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We present analytical solutions for the mean-field master equation of the driven-dissipative Bose-Hubbard
model for cavity photons, in the limit of both weak pumping and weak dissipation. Instead of pure Mott-insulator
states, we find statistical mixtures with the same second-order coherence g(2)(0) as a Fock state with n photons,
but a mean photon number of n/2. These mixed states occur when n pump photons have the same energy as n

interacting photons inside the nonlinear cavity and survive up to a critical tunneling coupling strength, above
which a crossover to a classical coherent state takes place. We also explain the origin of both antibunching and
superbunching predicted by P-representation mean-field theory at higher pumping and dissipation. In particular,
we show that the strongly correlated region of the associated phase diagram cannot be described within the
semiclassical Gross-Pitaevskii approach.
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I. INTRODUCTION

Since the seminal work by Fisher et al. in 1989 [1], the Bose-
Hubbard model and its celebrated Mott-insulator-to-superfluid
quantum phase transition has attracted a great deal of attention.
In spite of being the simplest model of interacting bosons on
a lattice, its relevance for the study of many-body phenomena
in bosonic systems has become even more prominent since
the experimental observation of the predicted phase transition
with ultracold atoms in optical lattices [2]. At the time of the
first theoretical investigations, the most relevant candidates for
experimental verification were undoubtedly atoms or Cooper
pairs. But with the tremendous experimental progress in
quantum optics and quantum electrodynamics of the past
20 years [3,4], the exciting field of many-body physics has
ceased to belong exclusively to the realm of genuine particles:
the exploration of Bose-Hubbard physics in optical systems
is now within reach. It has indeed been demonstrated that in
a nonlinear optical medium, light behaves as a quantum fluid
of interacting photons [5] and some of the most remarkable
features of quantum fluids, such as superfluid propagation [6,7]
or generation of topological excitations [8–11], have been
observed in experiments with solid-state microcavities. It has
also become possible to design arrays of nonlinear cavity
resonators, such that the effective on-site photon-photon
interactions are large enough to enter the strongly correlated
regime [12–15].

The question of whether key features of equilibrium physics
are still present when the bosons have a finite lifetime has been
of crucial importance ever since the first theoretical proposals
for implementing the Bose-Hubbard model with photons or
polaritons [16–18]. Exploiting the analogies between the two
models, early works were focused on phenomena close to
the equilibrium Mott-insulator–superfluid transition [19,20].
More recent studies were devoted to the interesting driven-
dissipative regime, where the cavity resonators are excited
by a coherent pump which competes with cavity losses
[21–30]. In such conditions, the role of dissipation is crucial
and similarities with equilibrium phenomena are more difficult

to uncover. In particular, our recent study of the two-
dimensional (2D) mean-field phase diagram in the thermody-
namical limit showed that the system is driven into steady-state
phases whose general properties and collective excitations may
be, at first sight, very different from equilibrium [31].

In this context, it is important to clarify the relation between
driven-dissipative and equilibrium models and gain more
insight into the nature of the stationary states. To tackle
this question, we focus in this article on the limit of weak
dissipation and weak pumping. Analytical expressions for
the density matrix and the relevant observables enable us
to identify the nonclassical states of light which are the
most closely related to a Mott insulator. Such states may be
prepared when multiphotonic absorption processes become
resonant. We show that beyond a critical value of the hopping
rate between neighboring cavities, these nonclassical states
disappear and the system is driven into a classical coherent
state. These results cast light on the photon statistics observed
for stronger pumping and stronger dissipation. In particular,
they give a clear picture of the two phases presented in the
bistability diagram of Ref. [31]. We also show that the “weakly
interacting” sector of such diagram is well understood by
means of a Gross-Pitaevskii approximation. As expected, this
simplified approach fails when on-site repulsion is much larger
than the coupling between sites.

The paper is organized as follows: The model is introduced
in Sec. II. Section III is devoted to the limit of weak pumping
and weak dissipation. The density matrix along with the
relevant observables are first computed for the single cavity
(Sec. III A), and then extended to coupled cavities (Sec. III B).
In Sec. IV, we explore the Gross-Pitaevskii regime, and we
conclude in Sec. V.

II. THE MODEL

We consider a driven-dissipative Bose-Hubbard model
under homogeneous coherent pumping describing a bidi-
mensional square lattice of cavity resonators. The system is
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described by the following Hamiltonian [5]:

H = − J

z

∑
〈i,j〉

b
†
i bj +

N∑
i

ωcb
†
i bi + U

2
b
†
i b

†
i bibi

+ Fe−iωptb
†
i + F ∗eiωptbi, (1)

where b
†
i creates a boson on site i, J > 0 is the tunneling

strength, and z = 4 is the coordination number. 〈i,j 〉 indicates
that tunneling is possible only between first neighbors. U > 0
represents the effective on-site repulsion, F is the amplitude of
the incident laser field, ωc is the bare cavity frequency, and ωp

is the frequency of the pump. The dynamics of the many-body
density matrix ρ(t) is described in terms of a Lindblad master
equation:

i∂tρ = [H,ρ] + iγ

2

N∑
i

2biρb
†
i − b

†
i biρ − ρb

†
i bi, (2)

where γ is the dissipation rate. It is convenient to eliminate
the time dependency in Eq. (1) by performing a unitary
transformation on the density matrix,

ρ → UρU †, (3)

where U = eiωpt
∑

i b
†
i bi . This amounts to writing the density

matrix in a frame rotating at the pump frequency ωp. In this
rotating frame, the Hamiltonian governing the dynamics is
now time independent,

Hrf = −J

z

∑
〈i,j〉

b
†
i bj −

N∑
i

�ωb
†
i bi

+
N∑
i

U

2
b
†
i b

†
i bibi + Fb

†
i + F ∗bi. (4)

We have introduced the detuning between the pump and the
bare cavity frequency, �ω = ωp − ωc. While for equilibrium
quantum gases the chemical potential μ is a key quantity,
in this nonequilibrium model the steady-state phases depend
instead on the pump parameters F and �ω, which compete
with γ . It is worth pointing out that this is a model which well
describes a lattice of cavities whose extra-cavity environment
is the electromagnetic vacuum (apart from the applied driving
field).

The properties of the model in Eq. (4) have been inves-
tigated in Ref. [31] using a mean-field decoupling approxi-
mation for the tunneling terms, obtained by the replacement
b
†
i bj → 〈b†i 〉bj + 〈bj 〉b†i . Such a procedure reduces the initial

N -site Hamiltonian to an effective single-site problem.1 This
is the same approach used by Fisher et al. for the equilibrium
Bose-Hubbard model [1]. We would like to point out that the
decoupling approximation to treat the hopping term is not fully

1We emphasize that this mean-field approximation is distinct from
the Gross-Pitaevskii approach, which assumes bi ≈ 〈bi〉 Indeed,
the Gross-Pitaevskii approach for equilibrium configurations cannot
yield Mott-insulator lobes at integer filling. The Gross-Pitaevskii
approximation for driven-dissipative systems is discussed in Sec. IV.

controlled. Nevertheless, this simple approach qualitatively re-
produces the phase diagram of the equilibrium Bose-Hubbard
model, with the expected Mott lobes at integer fillings. It
is therefore a natural starting point for the investigation of
the driven-dissipative case. Further studies using numerical
or analytical techniques beyond mean field will ultimately
determine the exact degree and domain of validity of the
considered approximation.

Within this framework, the effective single-site Hamilto-
nian reads

Hmf = −�ωb†b + U

2
b†b†bb + (F − J 〈b〉)b†

+ (F ∗ − J 〈b〉∗)b, (5)

with an effective pump amplitude,

F ′ = F − J 〈b〉. (6)

Notice that F ′ depends on the bosonic coherence 〈b〉, which
has to be determined self-consistently. In the remainder of this
section, we briefly summarize the results of Ref. [31] relevant
to the present study. In particular, these results will serve as
reference points for the discussions of Secs. III C and IV.

An exact solution of the single-cavity problem may be
obtained by using the complex P representation for the density
matrix [32,33]. In this phase-space approach, the matrix ρ is
expressed in a coherent-state basis as

ρ =
∫
Cβ

∫
Cα

P (α,β)
|α〉〈β∗|
〈β∗|α〉 dαdβ, (7)

where Cβ and Cα are paths of integration on individual complex
planes (α,β). This representation allows a mapping of the
master equation into a Fokker-Planck equation for the function
P (α,β). As a result, all one-time correlation functions in the
steady state can be computed exactly and are given by [32]

〈(b†)j (b)k〉 =
(

2F

U

)k (
2F ∗

U

)j
	(c)	(c∗)

	(c + k)	(c∗ + j )

× F(c + k,c∗ + j,8|F/U |2)

F(c,c∗,8|F/U |2)
, (8)

with c = 2(−�ω − iγ /2)/U and the hypergeometric function
F(c,d,z) = ∑∞

n
	(c)	(d)

	(c+n)	(d+n)
zn

n! , with 	 being the gamma
special function. These results for the single cavity can
be directly applied to mean-field theory by performing the
substitution of Eq. (6) and solving the following self-consistent
equation for 〈b〉:

〈b〉 = (F − J 〈b〉)
�ω + iγ /2

F
(
1 + c,c∗,8

∣∣F−J 〈b〉
U

∣∣2)
F

(
c,c∗,8

∣∣F−J 〈b〉
U

∣∣2) . (9)

In order to characterize the state of the intracavity electro-
magnetic field, we will focus mainly on two observables: the
mean photon density 〈b†b〉 and the zero-delay second-order
autocorrelation function g(2)(0). The latter is expressed by

g(2)(0) = 〈b†b†bb〉
〈b†b〉2

, (10)

and gives information on the photon statistics. It was shown
that the self-consistent parameter in Eq. (5) is responsible for
the appearance of tunneling-induced bistability. That is, for
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a wide range of parameters, the self-consistent equation for
〈b〉 has multiple solutions, giving rise to two stable steady
states (for the same values of all the parameters). In particular,
we have identified a “low-density” phase, where the average
number of photons per site is very low (〈b†b〉 	 1) but
fluctuations in the photon statistics are high [g(2)(0) 
 1]. In
the other stable phase, called “high-density” phase, 〈b†b〉 ∼ 1,
and the statistics is sub-Poissonian, g(2)(0) < 1. Interestingly,
a related bistable behavior has been predicted for systems of
driven-dissipative Rydberg atoms [34].

As mentioned in Sec. I, the next question that comes to mind
is how to connect these results with the better-known physics
of the equilibrium model and its quantum phase transition. Are
the stationary states related in any way to a Mott insulator or a
superfluid? The best way to answer this question is to explore
the limit of weak pumping and weak dissipation, since in this
regime the Hamiltonian and the dynamics tend to resemble
more and more their equilibrium counterpart. It is the subject
of the following section.

III. THE LIMIT OF WEAK PUMPING
AND WEAK EXCITATION

A. Single cavity: Exact solution

Multiphotonic resonances. At equilibrium, the ground state
of an isolated site is a pure Fock state |n〉, with n fixed by
the value of the chemical potential. Photons, on the other
hand, always have to be injected inside the cavity. When the
coupling to the external field is very weak, the only way to have
〈b†b〉 � 1 is to be at resonance with multiphotonic absorption
processes.

Absorption of photons is favored when n incident laser
photons have the same energy as n photons inside the cavity,
that is, nωp = nωc + Un(n − 1)/2. Expressed in terms of the
pump-cavity detuning, this relation reads

U

�ω
= 2

n − 1
. (11)

This resonance condition can be satisfied for n > 1 only if
�ω > 0. If the pump is resonant with the bare cavity frequency,
i.e., �ω = 0, only single photons can be absorbed resonantly.
There is no relation between U and �ω in this case and the
density matrix is found by expanding the master equation in
powers of F/U and γ /U . In the following, we will focus on
the more interesting case of multiphotonic resonances (n > 1)
and assume �ω > 0.

For simplicity, let us first look at Hmf for J = 0 and
U = 2�ω (two-photon resonance). It appears that in the
rotating frame, the vacuum |0〉 has the same energy as the
two-photon state |2〉 in the absence of driving. This degeneracy
is lifted by the coupling to the external field whose effect on
the dynamics can be understood qualitatively in the following
way. Suppose that at time t = 0 the intracavity field is in the
vacuum state |0〉. Since the vacuum is no longer an eigenstate
of the Hamiltonian, but a linear combination of eigenstates

1√
2
(|0〉 + |2〉) and 1√

2
(|0〉 − |2〉), the cavity field will start to

oscillate between |0〉 and |2〉. These Rabi oscillations will take
place until the occurrence of a quantum jump, resulting from
spontaneous emission processes inside the cavity. After the
emission of a first photon, the field is projected into the state

|1〉 and it is only after the emission of a second photon that it
returns to vacuum. Since the single-photon state has a decay
rate γ , the time between emission of photons from the same
“pair” will be of the order of 1/γ .

If the frequency splitting between the two quasidegenerate
eigenstates is much smaller than the dissipation rate, i.e.,
F 2/�ω 	 γ , the field will not have time to oscillate and will
stay mostly in the vacuum state. In this low-density regime, the
average time required to absorb a photon pair is much larger
that the single-photon decay time 1/γ . Therefore, photons will
appear strongly bunched when compared with coherent light
of the same intensity.

The time between successive pairs decreases with decreas-
ing dissipation and photon bunching eventually disappears for
F 2/�ω 
 γ . We will see quantitatively in the following that
the emitted light is even antibunched in this limit. Similar
photon correlations have also been predicted for the two-
photon resonance of the Jaynes-Cummings model [35].

More quantitative results can be obtained by solving the
master equation explicitly. To fully grasp the effect of the
resonance, we will assume that F/�ω 
 γ /�ω. We will
work in the basis formed by the eigenstates of the total
Hamiltonian (up to the lowest order in F/�ω), given by

|a〉 = 1√
2

(|0〉 + |2〉), (12)

|b〉 = 1√
2

(|0〉 − |2〉), (13)

|c〉 = |1〉.
Since the driving term only couples Fock states |m〉 to |m ± 1〉,
the coupling of |0〉 and |2〉 is of second order. The energies
given by second-order perturbation theory are

Ea 
 F 2

�ω
(1 +

√
2), (14)

Eb 
 F 2

�ω
(1 −

√
2), (15)

Ec 
 −�ω. (16)

As expected, the energy splitting between states |a〉 and |b〉
is proportional to F 2/�ω. In the “dressed-states” basis, the
dissipative term of the master equation couples populations
and coherences of the density matrix. However, in the lowest
order in F/�ω and γ /�ω, the coefficients ρac and ρbc vanish.
The master equation reads

∂tρaa = γ

[
1

2
ρcc − ρaa + 1

2
(ρab + ρba)

]
, (17)

∂tρbb = γ

[
1

2
ρcc − ρbb + 1

2
(ρab + ρba)

]
, (18)

∂tρab = �ω

[(
−i2

√
2

F 2

�ω2
− γ

�ω

)
ρab + γ

2�ω

]
, (19)

∂tρcc = γ [ρaa + ρbb − ρcc − (ρab + ρba)]. (20)

The stationary value for ρab is then

ρab = 1

2

1

1 + i2
√

2F 2

γ�ω

, (21)
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FIG. 1. (Color online) Results for a single cavity. Left: Real
(continuous blue line) and imaginary (dot-dashed red line) part of
the bosonic coherence 〈b〉 plotted vs ξ for F/�ω = 10−2. The
corresponding values of γ /�ω range from F 2

10�ω2 to F

5�ω
. Lines

are the result of exact P -representation calculations, while markers
correspond to the simplified expression of Eq. (40). Right: Mean
photon density 〈b†b〉 (continuous blue line) and g(2)(0) (red dash-
dotted line) vs ξ . Same conditions and conventions as in the left
panel.

giving

ρab + ρba = 1

1 + 8F 4

γ 2�ω2

= ξ. (22)

All the other coefficients along with the observables can be
expressed as functions of the parameter ξ . Namely, we have

ρ11 
 ρcc = 1
2 (1 − ξ ), (23)

ρaa = ρbb = 1
4 (1 + ξ ), (24)

ρ22 = 1
2 (ρaa + ρbb) − 1

2 (ρab + ρba) = 1
4 (1 − ξ ). (25)

For this, we can compute the mean photon density and g(2)(0):

〈b†b〉 = 1 − ξ, (26)

g(2)(0) = 1

2(1 − ξ )
. (27)

A comparison between theses two expressions and the exact P -
representation formula are shown in Fig. 1. The mean photon
density and g(2)(0) are plotted as a function of ξ for F/�ω =
10−2. In order to stay in the domain of validity of Eqs. (26)
and (27), γ /�ω is ranging from F 2

10�ω2 to F
5�ω

. In this condition,
the approximations underlying the derivation are justified and
the above expressions are very accurate.

The two limits F 2

γ�ω
	 1 and F 2

γ�ω

 1 correspond to ξ →

1 and ξ → 0, respectively. In the first case, the photon density
goes to zero as expected, and g(2)(0) diverges. In the other
limit, the field is in a statistical mixture of three states and the
density matrix in Fock space is

ρ = 1
4 |0〉〈0| + 1

2 |1〉〈1| + 1
4 |2〉〈2|. (28)

The photon density in then equal to one and g(2)(0) = 0.5.
We see that in the particular case of multiphotonic resonances,
one must be careful in discussing the limit F

�ω
,

γ

�ω
	 1, as the

system behavior varies qualitatively depending on the ratio
F 2

γ�ω
. The state obtained for ξ → 0 is highly nonclassical and

the closest to a Fock state that one can hope for in this context.
Besides, this result is not limited to n = 2. In the general

case of n-photon resonance, the coupling between |0〉 and |n〉
is of the order n in F and the energy splitting proportional
to (F/�ω)n. Therefore, a state similar to Eq. (28) may be
obtained in the limit Fn

γ�ωn−1 
 1. As shown in the Appendix,
the corresponding density matrix is

ρ(n) = 1

2n

n∑
k=0

(
n

k

)
|k〉〈k|. (29)

For n > 2, not only are the two states |0〉 and |n〉 degenerate
in the absence of driving, but so are all the states |k〉, |q〉
with k + q = n. This degeneracy is reflected in the n → n − k

symmetry of Eq. (29). The state of Eq. (29) is characterized
by

〈b†b〉 = n

2
, (30)

g(2)(0) = 1 − 1

n
. (31)

Note that the value of g(2)(0) is the same as in the nth lobe of
the equilibrium model (pure Fock state with n photons). We
emphasize that Eqs. (29)–(31) also apply to n = 1 (�ω = 0),
in the limit F/U → 0 and γ /F → 0.

Driving out of multiphotonic resonances. In the case where
multiphotonic absorption processes are nonresonant, the mean
photon number is expected to be very low. In such conditions,
the density matrix can be approximated to lowest order in
F/�ω by a pure state [36],

ρ = |ψ〉〈ψ |, (32)

with

|ψ〉 =
∑

n

cn|n〉. (33)

Both F/�ω and γ /�ω are assumed to be much smaller than
one, but it is not necessary to impose F 
 γ . The following
treatment is still valid if F/�ω and γ /�ω are of the same
order of magnitude. Keeping the lowest order in F/�ω and
γ /�ω for the coefficients cn, we obtain the following relation:

cn = F/�ω
√

ncn−1

n − n(n−1)
2

U
�ω

+ inγ

2�ω

. (34)

Neglecting the probability of having three or more photons
inside the cavity, we find

c0 = 1, (35)

c1 = F

�ω

(
1 − iγ

2�ω

)
, (36)

c2 =
√

2(F/�ω)2

2 − U/�ω

(
1 − iγ

2�ω

4 − U/�ω

2 − U�ω

)
. (37)

Equation (35) stems from the normalization condition, while
the two other equations follow directly from Eq. (34).
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From this, we can compute the mean photon density and
the second-order autocorrelation function:

〈b†b〉 =
(

F

�ω

)2

, (38)

g(2)(0) = 4

(2 − U/�ω)2
. (39)

As expected, when the system becomes linear, i.e., U → 0, the
cavity is driven into a coherent state [g(2)(0) = 1]. However,
the on-site interaction induces large fluctuations in the photon
statistics when the two-photon absorption process becomes
resonant (U/�ω = 2).

B. Coupled cavities: Mean-field solution

Let us first go back to the two-photon resonance. The
analytical expression for the bosonic coherence in this regime
is

〈b〉 = F

�ω
(2ξ − 1) + i

γ

2F
(ξ − 1), (40)

and the mean-field self-consistent equation is obtained by
replacing F with F − J 〈b〉. Since ξ is also a function of F , this
equation is difficult to solve analytically in its general form.
For ξ → 0, however, γ /F 	 1 and the imaginary part can be
neglected. We are left with the simple expression

〈b〉 = − F

�ω
. (41)

The substitution F → F − J 〈b〉 then gives

〈b〉 = −F/�ω

1 − J/�ω
. (42)

This shows that the coupling between sites amounts to
replacing F with F ′ = F

1−J/�ω
. In other words, the effective

pump is enhanced by the coupling between cavities. As a result,
the system is driven into the ξ = 0 state and will stay there
as long as the approximation F ′/�ω 	 1 holds. Results for
different values of ξ are presented in Fig. 2. When J/�ω ∼ 1,
the above treatment ceases to be valid because F ′ ∼ �ω,
and the system enters another regime. Exact P -representation
calculations show that the mean photon density starts to
increase with J , while g(2)(0) goes to 1, thus indicating a
crossover from a quantum state to a classical coherent one
(see Fig. 2). As we shall see in Sec. IV, this idea is confirmed
by the fact that the linear asymptotic behavior of 〈b†b〉 as a
function of J , visible in Fig. 2, corresponds to Gross-Pitaevskii
semiclassical predictions.

Once again, this can be extended to larger values of n. For
the n-photon resonance in the limit Fn

γ�ωn−1 
 1, Eq. (41) for
a single cavity becomes (see Appendix)

〈b〉 = −(n − 1)
F

�ω
. (43)

When the coupling between cavities in switched on, 〈b〉 is
given by

〈b〉 = −(n − 1)F/�ω

1 − (n − 1)J/�ω
, (44)

which means that the system will stay in the state given by
Eq. (29) until J/�ω ∼ 1/(n − 1). As in the case of two-photon
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FIG. 2. (Color online) Two-photon resonance. Mean photon den-
sity and g(2)(0) as a function of the tunneling amplitude J/�ω

for F/�ω = 10−2. The values of γ /�ω are F 2

10�ω2 (continuous

blue line) and γ /�ω = F 2

�ω2 (red dot-dashed line). The lines show
P -representation calculations and the markers show the results of
Eq. (42). The effect of coupling J is to drive the system into the state
of Eq. (28) until the critical coupling Jc = �ω is reached.

resonance, exact P -representation calculations presented in
Fig. 3 show a crossover to a classical coherent state. This
crossover is the closest equivalent, in this driven-dissipative
system, of the equilibrium Mott-insulator-to-superfluid phase
transition.

Out of multiphotonic resonances, the coupling between
cavities has a different effect. In this regime, the system is
in a state described by Eqs. (35)–(37) at J = 0. The bosonic
coherence is then

〈b〉 = F

�ω
. (45)

At finite J , it becomes

〈b〉 = F/�ω

1 + J/�ω
, (46)

0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

M
ea

n 
ph

ot
on

 d
en

si
ty

J/Δω

n = 2
n = 3
n = 4

0 1 2
0

0.2

0.4

0.6

0.8

1

g2 (0
)

J/Δω

n = 2
n = 3
n = 4

FIG. 3. (Color online) Quantum to classical crossover for n = 2
(continuous blue line), n = 3 (red dashed line), and n = 4 (green
dot-dashed line). The mean photon density and g(2)(0) are plotted as
a function of the tunneling amplitude J/�ω for F/�ω = 10−2 and
F n/(�ωn−1γ ) = 10. The system stays in the state of Eq. (29) until a
critical coupling Jc = �ω/(n − 1), after which it is driven towards a
coherent state.
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and the effective pump is given by F → F ′ = F
1+J/�ω

.
Contrary to Eq. (44), the intensity of F ′ decreases with J . As
a consequence, the system will remain in a state qualitatively
similar to Eqs. (35)–(37) and no crossover occurs.

C. Relation to steady states at higher pumping and dissipation

The results presented above shed light on the nature of
the steady states obtained at higher pumping and dissipation.
First, the effect of multiphotonic resonances is visible on the
bistability diagram: they are responsible for its peculiar lobe
structure (see Fig. 5 below or Fig. 1 in Ref. [31]). Moreover, the
properties of the states of Eq. (29) and the behavior shown in
Figs. 2 and 3 are very similar to that of the “high-density” phase
mentioned in Sec. II. In this phase, the light is antibunched and
the photon density increases with increasing J .

As for the “low-density” phase, it shows photon super-
bunching, near the two-photon resonance, which is well
described by Eqs. (35)–(37). Besides, the photon density in
this phase is decreasing with J , as suggested by Eq. (46).

Comparing the expression for the bosonic coherence in
Eqs. (46) and (44), we see that in both regimes, the effect
of tunneling is directly related to the sign of its real part.
Interestingly, this remains true for higher pumping and
dissipation, although the mean-field self-consistent equation
takes a more complicated form. The real part of 〈b〉 is negative
in the high-density phase and positive in the low-density phase.

IV. THE GROSS-PITAEVSKII REGIME

We have seen in Sec. III, in the case of the multiphotonic
resonances, that as J/�ω becomes large, the system is driven
into an almost coherent steady state with b†b 
 1. This
indicates that it enters a semiclassical regime where correlation
functions can be approximated by

〈b†nbm〉 
 〈b†〉n〈b〉m. (47)

As a consequence, all of these functions are determined by a
single complex number, namely, the bosonic coherence β =
〈b〉. Besides, a general differential equation for correlation
functions can be readily obtained from Eq. (2). Its most general
expression in the context of mean-field theory is the following:

∂t 〈b†nbm〉 = 〈[b†nbm,Hmf ]〉 − iγ

2
(n + m)〈b†nbm〉. (48)

In the particular case of β = 〈b〉 and under the assumption of
Eq. (47), the previous equation yields

i∂tβ =
(

−�ω − J − iγ

2
+ U |β|2

)
β + F. (49)

This equation is a single-mode version of the Gross-Pitaevskii
equation. Note that in this regime, the decoupling of neigh-
boring sites amounts to a shift in the cavity frequency,
�ω → �ω + J . The steady-state value for β is

β = F

�ω + J − U |β|2 + iγ

2

, (50)
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FIG. 4. (Color online) Mean photon density vs on-site repulsion
U in the high-density phase, for J/�ω = 3, F/�ω = 0.4, γ /�ω =
0.2. Red dots: P -representation calculations; blue crosses: Gross-
Pitaevskii approximation.

which gives a third-order polynomial equation for the mean
photon density n = |β|2:

n

[
(�ω + J − nU )2 + γ 2

4

]
= F 2. (51)

This equation explains the linear asymptotic behavior of n as
a function of J/�ω visible in Fig. 2. Indeed, when F,γ, → 0
and J → ∞, we find

n ∼ J

U
, (52)

which agrees with the results of Figs. 2 and 3. The Gross-
Pitaevskii approximation is also relevant at higher pumping
and dissipation, especially when the coupling between sites
and the number of photons are very high. As it has been widely
use in the theory of quantum fluids, whether with cold atoms or
polaritons, it is fruitful to compare the Gross-Pitaevskii results
with the P -representation calculations presented in Ref. [31].
For example, Fig. 4 shows that for large coupling between
sites and in the high-density phase, the Gross-Pitaevskii
approximation is sufficient to capture the behavior of the mean
photon density as a function of the on-site interaction U .

A. Gross-Pitaevskii criterium for bistability

Equation (51) (with J = 0), was introduced in quantum
optics as part of a semiclassical theory of optical bistability
in a single nonlinear cavity [32]. For some values of the
parameters, Eq. (51) has three real and positive roots. One of
them corresponds to the low-density phase (n ∼ 10−2) and the
two others correspond to the high-density phases. Although
only one high-density phase was mentioned in our previous
description of the mean-field phase diagram, a third solution
was indeed found using generalized P representation, but the
corresponding phase proved to be always unstable.

Figure 5 shows the two bistability diagrams obtained,
respectively, from Eq. (51) and the generalized P represen-
tation. As expected, the Gross-Pitaevskii approximation is
very good for small values of U , and predicts accurately
the appearance of bistability in the lower-right corner of
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FIG. 5. (Color online) Gross-Pitaevskii and P -representation
bistability diagrams. Orange area (labeled “a”): monostable phase
according to both approximation schemes. Light blue area (labeled
“b”): bistable according to Eq. (51) but monostable according to
P -representation calculations. Dark blue area (labeled “c”): bistable
phase according to both approximation schemes.

the diagram. It is less accurate when U becomes large and,
overall, bistability is “overestimated” by the Gross-Pitaevskii
criterium: monostable regions according to Eq. (51) (in orange
in Fig. 5) are much smaller that the exact ones (in light blue).
In particular, it fails to predict the lobe structure that is visible
on the P -representation diagram. These lobes stem from
the n-photon resonances discussed in the previous section.
Since a semiclassical approach does not take into account the
quantized nature of the field, these resonances are washed out
in the Gross-Pitaevskii diagram.

In the framework of the Gross-Pitaevskii approximation,
the number of solutions is given by the sign of the discriminant
of Eq. (51). A very good approximation for the critical value
of U can be found by noticing that in the high-density phase,
the photon density decreases with U . The critical value is then
approximately the one for which the density is maximal. This
yields

Uc1

�ω
= γ 2

4F 2

(
1 + J

�ω

)
. (53)

In fact, this approximate expression corresponds to the first
term in the expansion in powers of F/�ω of the exact solution.

A similar expansion for the other frontier in the diagram gives

Uc2

�ω
= 4�ω2

27F 2
(1 + J/�ω)3. (54)

The expansion up to the next term is

Uc1

�ω
= γ 2

4F 2

(
1 + J

�ω

)
− γ 4

64�ω2F 2(1 + J/�ω)
, (55)

Uc2

�ω
= 4�ω2

27F 2
(1 + J/�ω)3 + γ 2

12F 2
(1 + J/�ω). (56)

B. Bogoliubov theory

As shown in our previous work, one can study fluctuations
of the density matrix around the mean field by means of a
extended Bogoliubov theory. The fluctuations are defined as
follows:

ρ =
⊗

i

(ρmf + δρi). (57)

We also introduce the Fourier transform of the matrices δρi ,
δρk = 1√

N

∑N
i=1 e−ik·riδρi .

In their most general formulations, the equations of evolu-
tion that stem from linearization around the mean field are

i∂t δρk = Lmf [δρk] + Lk[δρk], (58)

where

Lmf [δρk] = [Hmf ,δρk] − iγ

2
(2bδρkb

† − b†bδρk − δρkb
†b).

(59)

This operator is the usual Liouvillian for the effective single-
cavity problem. This term in Eq. (58) is thus independent of
k. Propagation effects arise from the second term,

Lk[δρk] = −tk{Tr(bδρk)[b†,ρmf ] + Tr(b†δρk)[b,ρmf ]},
(60)

with tk = J/z(cos kxa + cos kya).
The situation is greatly simplified in the Gross-Pitaevskii

regime where the system is described by a classical complex
field. Fluctuations around the mean-field value β then obey
the following equation:

i∂t

(
δβk
δβ∗

−k

)
=

(−�ω − tk + 2U |β|2 − iγ /2 Uβ2

Uβ∗2 �ω + tk − 2U |β|2 − iγ /2

)(
δβk
δβ∗

−k

)
. (61)

This leads to a complex Bogoliubov spectrum:

ω±(k) = ±
√

(−�ω − tk + 2U |β|2)2 − U 2|β|4 − iγ

2
. (62)

Dispersion relations extracted from Eqs. (58) and (62)
are shown in Fig. 6. For small on-site repulsion and large
tunneling amplitude(U/�ω = 0.5 and J/�ω = 3, upper pan-
els), the Gross-Pitaevskii approximation gives good quan-

titative results and the corresponding spectrum is included
in the more general approach outlined in Eq. (58). As
expected, it fails in the regime of strong correlations. The
lower panels of Fig. 6 show the dispersion relations for
U/�ω = 2 and J/�ω = 1. For these parameters, g(2)(0) =
0.69, proving that the hypothesis of a quasicoherent state
underlying the Gross-Pitaevskii approximation scheme is not
justified.
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FIG. 6. (Color online) Energy-momentum dispersion of elemen-
tary excitations. Upper panels: γ /�ω = 0.2, F/�ω = 0.4, U/�ω =
0.5, and J/�ω = 3 (high-density phase). Real and imaginary part of
the low-energy branches (in units of �ω) are plotted vs k. Blue
lines depict branches obtained with Eq. (58), and the red squares are
the branches derived from the Gross-Pitaevskii equations. For these
parameters, the Gross-Pitaevskii approximation is accurate. Lower
panels: γ /�ω = 0.2, F/�ω = 0.4, U/�ω = 2, and J/�ω = 1
(monostable phase). The Gross-Pitaevskii approximation fails in the
regime of strong correlations.

V. CONCLUSION

In this paper, we have explored the driven-dissipative
Bose-Hubbard model in the limit of weak pumping and weak
dissipation and provided analytical results for the mean-field
density matrix. In this regime, the driven-dissipative model
bears a formal resemblance to its equilibrium counterpart.
However, since photons, unlike atoms, have to be injected
by the pump laser, the mean photon number inside the cavity
can be large only when multiphotonic absorption processes
become resonant. In the case of n-photon resonance, we have
shown that if the intensity of the pump is sufficiently large
when compared with the dissipation rate, a single cavity
can be driven into a statistical mixture that has the same
second-order correlation function g(2)(0) as a pure Fock state
with n photons, and a mean photon number of n/2. At
resonance, the effect of the coherent pump is enhanced by
the coupling between sites, eventually leading to a crossover
from these quantum states to classical coherent ones. This
behavior is characteristic of the high-density phase observed
at higher pumping and dissipation, in the regime of tunneling-
induced bistability. Outside of these multiphotonic resonance
processes, the mean-photon density is much smaller than 1 and
the effect of the pump is reduced by tunneling. Nevertheless,
on-site interactions induce photon superbunching close to
the two-photon resonance. This peculiar photon statistics is

recovered at higher pumping and dissipation in the low-density
phase of the bistable region.

In addition, we have shown that the structure of the
bistability diagram cannot be explained without a full quantum
treatment of the single cavity. Indeed, a Gross-Pitaevskii semi-
classical approach gives satisfactory results in the “weakly
interacting” sector of the diagram, but fails in the strongly
correlated regime. In particular, the size of the bistable region
predicted by the Gross-Pitaevskii equation is considerably
larger when compared with P-representation mean-field cal-
culations.
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APPENDIX

In this Appendix we use the exact solution [32] of the
single-cavity problem to prove Eqs. (29) and (43), holding for
multiphotonic resonances in the limit γ 	 F 	 �ω.

For an isolated cavity, the density matrix of the stationary
state is known analytically [32]:

ρn,m = 1√
n!m!

(−2F

U

)n (−2F ∗

U

)m
	(c)	(c∗)

	(c + n)	(c∗ + m)

× F(c + n,c∗ + m,4|F/U |2)

F(c,c∗,8|F/U |2)
, (A1)

with

c = 2(−�ω − iγ /2)

U
. (A2)

In Eq. (A1), 	(z) is the gamma special function which has
poles at negative and zero integer values, whereas F is an
hypergeometric series given by

F(c,d,z) =
∞∑

k=0

	(c)	(d)

	(c + k)	(d + k)

zk

k!
. (A3)

In correspondence of a q-photon resonance, with q > 1,
the constant c in Eq. (A2) is given by

c = −(q − 1)

(
1 + i

γ

2�ω

)
, (A4)

implying that c ≈ −(q − 1) for γ 	 �ω. As a result, the
quantities 	(c + k),	(c∗ + k) are diverging for 0 � k < q,
implying that certain coefficients of the hypergeometric
series (A3) will actually diverge in the limit γ 	 F 	 �ω.

From the above consideration, the leading contributions in
the two hypergeometric functions in Eq. (A1) are given by

F(c,c∗,2z) 
 	(c)	(c∗)

	(c + q)	(c∗ + q)

(2z)q

q!
(A5)
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and

F(c + k,c∗ + k,z) 
 	(c + k)	(c∗ + k)

	(c + q)	(c∗ + q)

zq−k

(q − k)!
, (A6)

respectively, where z = 4F 2/U 2.
Substituting Eqs. (A5) and (A6) into the general expression

for the density matrix, given by Eq. (A1), we find

ρkk = 1

2qk!

q!

(q − k)!
, (A7)

which corresponds to Eq. (29) by replacing q with n.
It is also easy to see that off-diagonal terms will instead

vanish in the same limit, γ 	 F 	 �ω. Indeed, a similar
analysis for m < n (the opposite case can be treated in the

same way) gives

ρnm = 1√
n!m!

(−2F

U

)n−m 1

2q

q!

(q − m)!(n − m)!
, (A8)

which indeed vanishes for vanishing pump amplitude F → 0.
The expression for the bosonic coherence is obtained in a

similar way. The general formula for 〈b〉 is

〈b〉 = F

�ω + iγ /2

F
(
1 + c,c∗,8

∣∣ F
U

∣∣2)
F

(
c,c∗,8

∣∣ F
U

∣∣2) , (A9)

and the leading term in the geometric function appearing in
the numerator is

F(c + 1,c∗,2z) 
 	(c + 1)	(c∗)

	(c + 1 + q)	(c∗ + q)

(2z)q

q!
. (A10)

Using Eq. (A5), we find

〈b〉 = −(q − 1)
F

�ω
. (A11)
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