of the ellipse will be determined in Sec. VII. In
dilute gases, due to the dominance of the 1/k0rij term in Vij ,
there are no significant differences, except for the cooperative
pairs, between the spectrum of the scalar case and the spectrum
of the vectorial case.

For optically and spatially dense gases (b0 � 1 and
ρλ3 � 1), however, there are remarkable differences between
the spectra obtained for the scalar and vectorial cases, as can
be seen in Fig. 2. First, we observe a disappearance of scalar
superradiant pairs, while vectorial superradiant pairs persist.
Second, there are more vectorial subradiant pairs than scalar
subradiant pairs and the former span over larger values of
energy. Finally, unlike the vectorial case, a large number of
scalar subradiant states of more than two atoms appear around
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FIG. 1. (Color online) Complex-valued spectrum of Heff (4) in
the scalar case (top) and the vectorial case (bottom) for N = 500
and ρλ3 = 0.013. The spiral branches in the scalar case (magenta
curves) represent the eigenvalues of cooperative pairs (12), while the
branches in the vectorial case [green (light gray) and blue (dark gray)
curves] represent the eigenvalues of cooperative pairs (13) and (14).

FIG. 2. (Color online) Complex-valued spectrum of Heff (4) in
the scalar (black points) and vectorial [red (dark gray) points] cases for
N = 500 and ρλ3 = 131.6. Inset: vectorial [red (dark gray) points]
and scalar (black points) eigenvalues in linear scale.
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the energy of |Re(�)| 	 1. These findings have a profound
effect on the characteristics of the resonance widths, as will be
discussed in Sec. V.

V. RESONANCE WIDTH DISTRIBUTION

In this section we study the resonance width distribution,
P (�), where � = −2 Im(�) is a normalized resonance width
(in units of �0). P (�) is displayed in Fig. 3 for the scalar
case (top) and the vectorial case (bottom). For dilute gases, the
distribution is peaked at � = 1 both in the scalar and vectorial
cases, indicating the dominance of independent atoms physics.
For dense clouds, when the optical thickness is large enough,
the distribution in both cases is well described by the power
law P (�) ∼ �−4/3 rather than P (�) ∼ �−1, as suggested in
[9]. We note that this power law is obtained without taking
into account the real part of the eigenvalue, and therefore
it merely indicates that not all eigenstates follow a P (�) ∼
�−1 scaling [24]. In Sec. VII, we will further investigate the
origin of this behavior. It should be noted that regardless of the
system parameters, the resonance widths are constrained by

FIG. 3. (Color online) Resonance width distribution in the scalar
case (top) and the vectorial case (bottom) for ρλ3 = 13.16. Insets:
the resonance width distribution for ρλ3 = 131.6 and ρλ3 = 0.44.
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Vectorial case

FIG. 4. (Color online) Behavior of �max in the scalar case (top)
and in the vectorial case (bottom). The solid line is given respectively
by (18) and (19) in the scalar and vectorial cases.

〈�〉i = −2 Tr(�)/N = 1, where 〈·〉i denotes the average over
the spectrum for a single realization, i, of atomic disorder.
Additionally, as noted in Sec. IV, in the vectorial case there
are less long-living modes of more than two atoms compared
to the scalar case.

Next, we study the asymptotic behavior of the resonance
widths. For dilute gases, the configuration-averaged maximal
resonance width, �max, and the configuration-averaged mini-
mal resonance width, �min, are determined by cooperative pairs
as can be seen numerically in Fig. 1 and as theoretically argued
by the authors of Ref. [8]. For dense clouds, as shown in Fig. 2,
the effect of configurations of more than two atoms should be
taken into account. Figure 4 (top) presents the dependence of
�max on the optical thickness in the scalar case. Following the
expression suggested in [8,25], we use

�(s)
max =

√
b

(s)
0

A
+

(
b

(s)
0

B

)2

+ b
(s)
0

C
+ 1, (18)
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where A, B, and C are free fitting parameters, and obtain
A = 1.70, B = 8.50, and C = 8.90. The theoretical limits
predicted by the Marchenko-Pastur law [8], namely �(s)

max ∝√
b

(s)
0 for low optical thickness b

(s)
0 and �(s)

max ∝ b
(s)
0 for high

optical thickness, can be recovered from (18). We note that in
all regimes which we were able to explore, �(s)

max depends solely
on b

(s)
0 , i.e., it is dominated by cooperative effects without a

spatial density dependence. In the vectorial case, shown in
Fig. 4 (bottom), �max depends both on the optical thickness
and the Ioffe-Regel number and is empirically given by

�(v)
max =

√
b

(v)
0 − 2/k0l(v)

A′ +
(

b
(v)
0 − 2/k0l(v)

B ′

)2

+ b
(v)
0 − 2/k0l

(v)

C ′ + 1, (19)

where A′ = 1.50, B ′ = 15.25, and C ′ = 8.48. In order to
obtain (19), we have used (18) with slight modifications due to
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Vectorial case

FIG. 5. (Color online) Behavior of �min in the scalar case (top)
and in the vectorial case (bottom). The solid line in both cases is given
by (20).

disorder (i.e., density) effects. From Eq. (19) one can see that
�(v)

max is dominated by cooperative effects, depending on the
optical thickness, and slightly corrected by disorder effects,
depending on the spatial density of the cloud.

The maximal resonance widths have been studied in
[8,25,26]. We note, however, that in the regimes explored in
this paper, expressions (18) and (19) provide a simple and
adequate description of these quantities.

The value of �min in dilute gases is determined by subradiant
pairs and is given by [8,26]

�min 	 a(ρλ3N )−2/3, (20)

with a 	 2.30. As can be seen on Fig. 5 (top), Eq. (20)
holds in the scalar case for low densities, but breaks down for
dense gases. In the vectorial case (bottom), however, Eq. (20)
holds even for high densities. This difference stems from
the relatively low number of scalar subradiant pairs in dense
atomic clouds, as discussed in Sec. IV.

VI. ENERGY DISTRIBUTION

Next, we study the energy distribution, P (E), where E =
Re(�) is a normalized energy (in units of ��0 and shifted by

the atomic transition energy �ω0). In dilute clouds, according
to Fig. 1, cooperative pairs dominate P (E) for high values of
|E|, both in the scalar and vectorial cases. For dense gases, as
shown in Fig. 2, due to the disappearance of scalar superradiant
pairs, we expect that for |E| � 1, P (E) will be dominated by
cooperative pairs mainly in the vectorial case. In order to obtain
the energy distribution of cooperative pairs, Ppairs(E), in the
limit |E| � 1, we use the relation Ppairs(E)dE = Ppairs(r)dr ,
where Ppairs(r)dr = 4πr2dr/L3 is the probability to find two
atoms separated by a distance r in the volume L3 [8]. We use
the real part of (15)–(17) to calculate dE/dr for |E| � 1 and
find that the energy distribution of cooperative pairs in the
scalar case is

P (s)
pairs(E) ∝ E−4, (21)

and in the vectorial case is given by

P (v)
pairs(E) ∝ E−2. (22)

These power laws are indeed observed in Fig. 6, where the
energy distribution of N = 2 atoms is calculated numerically
both in the scalar case (top) and the vectorial case (bottom).

Configurations related to more than two atoms dominate
P (E) for relatively low values of |E|. Their contribution can
be described, for dilute gases, by the Wigner’s semicircle law
[8]. Thus the total energy distribution in dilute clouds is

P (E) = 2

π

√
α − E2

α
+ Ppairs(E), (23)

with α 	 0.06b
(s)
0 (α 	 0.10b

(v)
0 ) in the scalar (vectorial) case.

For dense clouds, we find in the vectorial case that Wigner’s
semicircle law is replaced by the Laplace distribution

P (v)(E) = e−α′ |E|

2α′ + P (v)
pairs(E), (24)

with α′ 	 b
(v)
0 . In the scalar case, however, P (E) is described

by the sum of the Laplace distribution, Wigner’s semicircle
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FIG. 6. (Color online) Energy distribution P (E) of N = 2 atoms
in the scalar case (top) and in the vectorial case (bottom). The solid
line is given respectively by (21) and (22) in the scalar and vectorial
cases.

law, and the energy distribution of the pairs,

P (s)(E) = e−α′ |E|

2α′ + 2

π

√
α − E2

α
+ P (s)

pairs(E). (25)

Since in all cases, P (E) is determined solely by the optical
thickness, the energy distribution is dominated by cooperative
effects. The energy distribution is shown in Fig. 7, both
for the scalar case (top) and the vectorial case (bottom).
By inspecting the insets, it is clear that for |E| � 1, the
contribution of cooperative pairs is indeed weaker in the scalar
case compared to those in the vectorial case. We will reexamine
the contribution of the pairs in the next section.

VII. EXCLUSION OF COOPERATIVE PAIRS

In order to disentangle between the effect of cooperative
pairs and the effect of cooperative states of more than two
atoms, we now exclude cooperative pairs and recalculate
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FIG. 7. (Color online) Energy distribution of N = 700 atoms in
the scalar case (top) and in the vectorial case (bottom). Dilute gases
are described by (23) in both cases. Dense clouds are described by
(25) in the scalar case and by (24) in the vectorial case.

numerically P (�) and P (E). To that purpose we characterize
the ellipse on the complex plane that contains eigenvalues
related to cooperative states of more than two atoms. The
procedure described below applies to both scalar and vectorial
cases, unless indicated otherwise.

We define the major axis of the ellipse as

�axe = �max + �fre

2
, (26)

where the maximal resonance width is given in (18) or (19),
and the most frequent resonance width is given empirically by

�
(v)
fre = 1

b
(s)
0 + 1

(27)

for the scalar case and

�
(v)
fre = 1

2b
(v)
0 + 1

(
1 + 1

k0l(v)

)
(28)
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for the vectorial case. The minor axis is given empirically by

Eaxe =
√

b0

D′ +
(

b0

D′

)2

, (29)

with D′ = 5.50. All eigenvalues located inside the ellipse
defined by (

�

�axe

)2

+
(

E

Eaxe

)2

= 1 (30)

are related to configurations of more than two atoms.
In the vectorial case, eigenvalues located outside the domain

defined by (30) are indeed mainly related to cooperative pairs.
In the scalar case, however, applying this selection rule leads
to the exclusion of the long-living modes around |Re(�)| 	 1,
discussed in Sec. IV. Thus an additional empirical criterion
is used in both cases, according to which eigenvalues located
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FIG. 8. (Color online) Complex-valued spectrum of Heff in (4) in
the scalar case for N = 500 and ρλ3 = 0.013 (top) and ρλ3 = 131.6
(bottom). Eigenvalues in green (light gray) (marked “Selected”) are,
under our assumption, related to configurations of more than two
atoms. Eigenvalues in black (marked “Not selected”) are related to
cooperative pairs.

FIG. 9. (Color online) Vectorial case where cooperative pairs
are excluded. Top: resonance width distribution. Bottom: energy
distribution.

outside a region in the complex plane whose parameters are
given below are kept as well. This region is centered along
curve (12) in the scalar case and curves (13) and (14) in the
vectorial case. Its widths are εsup = 1 for superradiant pairs
and εsub = �min/2 for subradiant pairs, where �min is given by
(20). An example of such a procedure is shown in Fig. 8 for
the scalar case in the dilute (top) and dense (bottom) limits.

Figure 9 (top) shows the resonance width distribution in the
vectorial case where cooperative pairs are excluded. It is clear
that the power law P (�) ∼ �−4/3, discussed in Sec. V, holds,
indicating that it does not stem from cooperative pairs. Figure 9
(bottom) describes the energy distribution in the vectorial
case where pairs are excluded. By comparing it to Fig. 7,
the disappearance of the E−2 behavior, related to cooperative
pairs, is obvious.

VIII. RESONANCE OVERLAP

In this section we further analyze the statistics of the
eigenvalues of Heff given in (4) in order to find a scaling
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parameter which would monitor the phase transition (or
lack thereof) between localized and extended states. We will
follow ideas introduced by Thouless [10], who showed that
under specific circumstances, the inverse of the electronic
dimensionless conductance g (in units of e2/h) can be
understood as the ratio between the average level spacing
between neighboring disordered energies and their widths
induced by the opening of the system.

Following [26,27], we define the degree of resonance
overlap, a quantity formally analogous to the Thouless con-
ductance, by

g =
〈

1

〈2/�〉i〈�E〉i

〉
, (31)

where 〈�E〉i is the nearest-neighbor average level spacing
and 〈2/�〉i is the average of the inverse modal leakage
rate. Here 〈·〉i denotes the average over the spectrum for a
single realization, i, of atomic disorder and 〈·〉 denotes the
average over all configurations. We note that this definition of
the degree of resonance overlap differs from the ratio of the
average level width 〈�〉i to the average level spacing 〈�E〉i
used in [10] to characterize electronic transport. The latter
may not be relevant here since the resonance width � are
constrained by 〈�〉i = 1, as mentioned in Sec. V. Definition
(31) gives a higher weight to long-living modes compared to
fast decaying superradiant states [28]. The main advantage
in using a quantity like g in (31) is that it depends only on
the eigenvalue spectrum of Heff, i.e., it does not require the
knowledge of the eigenfunctions of Heff, which are far more
difficult to obtain.

Figure 10 shows the behavior of g as a function of system
size for the scalar case (top) and the vectorial case (bottom)
when cooperative pairs are excluded. In the scalar case,
g increases as a power law of the system size for dilute gases,
but decays exponentially with the system size for dense clouds.
In the vectorial case, g varies as a power law of the system
size for both dilute and dense gases. It should be emphasized
that in the latter case the resonance overlap does not decrease
when the sample size is increased, even for the densest samples
investigated. The results are similar when cooperative pairs are
taken into account [28].

Figure 11 shows g as a function of the Ioffe-Regel number
for the scalar case (top) and the vectorial case (bottom) when
cooperative pairs are excluded. In the scalar case, the curves of
g corresponding to different system sizes cross at k0l ∼ 1, as
expected from the Ioffe-Regel criterion. In the vectorial case,
however, no crossing point is observed.

The clear scaling behavior observed for g is rather un-
expected and very interesting. It is first to be noted that it
shows up over a broad range of system sizes, covering both the
large system regime and the Dicke regime. It is interesting to
analyze this scaling behavior using an analog of the Gell-Mann
and Low function, β(g) ≡ d ln g/d ln L/λ, widely used in
the theory of phase transitions [4]. We have extracted it from
Fig. 10 and plotted this function in Fig. 12.

In the scalar case, g increases as a power law of the system
size L in the limit of a dilute gas and it decreases exponentially
with size for dense clouds. This change of behavior implies,
assuming that g is a continuous and monotonic function
of L, that there exists a characteristic value gc at which
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FIG. 10. (Color online) Degree of resonance overlap, g, as a
function of system size for the scalar case (top) and the vectorial
case (bottom) when cooperative pairs are excluded.

β(gc) = 0, i.e., for which gc is independent of the system size
L. Such a behavior is very reminiscent of Anderson-like phase
transition driven by disorder. It should be noted, however, that
the present case includes also the Dicke regime where
cooperative effects play a major role. In that sense, the present
case differs essentially from an Anderson, disorder-driven,
phase transition. In contrast, in the vectorial case, β(g) is
always positive.

A similar analysis has been recently presented [29]. The
authors of [29] have shown numerically that localization of
light can be achieved in a random three-dimensional atomic
ensemble only for a scalar radiation field; it cannot be achieved
when the vectorial properties of the electromagnetic wave are
taken into account. The results presented in this paper conform
to the results in [29], although we do not observe the second
crossing point at high densities reported in [29] for the scalar
case, a fact we associate to the different ways of selecting
the modes considered for defining the resonance overlap
criterion.

063822-8



COOPERATIVE EFFECTS AND DISORDER: A SCALING . . . PHYSICAL REVIEW A 90, 063822 (2014)

0 1 2 3 4
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

k
0
l(s)

g

L/λ = 1.97
L/λ = 2.48
L/λ = 2.84
L/λ = 3.36

Scalar case

0 1 2 3 4 5 6

10
1

k
0
l(v)

g

L/λ = 1.97
L/λ = 2.48
L/λ = 2.84
L/λ = 3.36

Vectorial case

FIG. 11. (Color online) Degree of resonance overlap, g, as a
function of the Ioffe-Regel number for the scalar case (top) and the
vectorial case (bottom) when cooperative pairs are excluded.

Using the behavior of g close to gc in the scalar case,
it would be possible in principle to extract some more
information regarding the observed critical behavior, e.g.,
the singular behavior of the localization length and the
corresponding critical exponents. This would require more
refined numerics not yet available.

IX. DISCUSSION

In this paper we have studied numerically the spectrum
of the effective atomic Hamiltonian Heff given in (4) that
describes the dipolar interaction of a gas of N � 1 atoms
with the radiation field, both in the scalar and vectorial cases.

We have found that for dense gases, the resonance width
distribution follows, both in the scalar and vectorial cases, a
power law P (�) ∼ �−4/3. This power law is different from
the known P (�) ∼ �−1 distribution, which is interpreted as a
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FIG. 12. (Color online) β(g) ≡ d ln g/d ln L/λ as a function of
ln g in the scalar case (top) and the vectorial case (bottom). Assuming
that β(g) is a continuous and monotonic function of L, in the scalar
case there is a value gc at which β(gc) = 0, indicating that gc becomes
independent of the system size L.

signature of Anderson localization of light in random systems
[9]. Even though this result is not energy specific, it suggests
that long-living collective states of excitations are dominated
by cooperative effects rather than disorder. As this power law
holds for the case where cooperative pairs are excluded, it is
related to cooperative effects between more than two atoms.

We have also shown that the center of the energy distribution
in dilute gases is described by Wigner’s semicircle law not
only in the scalar case, as suggested in [8], but in the vectorial
case as well. For dense clouds, we have shown that Wigner’s
semicircle law is replaced in the vectorial case by the Laplace
distribution. Since in all cases, P (E) is determined solely by
the optical thickness, the energy distribution results mainly
from cooperative effects.

Finally, we have shown that in the scalar case the degree
of resonance overlap behaves as a power law of the system
size for dilute gases, but decays exponentially with the system
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size for dense clouds. In the vectorial case g varies as a power
law of the system size for both dilute and dense gases. As
these findings hold also for the Dicke regime (i.e., in a system
size much smaller than the wavelength), where cooperative
effects are dominant, a full interpretation based only on a
disorder-driven phase transition (e.g., Anderson localization)
[4] appears to be incomplete.

Further research on disorder-driven phase transition as
expected on the basis of Anderson localization might focus
on transport properties of light through atomic clouds [30]
or consider the possibility to combine additional diagonal
disorder to the long-range dipole-dipole coupling, with the

possibility of hybrid states, sharing properties of disorder and
synchronization [31]. Further insight to the different roles
played by disorder and cooperative effect could be obtained
by exact diagonalization of the effective Hamiltonian. Such
calculations have already been done for the scalar case in the
limit of dilute gases [8,25]. The vectorial case, however, still
poses a substantial challenge.
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