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Here we demonstrate that photocurrent noise reduction below the standard quantum limit and modal
anticorrelation can arise in a two-mode coupled vertical external cavity surface emitting laser system with a
common pump. This effect occurs due to correlated loss of laser modes. It is possible to suppress noise below
the standard quantum limit even for Poissonian coherent pumping, whereas the regularity of the pump can be

harmful for nonclassicality.
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I. INTRODUCTION

Semiconductor lasers are by far the most common lasers
that one finds around nowadays. However, despite being such
common devices, they are still actively researched, modified,
and improved. They can be used for quantum communication
and informatics, in particular, for generating nonclassical
states of radiation. Since the pioneering prediction by Golubev
and Sokolov [1] (and it was a quickly confirmed prediction
[2]), it is well known that a semiconductor laser driven by a
regular low-noise current is able to produce photon-number
squeezed states of light. One should have equal amounts of
emitters of the active media pumped in equal intervals of time,
so the emitted photons tend to be antibunched.

Here we demonstrate that the photocurrent noise suppres-
sion below the standard quantum limit (which is usually
associated with photon-number squeezing) in semiconductor
lasers [namely, in vertical external cavity surface emitting
lasers (VECSELSs)] can be reached by an entirely different
mechanism. Namely, it can occur due to coupling of two modes
to the same emitter with quickly decaying populations and
polarization (which we shall term here as “correlated loss™).
And for this kind of noise reduction to appear, the regularity
of the pump might be practically irrelevant.

It is well known that coupling to the same emitter induces
correlations between field reservoirs [3]. Also, correlated
losses are quite common in situations, where one has two
or more systems (in our case, field modes) coupled to the
third lossy system. Interference arising in this case was shown
to lead to entanglement between modes even in the absence
of direct interaction between them [4,5]. Correlated loss
can lead to the appearance of nonlinear coupling between
modes and even to nonlinear loss producing nearly ideal Fock
states [6,7]. Notice that to have a correlated loss with all
consequent nonlinear effects arising, one generally needs to
have a hierarchy of time scales present in the system. Dynamics
of the modes should occur on a much slower time scale than
dynamics of the dissipating systems coupled to these modes.

Here we demonstrate that in the system of two coupled
VECSELSs with a common pump, a correlated loss can arise
and lead to the appearance of photocurrent noise reduction
below the standard quantum limit (SQL). It occurs when this
systems acts as a class-A laser, and the population inversion
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lifetime is much shorter than the photon lifetimes in both
modes. Since lasing emitters of the active media are coupled
simultaneously to both modes, quick decaying emitters disen-
tangle from them giving rise to effective nonlinear coupling
between modes (similarly to dispersive atom field producing
Kerr nonlinearity in EIT media [9-11]). Excited emitters
of the active media emit either in one or the other mode
without the possibility of re-absorbing emitted photon. Such
an interference of emission channels gives rise to strong
anticorrelation between modes. It was already demonstrated
that VECSELs can be class-A lasers [12,13]. Moreover, a
scheme with coupled VECSELSs generating two output linearly
polarized modes of slightly different frequencies was recently
realized in experiment and demonstrated as a class-A laser [8].
This scheme we adopt as a basis for our theoretical model. We
predict that in the setup similar to the one used in Ref. [8],
noise reduction below SQL might occur for each individual
mode. Also anticorrelation between modes can arise even for
the Poissonian pumping (for example, with the active region
excited by an external laser beam). However, our results are not
limited to this particular scheme, and can be easily generalized
to any kin of lasing devices with correlated loss.

The outline of the paper is as follows. In the second section
we introduce the model of two coupled VECSEL systems,
write down quantum Langevin equations for them, discuss
parameters of the scheme, and describe how the correlated
loss and nonlinearities can arise with the example of the
simplified particular case of the scheme. In the third section
we derive equations for collective variables (polarizations and
populations) and discuss a way to describe pump statistics
taking into account partition noise. In Sec. IV we consider
quasiclassical equations and demonstrate that equations for
modal amplitudes can be reduced to equations for A-class
lasers. In Sec. V we investigate statistics of small fluctuations
around stationary values of modal amplitudes, collective
populations and polarizations, and discuss the obtained results.

II. THE MODEL OF TWO COUPLED VECSELS

Now let us consider a quantum model of two-frequency
VECSELs in the configuration described in the paper [8].
There, two coupled VECSELs were created by using a
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FIG. 1. (a) An illustration of the active media regions generating
lasing modes. Emitters of region 1 (denoted as R1) interact only with
modes denoted as “a,” emitters of region 2 (denoted as R2) interact
only with modes denoted as “b,” and emitters of region 3 (denoted as
R3) interact with both groups of modes. (b) A scheme of levels of the
Jjth emitter of region Rx.

two-modal external cavity with spatially separated modes.
Spatial separation of modes was achieved by introducing a
birefringent crystal inside the laser cavity. Modes overlap
on the surface of the active media (which is rather thin
for VECSELSs), and the pumped region encompasses all the
surface. A schematic arrangement of the active media regions
participating in the generation process can be seen in Fig. 1(a).

A. Basic equations

Considering our VECSEL model, we use the already
well-established four-level spin-flip model for the description
of emitters of the active media [14]. For the single-frequency
VECSEL the quantum theory was already extensively de-
veloped and elaborated on the basis of Langevin equation
formalism [15,16]. The model was shown to give quite
accurate descriptions of VECSELs’ lasing and to represent
adequately a complicated polarization dynamics appearing in
this kind of laser. Each individual emitter and charge carrier of
the active semiconductor in this model is described by a four-
level system (actually, two two-level subsystems coupled by
spin-flip interaction). Lower levels of this model correspond to
the unexcited states of the semiconductor medium, i.e., without
electron-hole pairs. Upper levels correspond to the excited
states with electron-hole pairs. Two two-level subsystems are
taken to represent states with different (and opposite) angular
momenta. We assume that each two-level subsystem is coupled
to the single circularly polarized mode with a direction of
polarization corresponding to the angular momentum of the
state, i.e., if one of the two-level subsystems is coupled to the
right-polarized mode; then the other subsystem is coupled to
the left-polarized one. The scheme of levels of the medium is
depicted in Fig. 1(b).

Now we proceed writing down a system of quantum
Langevin equations for the interaction of the field with
individual emitters along the lines indicated in Ref. [15].
Let us introduce bosonic annihilation operators da., l;i,
corresponding to circularly polarized (in opposite directions
for + and —) modes of groups “a” and “b.” Then, for these
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modal operators we have the following system of equations
[15]:

day A . -
7 = —(k; +iwg)ds — (Kap + lwap)a$
—iga| Y060 + Y 06— )i
jER1 leR3
+ ﬁ:iv
db. . s
e —(kp +iwp)bs + (kpp + iwpp)bs

—igp [Z Ot — )0 + > 6

t—1) o,i}
keR2 leR3

+ fos, (D

where operators o, denote transition operators from the
upper to lower level of the jth emitter for corresponding
circular polarizations. Using notations of the state vectors
corresponding to the emitter levels given in Fig. 1, one writes

o, =1+, Rx,j)(2+,Rx,j|, J € Rx,

with o, j+ being its Hermitian conjugate. Quantities «,; are
decay rates for modes a,b. We assume that the linear dichroism
is present, so, modes of different linear polarization decay with
different rates. This difference is represented by parameters
Kkap and kp,. Quantities g, ; are the emitter-field interaction
constants for corresponding modes with frequencies w, and
wy,, respectively. Parameters w,, and wy, represent coupling
between modes of different circular polarization appearing due
to linear birefringence.

For the model we adopt the simple injection-type pumping,
an excited emitter (electron in the active zone and the hole
in the valent zone) appears at a random time moment.
Step functions O(t — t(x)) are describing such a process of

driving the active media. So, the function ®(¢ — t,ix)) describes
switching on the interaction of the field with the kth emitter
of the xth region. Statistics of time moments t(x) defines the
type of the pumping (regular, Poissonian or other; for details
see Ref. [17]).

Operators fa,bi represent quantum Langevin forces in-
troduced into equations to account for quantum noises (in
particular, to preserve the correct commutation relation for
modal operators). They are introduced in the standard manner
(see, for example, a review by Davidovich [18]). We shall
specify their properties later.

Now let us proceed with equations for single-emitter
transition operators for different active regions depicted in
Fig. 1:

5,0k = ~(rL +iwojy + i

+iga®( — 1) (AL —Afl)as, e RI,
5,0k = ~(re+iwojy + fre

+ig,O(t — 1) (A7) — a'))bs. j e R2,

063819-2



QUANTUM CORRELATIONS AND NONCLASSICALITY IN A ...

d _ . — ro . €
Top = —(yL+iw)o + fl + 0t — t >)

x (A7) =A%) (gatix + gsbs). j € R3. (2)

Here the parameter y,; is the dephasing rate of two-level

subsystems of the emitter; w is the transition frequency.
Operators ﬁ(lvi) describe the population of the yth level of the

jth emitter of the xth region:
A% = |24, Rx, j) (2%, Rx, j],
A} = |14, Rx, j) (1%, Rx, j],

where j € Rx. Operators f;’i represent the corresponding
Langevin forces; these operators are independent. We discuss
them in the next subsection.

Finally, let us write down equations for single-emitter
operators describing populations. For upper levels these are

d . ) NCRNG)
27 e T TV ve(AGL —f3)
. LDy - 22) .
+ig [O(r —1;))ako . —He]+ fi2, jeRL,
d
~(2) ~(2) NG NG
2 e T e T ve(Aji —ijz)
Ta(r — VAT o~ )
+tg;,[O(t 3 )biaji H.C.] + /L, JER2
d
~(2) ~(2) ~(2) ~(2) . (3)
P yc(nji —nj;) +l®(t -1 )
A n~ — A2 .
X [(gaajE + gbbl)aji —Hecel+ f;i), Jj € R3.
3)

Here y, is the decay rate of the emitter’s upper levels; y, is the
rate of spin flips between levels |2 + ,Rx,j) and |2—,Rx, j).
o e : -
perators f, represent corresponding Langevin forces.
Equations for populations of lower levels are as follows:
d ~(1)

A1 . 1
Enji = —ylnji—i-f;i)—lg@(t—tj(- ))

x (@lor, —He), jeRI,

d . RO O )
Enjiz—ylnji+fji—lg@(t—tj ) (4)
x (blo, —He), jeR2,

d A
~(1) NN O RPN

x (@l +bl)o;, —He), jeR3.

Here y, is the decay rate of the emitter’s lower levels; operators
fj(j:) represent corresponding Langevin forces. Notice that we
are assuming no spin flips between lower levels of emitters. It
is really unimportant for the considered scheme because the
decay rate of lower levels y; is taken to be far exceeding that
of upper levels y».

B. Langevin forces

Here we describe Langevin forces in Egs. (2)—(5); First of
all, they are § correlated, i.e., for any two forces f,(¢) and
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f,(t) one has

(A F(D) = diy ()8t — 1),

where brackets (. ..) denote quantum averaging. So, d,,(t) are
c-number functions. However, they do generally depend on
stochastic variables, namely, emitter arrival times. First-order
averages of Langevin forces are zero: ( fe() = 0.

Then, we assume that Langevin forces for different emitters
of different regions are independent quantum variables, so, for
any two forces corresponding to variables of different emitters,

frj(®)and fri(1), j # k,onehas ( fr;(t) fri(t)) = 0.Equally,
quantum Langevin forces for modes of a and b groups are
independent.

Thus, we proceed to nonzero second-order correlation
functions along the lines given in Refs. [15,18]. Assuming
that there is practically no thermal noise of field modes at
optical frequencies, one has

(Fe O fli(0) = 26,8t — 1),
(fer ) fl () = 20,80 — 1),

where x = a,b.
The operators of Langevin forces for emitters’ populations
are self-conjugated, so in all regions one has

(F2OF2@) = 8¢ = Dyalafh) + ve(F) + (A7)
(FROFZ@) = =86 = re((AF) + (352)). (©6)
(fL0 7 L@) = nial)se — o).
For transition operators one has in the same way,
([Fr0] Fru@) = 66— o)

x [@y1 —y2 = vla) + ve(a?)].
(f.0[fr@]) = 8¢ — Dy — wA). (7)

Finally, we write down cross correlations of Langevin
forces for transition operators and populations:

(2.0 F2@) = 1+ v)lo)3 — o),
(72 F2@) = —yeloe)dt — 1), @8)
([ Afi(t)]T f_f'ﬁ(r)) = (GLE)S(I —1),

also valid for all three regions.

(&)

C. Parameters of the scheme

We consider realistic values of parameters of the scheme
outlined above in this section. They are close to those of
the experiment described in Ref. [8]. For these values the
scheme acts as a class-A laser. First of all, we assume that
the lower levels of emitters are emptied very rapidly, i.e., ¥,
is sufficiently large to exclude adiabatically the lower level
populations. Actually, rapid decay of lower level populations
is a condition of this model applicability for semiconductor
lasers; see, for example, Ref. [19]. Then, we make a realistic
assumption about dephasing in the active media being very
rapid, so the decay rate y, far exceeds the upper level decay
rate ;. Finally, we make an assumption of the class-A laser:
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We take the upper level decay rate to be far exceeding modal
decay rates, «, 5 and K, 3. S0, the following hierarchy for the
time scales takes place in our model:

Ka,bsKap,bp LKV LV (9)

In addition, we assume that the interaction constants g, ; are
small in comparison with the the upper level decay rate y;.

D. Toy model for correlated loss

Now let us demonstrate that satisfying the condition (9), one
can get a nonlinear coupling between modes. For illustration
we take the simplified model of just two field modes of
the same frequency coupled resonantly to a single two-level
system subjected to strong dephasing and population loss.
We describe this simplified model with the following master
equation for the density matrix p, written in the basis rotated
with the emitter transition frequency,

d
5P= —iglot(a +b) + H.c.,p]

+ (yLL(o2) + 2 Lo )P, (10)

where the dissipator £(x)p = 2xpx’ — xTxp — pxfx.

The condition (9) allows one to eliminate adiabatically off-
diagonal matrix elements (k|pl|l), where k,l = 1,2; k #1,
since they decay with a large dephasing rate y, . For times
much exceeding yl_l one can write

&2
(klpll) ~ —i—(klno;pll),
YL

where i = (a + b1)(a + b).
So, the master equation is reduced to one describing a
dispersive coupling of modes with a two-level system:

d g . _
—p ~ =2i—[ho;,pl + 2 Lo )p. (11)
dt Vi
Obviously, a coupling between modes has arisen as a
consequence of correlated loss. So, modes become correlated
even in the absence of direct coupling between them as the
result of strong decay of the emitters coupled to the modes.
Moreover, under conditions leading to the dispersive
coupling similar to Eq. (11), Kerr nonlinearities can arise,
too [9-11]. Indeed, adiabatically eliminating emitter variables
from Eq. (10) while retaining terms up to g*/y} and averaging
over the state of emitter, it is not hard to obtain for the reduced
density matrix the following expression:
2 4
Lo n 28 ap) - 4i i 1. (12)
dt Y1 VL
Thus, one has both linear and cross-Kerr coupling between
the modes. Provided that modal losses are sufficiently low, self-
Kerr and cross-Kerr nonlinearities appearing in Eq. (12) are
known to be able to lead both to photon-number squeezing of
individual modes and to anticorrelations of modes [9-11,20].
As will be seen below, it is just the case for our class-A coupled
VECSELs.

III. COLLECTIVE EQUATIONS

The next step is to move from single-emitter equations
to equations for collective operators describing ensembles of
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emitters in different regions of active media. Such collective
operators can be introduced in a standard manner (see, for
example, Refs. [15,17,18]). So, introducing for clarity different
notations for different regions, we obtain for polarizations,

L =—i Yy Ot - t)o L.

Jj€ERI

0r=—i Y o

JER2

+=—I Z @(t — tf))aj_i.

JER3

t =170y, (13)

oy

For collective population operators we have

My =Y 0t —1i")a%,

Jj€ER1
A 2 NG
Nye =)0 —1?)al, (14)
JjER2
(3) (y)
Rve =2 0(r—17)i,
JER3

where y = 1,2 denotes the emitter level.

In this section we derive equations for collective variables
(14,15), perform averaging over arrival times of emitters via
injectionlike pumping, and calculate quantum Langevin forces
corresponding to the introduced collective operators.

A. Equations for collective variables

First of all, let us write equations for modal operators. From
the system (2) one has

day . . . ~
ke —(Kg +iwg)as + (Kap +iwap)as
+ga(ﬁi + éi) + .ﬁlia
. (15)
db . .
d—; = —(kp +iwp)bs + (kpp + iwpy)bx

+85(0x + Ei) + frs,

As follows from Egs. (3), (14), and (15), equations for
collective polarization operators are

EP:I: = —(yL +iw)Pe + go(Mor — M11)as + FY,
d . o .
770+ =~ +iw)0s + (N — Ni)b + FL,
d . V.

o= —(yL +iw)Ex + (A — A1s)

X (ga0+ + gpbs) + FE. (16)

Collective Langevin operators for these equations are

FPe% = 3 (=)o,
jER1,R2,R3
+ Y e(—i"Nfn. an
jER1,R2,R3

Correlation properties for these operators will be given in the
next subsection.
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Equations for collective populations are not so trivial to
derive as those given above. Equations (16) and (17) remain
invariant after averaging over arrival times (of course, it holds,
if one assumes that operators in these equations are not
correlated through it; such an assumption is obviously valid
near the stationary regime that we are mostly interested in;
see Ref. [17]). It is not so for equations describing collective
populations, since the noise for populations is biased (has
nonzero average) due to the presence of the pump. We assume
that emitters arrive fully excited, and become with equal
probability either + or — excited subsystems of each VECSEL.
Let us for the time being denote these biases for the upper-level
population collective noises as R,, x, denoting regions as in
Fig. 1. As follows from Egs. (4), (14), and (15), equations for
operators of total upper-state populations are

%MH =R, — y2Moy — ye(Moy — Mz;)
—ga@L Py + Play) + FIL,

%szt =R, — )/2NZ:I: - VC(NZ:t - Nz:F) 18)
— g(bl 0s + OLb) + FY,

© Row = Ry~ yoas — yelhas — Ao — (gedl

+ b)) Es + El(guas + gpbi)) + FL.

In the system (19) the collective Langevin operators are

BN = N s =)
JjERL,R2,R3
+ Y 0=t~ Riss (19)

jER1,R2,R3

From Eq. (19) it is clear that parameters R; 3 are average
pump rates (i.e., emitter injection rates) of emitters of the
certain type (i.e., + or —) in corresponding regions. Indeed,
it is easy to see that with our way of driving one has (see the
derivation in Ref. [15])

< ) 5(t_t;l’2»3>)ﬁg> = Rins,

JjER1,R2,R3 s

where (. ..); denoted averaging over the arrival times.

In our scheme of two-frequency VECSEL the pumping
source for all three regions is the same [8]. So, respective pump
rates are not independent parameters. Since we are assuming
that density of emitters is the same in all considered regions,
the average pump rate for every region is simply proportional
to the size of this region. Thus, we write

R3 = &R, + R3) = /& (R, + Ry), (20)

where parameters &, describe the respective sizes of the
regions of modal overlap Rj, relative to total sizes of regions
interacting with modes “a” and “b.”

Finally, we write down equations for lower-level collective
populations deriving them from Eq. (5). Notice that emitters
are taken to be injected being completely excited, i.e., they are
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on upper levels. Thus, we have

d . X . s sta

= li:_V1M1i+F11‘i+ga(aTiPi+Piai)»
R = e+ B+ (L0 + OLb)

dr 1+ = —Y1V1+ 1+ T 8 0L+ +b+),

J 2D
EIA\i = —pAi+ FA + ((&ﬁl + gbgl)@i

+ @J:[t(ga&:t + gpb2)).

In this system the collective Langevin operators are

R S T

jER1,R2,R3

1,2,3 A(1
+ Z O - Y. @
JjERL,R2,R3

It should be pointed out that statistics of arriving times t}‘2‘3

is defined by the character of the driving process and might
influence states of the emitted modes. This statistics affects
correlation properties of Langevin operators, which are to be
discussed in the next subsection.

B. Correlations functions for collective Langevin operators

Notwithstanding the fact that collective variables are com-
posed only from emitter operators of the same region, operators
of collective Langevin forces for different regions are not
independent and their cross correlations are not always zero.
It occurs because of the presence of the same driving source
for all three regions. Naturally, such a driving partition can
give rise to cross-region correlations. Here we consider them
generalizing a simple and illustrative procedure described in
detail in Ref. [17]. Using it, one obtains

< S s )0 - >>

Jj€E€Rx,keRy P

R(R, P
R 2’
where the parameter p describes the regularity of the pump
and R = R; + R, + R;. The value p =0 corresponds to
the Poissonian pump (for example, as it is for pumping
the active region with the external laser field in Ref. [8]). The
value p = 1 corresponds to the regular pump when emitters
arrive at the active region with a constant rate. However, even
in this case either “+4” or “—” subsystems are excited with
equal probability; that is the reason for having p/2 instead of
pinEq. (23). Values0 < p < 1 correspond to partially regular
pumping. One can see from Eq. (23) that for Poissonian pump
noise, correlations between regions do not arise, whereas for
regular pumping one has cross-region correlations. As we shall
see below, such a partition noise negates a noise-suppression
effect of the regular pump. Photon-number squeezing in our
two coupled VECSEL scheme arise solely due to the effect
of the correlated loss, i.e., due to interference of emission
channels.
Thus, from Eq. (19) it is possible to get second-order
correlation functions of the collective Langevin forces for

= (R + R})8,y — (23)
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collective upper-state populations. For nonzero correlation
functions of the same regions one has

EY (B R,
(FL L) = 86— DR, (1 - ?g)
+8(t — D)(nYor + ve(Yor + Yo5)), (24
N N RZ
<F21:—L(I)F22E(T)) == — T)?yg — Y8t — 1) (Yoz + Yo3),

where Y = M,N,A, and, simultaneously, y = 1,2,3. For
cross-correlation functions of different regions one has

R 2
XF Y 25)

where X,Y = M,N,A, and, simultaneously, x,y = 1,2,3.
Variables without “hats” denote averages of corresponding
quantum variables, i.e., (§) = s, and averaging is assumed to
be done over the distribution of arrival times, too.

Since the emitters arrive completely excited, nonzero
second-order correlation functions of the collective Langevin
forces for collective lower-state populations are simpler than
Egs. (24) and (25):

(FLLOF]L()) = 8(t — DnYis, (26)

where Y = M,N A.
For autocorrelation functions of collective polarizations one
has

. . R . R.R
(FXOEL(D) = (BXOF (1) = =8¢t — 1) (—y 5) :

X #7Y,

([FLOIEL (D)) = 8t — D(QyL — y2 — vo)You
+ VCYZ:F + Ry)9 (27)
(FXYOIEL (D) = 8¢t — 1)Q2y1L — y1)Yi4,

where ¥ = M,N, A and, simultaneously, y = 1,2,3.

For nonzero cross-correlation functions of noises of collec-
tive polarization and populations for the same region it follows
from Egs. (17), (19), and (22) that

(FXOFL(D) =8t — D)2 + vo) X,
(FfOF (D) = =8¢t — D)y X, (28)
([FXOIEY (1) = 8¢t — DI XE,

where X = P, (Q, E and, simultaneously, Y = M,N,A.

Correlation functions derived in this subsection will be used
for analyzing small fluctuations around stationary solutions of
Egs. (16), (17), (19), and (22).

IV. QUASICLASSICAL EQUATIONS AND
STATIONARY SOLUTIONS

In this section we analyze collective equations (16), (17),
(19), and (22) in the quasiclassical limit, when one neglects
quantum correlations between variables, i.e., assumes that for
any two variables (xy) ~ (x)(y). We shall consider the case
where only two linearly and orthogonally polarized modes
persist in the whole system in the stationary regime. Thus,
we assume that for sufficiently large evolution times, t — o0,
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only amplitudes,

1
ay = —2(a+ +a-),

5

and

i
by = E(bf - b+)7

are nonzero. This regime was realized in the experiment
performed in Ref. [8]. It should be noticed that reaching such
a regime is not trivial, because VECSEL modal dynamics can
be quite involved. Generally, one can have four elliptically
polarized stationary modes in the considered two coupled
VECSEL system [16,21,22]. However, adjusting parameters of
the scheme (in particular, linear dichroism and birefringence)
one can obtain the desired regime with just two orthogonally
polarized modes surviving.

We assume also that the frequency difference between
surviving modes, A = w, — wp, is very small on the scale
set by other parameters of the problem. So, we shall assume
that the stationary regime is reached for times much less than
AL

Now let us demonstrate that in the quasiclassical limit and
under the time-scale hierarchy conditions (9) collective equa-
tions (16), (17), (19), and (22) lead to standard quasiclassical
equations for modal intensities of the class-A laser. To start
with, let us rewrite equations for upper-level populations (19)
in the quasiclassical approximation,

d
EM2i = R — yaMsy — ye(Mr+ — M>7)

+g4(ay P+ + Play),
d
—Nyx = Ry — 2Ny — Ye(Nyx — Nog)

dt
+ (b1 Q0+ + QL by), (29)

d
ZAZ:t = R3 — o Ao — Ye(Arx — A25)

— (8403 + gpb1)Ex + EL(gaa+ + grb+)).

Due to the very rapid spin flips [according to the condition
(9)] in the stationary regime one has Y, ~ Yo, for ¥ =
M,N,A. Also, if one is not far from threshold and the
modal amplitudes are small, it follows from Eq. (29) that
in this regime the upper-level population in each region is
proportional to the pumping rate in this region, i.e., Y+ « R,.
Taking into account Eq. (20) and the pump being common for
all regions of the active media, one comes to the following
conclusion:

Apyr = \/g(Mzi + Apy) = \/g(NZi + Agy). (30)

Now let us change the basis to the one rotating with the
modal frequency (as was pointed out above, we can safely
take equal modal frequencies), and introduce new collective
variables corresponding to regions coupled to certain modes,

Pr = Pr+ &y,
Mxi = Mxi + A)Cj:a

Qi =0+ + Bs,
Nit = Nyt + Ass,
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where x = 1,2. Then, our quasiclassical equations for modes
are

da
—= = —Kqa+ + (Kap + iwup)a:F + gapﬂ:a
dt
db 3D
d_ti = —kpbs + (Kpp + iwpp)bg + 85 Q.
For the collective polarization one has
by =~ +ivyP
—Pr=- iv
it Vi +
+ (Max — Mi)(8aax + 8pv/Eab),
d
EQ:N: =—(yL+iv)Qs (32)

+ Nox — Nix)(gobs + gav/Evas),

where v = w — w,.

Since the lower-state population is decaying very fast being
on the shortest time scale in the considered system, near
the stationary regime one has X, > X4, for X = M,N.
Thus, the stationary values of collective polarizations can be
estimated from Eq. (32) as

Moy
yL+iv
Nos
yL+iv

Py~ (84a+ + 8pv/Eabs),

(33)
Q. ~

(gvb+ + gav/Epas).

From these equations it follows that proportionality relations
similar to (30) hold for polarizations, too. It allows one to
rewrite the system (29) as

d
EM2i = R, — pyMox — Ye(Mar — Moy)

+ ((8ak + oy EDLPL 4 c.c),
(34)

d
ENZi = Ry — yoNox — ¥e(Nox — Nog)

+ (8o + ga/Epal) Qs +c.c)),

where R, = Ry + R3, R, = R> + R3. In the similar manner
one can write equations for lower-level populations, too.

Let us eliminate adiabatically low-level populations and
polarizations, taking into account the hierarchy of time scales
(9) and assuming that the system is not far from the threshold.
Then, from Egs. (31), (33), and (34) it is easy to obtain the
following equations for intensities of surviving modes:

dl, 5 )L+ rqal,

~ —2(Kg — Kq a )
dt i d + Ca(la + gahlb)
dIb rbIb
— & =2kp — kpp) I + ,
dt (K = Kep)y d + cy(Ip + Epala)

(35)

where 1, = |a,|*, I, = |b,|* and

V2 247
d= V2 1+ waE I'x = Ry,
Vi jan

2 2

g 8
==, ;xy=§x—;,

YL 8

X
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where x,y = a,b and x # y. Equation (35) was derived under
the condition that modal amplitudes are sufficiently small, so
that

d > cy(Iy + &4y 1), (36)

and quantities of the second and higher orders in c, I, were
neglected.

Equation (35) comprises equations for modal intensities
of class-A lasers [23]. They give the following stationary
solutions for modal intensities,

I =[g0—&&)]"

L[ &R
kx - kxp

2

—_— g}’R—y — —
Syky—ky,, dy.(1 Sy)]- (37

These stationary intensities are nonzero when pumping rates
exceed the threshold values,
- d YL
R, = _2(Kx - pr)- (38)
X
Finally, let us write down the stationary values of upper-
state populations,

- d R,
Moy ~ — ,
V2 d + Ca(Ia + Cablb) (39)
_ d R,

BTy dt ey + Cala)

It is to be noticed that the threshold values of the pumping
rate given by Eq. (38) are rather large for the considered system
being outside the “good cavity” limit (this limit holds for
|gx| > kx — Kkxp). These values are proportional to y, and for
a small detuning, |v| < y., they are also proportional to y, .

V. SPECTRA OF THE QUANTUM FLUCTUATIONS

So, let us assume that our system of two coupled VECSELs
is close to the stationary regime, and consider small fluctua-
tions of the output modes. To this end we assume that each
operator X, representing a variable of the system can be written
as

X =Xx+dx,

where X denotes the scalar stationary value and 8x is the
operator describing quantum fluctuation and satisfying the
same commutation relation as the original operator X. We
assume that (§x) = 0. Also, for simplicity sake we shall
assume that the stationary amplitudes of surviving field modes
are real in the basis rotating with the frequency w, (which can
be safely assumed for such a situation [15,16]).

After linearizing equations (16), (17), (19), and (22) with
respect to quantum fluctuation operators (similarly to the way
it was done, for example, in Refs. [15,16]), and eliminating
adiabatically fluctuations of the lower-level populations, one
obtains the following system:

d =

=X -DX + 7, (40)

= .
where elements of the vector X are quantum fluctuation

) -
operators of system variables, and elements of the vector Z
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are operators of corresponding Langevin forces (see Appendix
for the coefficients of these vectors and the matrix D, which is
a 26 x 26 matrix).

Our aim is to investigate the spectrum of photocurrents
produced by modes going out of our VECSEL system (for
example, in the scheme outlined in Ref. [8]). For simplicity
sake, let us assume that our photodetectors are of unit
efficiency, and losses of surviving modes are caused solely
by leaking through the partially transparent mirror. So, the
photocurrent is directly proportional to the number of photons
of the corresponding mode. Measuring spectra of individual
current fluctuation or cross-correlation fluctuation spectra, we
are getting quantities proportional to the following ones:
+00

([51x(9)51y(9)])=/ dre" ™ (81,(0)81,(1)),  (41)

—00
where (§1,(0)51,(t)) is the correlation function of the pho-
tocurrent fluctuation, x = a,b. Operators 61, = I, — (I,) de-
scribe fluctuations of the photocurrent of output modes.
Implementing the standard input-output formalism for
expressing averages for modes outside the cavity through
averages of modes inside the cavity (see Refs. [24,25]), one
can obtain from Eq. (41) the following expressions for the
normalized photocurrent fluctuation spectra:

Cax () = ([81: ()31 (S)]) /(L)
=1 + 4(Kx - pr)dxx(Q)’ (42)

and for the normalized cross-correlation function of photocur-
rent fluctuation of two output modes,

dap(2)
VCaa(DCh(2)
where quantities d,, are defined through second-order corre-
lation functions of modal operators as

(d ()dy () = d (S(Q + ), (44)

Cab(Q) = 4\/(Ka - Kup)(Kb - Kbp) (43)

with operators,
dy(Q) = 1(8a,(Q) + 8a_(Q) + H.c.), )
dp(Q) = 1(8b_(Q) — 8b,.(Q) + H.c.).

In Eq. (45) operators 6x(€2) are elements of the Fourier-
transformed solution of the system (40):

- =
X(Q)=[D-Q2]" Z(Q), (46)

— +00
z«n:f

oo

where
dte'® 7 (1).

For an illustration of the results described by Egs. (42)—
(46), let us consider the simplest symmetrical situation, when
both couplings overlap and modal decay rates are equal: g, =
8 =28 Ea =8 =&, Ko =Kp =K, Kap = Kap = Kp; assume

the following realistic hierarchy of time scales:
g=0.1x, «k, =0.5«, vy, =10k,

2 ’ 3 47)

ve = 107k, y; = 107.

Results of numerical simulation with parameters close to the
ones given by Eq. (47) are given in Fig. 2 for the normalized
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FIG. 2. (Color online) Spectra of the mode a photocurrent,
C,.(S2), for values of system parameters given by Eq. (47). (a) Spectra
for different values of pumping rate. Thick solid, dashed, and dash-
dotted lines correspond to R, = R;, = 1.001R,,1.01R,,1.011R, for
the coherent pumping, p = 0; dotted and thin solid lines correspond
to R, = R, = 1.01R,,1.011R, for the regular pumping, p = 1; the
overlap is £, = &, = 0.8. (b) Spectra for larger overlaps of VECSEL
active zones; solid, dashed, dash-dotted, dotted lines correspond to
&, =&, =0.5,0.6,0.7,0.8; the pumping is the coherent one, p = 0;
R, = R, = 1.01R,. (c) Spectra for smaller overlaps of VECSEL
active zones; solid, dashed, dash-dotted, dotted lines correspond
to & =&, =0.1,0.2,0.3,0.4; other parameters are as in (b); the
inset shows spectra for small frequencies for the same parameters
as in the main panel. (d) Spectra for different values of the
interaction constant; solid, dashed, and dash-dotted lines correspond
to g = 0.01«,,0.05«,,0.1k,; the pumping is the coherent one, p = 0;
the overlap is &, =&, =0.8; R, = R, = 1.01R,. For all figures
birefringence and the detuning between modal frequencies and the
emitter transition frequency are taken to be zero, w,, = w;, =0,
w, = w;  is given in units of .

spectrum of mode a, in Fig. 3 for the normalized spectrum of
mode b, and in Fig. 4 for the cross-correlation function (43).

First of all, notice that spectra of photocurrent fluctu-
ations of output modes a and b are drastically different
(notwithstanding the fact that for the chosen symmetric case
the stationary values of modal intensities are the same). An
explanation for this phenomenon can be guessed even from
the toy model described in Sec. IID: From Eq. (12) one
can see that the symmetric modal superposition is subjected
to nonlinearity, whereas the antisymmetric is not. So, for
orthogonally polarized modes one should expect different
noises. Then, it can be seen that spectral properties of
fluctuations are strongly dependent on the overlap between
active regions of VECSELs. It is possible to distinguish
three different regimes of fluctuations in dependence on the
overlap: the strong (approximately 0.5 < & < 1), intermediate
(0.1 < € £0.5), and weak (¢ < 0.1) overlap.

Let us start with the discussion of noise features common for
all three regimes. In Fig. 2(a) it is shown how the photocurrent
noise of the output mode a for fixed overlap is suppressed
more with the increase of the pumping rate. Quite significant
suppression of the photocurrent noise can be reached (say,
about 90%). However, with the used values of parameters
(chosen to make the system operating as a class-A laser)
one quickly comes out of the region of applicability of the
approximation used to derive the system (40). This feature
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FIG. 3. (Color online) Spectra of the mode b photocurrent,
Cpp(S2), for values of system parameters given by Eq. (47).
(a) Spectra for different values of pumping rate. Solid,
dashed, dash-dotted, and dotted lines correspond to R, = R, =
1.001R,,1.005R,,1.01R,,1.011R,; the overlap is &, =&, = 0.8,
p =0 [the parameters are as in Fig. 2(a), coherent pumping].
(b) Spectra for larger overlaps of VECSEL active zones; solid, dashed,
dash-dotted, dotted lines correspond to &, = &, = 0.5,0.6,0.7,0.8;
other parameters are as in Fig. 2(b). (c) Spectra for smaller overlaps
of VECSEL active zones; solid, dashed, dash-dotted, dotted lines cor-
respond to &, = &, = 0.1,0.2,0.3,0.4; other parameters are as in (b).
(d) Spectra for different values of the interaction con-
stant; solid, dashed, and dash-dotted lines correspond to g =
0.01«,,0.05k,,0.1k,; other parameters are as in Fig. 2(d). For all
figures the pumping is the coherent one, p = 0.

was commented upon in the previous section. So, for the
pumping rate exceeding the threshold value (38) only by 1.5%
the condition (36) is already breaking down. It is remarkable
that regularity of the pump can even diminish noise reduction
for the case [which is also illustrated in Fig. 2(a)]. The
reason for this is simple: The common pump for both coupled
VECSEL systems induces rather strong partition noise. It
obliterates the effect of regularity, whereas for the coherent
Poissonian pumping partition noise is not present. Also, it is
worth noting that the harmful influence of regularity is more
pronounced with the increase of the pumping rate, since the
terms describing the partition noise grow linearly with the
pumping rate [see Eq. (24)].

The photocurrent fluctuation spectrum for mode b depends
on the pumping rate in the same way as it is for mode a for the
fixed value of the overlap [Fig. 2(b)].

Another feature common for all three regimes is depen-
dence of the exhibited noise suppression on respective modal
losses. It should be stressed that for any significant suppression
of the photocurrent noise to appear one needs to have a rather
good cavity for the VECSELs. When one goes far away from
this limit, noise reduction degrades significantly [Figs. 2(d) and
3(d)]. For the coupling constant g, just two orders of magnitude
lower than the modal loss rate ¥ — kp,, any noise suppression
is already absent. This result is rather expected, since strong
modal loss is bound to destroy quickly interference effects
leading to nonclassicality (which is a well-known fact for
those trying to produce nonclassical states with Kerr-type
nonlinearity [20,26]).

Now let us discuss the dependence of photocurrent noise
spectra on the overlap between regions of the active media.
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FIG. 4. (Color online) Cross-correlation function C,,(£2), for
values of system parameters close to ones given by Eq. (47).
(a) Cross-correlation function for different values of pumping rate.
Solid, dashed, dash-dotted, and dotted lines correspond to R, =
R, = 1.001R,,1.005R,,1.01R,,1.011R,; other parameters are as
in Fig. 3(a). (b) Cross-correlation function for larger overlaps of
VECSEL active zones; solid, dashed, dash-dotted, dotted lines
correspond to &, = &, = 0.5,0.6,0.7,0.8; other parameters are as
in Fig. 3(b). (c) Cross-correlation function for smaller overlaps
of VECSEL active zones; solid, dashed, dash-dotted, dotted lines
correspond to &, = &, = 0.1,0.2,0.3,0.4; other parameters are as
in (b). (d) Cross-correlation function for different values of the
interaction constant; solid, dashed, and dash-dotted lines correspond
to g = 0.01«,,0.05«,,0.1k,; other parameters are as in Fig. 2(d).

Figures 2(c) and 3(c) show that the mechanism of photocurrent
noise suppression for the case is indeed the correlated loss.
In the regime of weak overlap (taking place approximately
for § < 0.1) for both output modes suppression is absent.
In this regime the system behaves as two nearly uncoupled
VECSELSs with coherent pumping and exhibits weak bunched
noise diminishing with an increase of the frequency (which
is typical for the individual single-mode class-A VECSELs
considered here [12,13]).

In the regime of the strong overlap (approximately 0.5 <
& < 1), the output mode a shows much larger noise suppres-
sion than mode b (which is a manifestation of noise depen-
dence on the modal polarization mentioned earlier). When the
overlap becomes smaller, noise for modes a and b behaves in
the opposite way. Noise decreases for mode a and increases
for mode b [see Figs. 2(b) and 3(b)]. An increase of noise
suppression for mode b continues well into the intermediate
regime, 0.1 < & < 0.5, reaching the maximum when approx-
imately half of the active media regions overlap. Whereas in
this regime noise reduction for mode a is rather weak.

Since our nonclassical noise suppression effect is produced
by the interference of the emission channels of emitters
arriving at the active media, i.e., by coupling of modes to the
same emitters subjected to strong losses, it is natural to expect
a strong intermodal correlation arising as the result of this
process (as is pointed out by the simple model considered in
Sec. II D, where it is demonstrated how the coupling between
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the modes arises for this case). Due to different behavior of
the photocurrent fluctuation spectra for modes a and b one
expects having a rather nontrivial cross-correlation spectrum
(43). Having nearly Poissonian noise of mode b and strongly
suppressed photocurrent noise of mode a in the larger overlap
regime, it is quite intuitive to see anticorrelations between
modes in this regime [Figs. 4(a) and 4(b)]. Also, it is not
surprising to have these anticorrelations diminishing with
a decrease of the pumping rate or emitter-field interaction
constants for the fixed overlap [see Figs. 4(a) and 4(d)].

However, notice that the maximum anticorrelation for the
large overlap is reached for small frequency regions where the
photocurrent fluctuations spectra for both modes are actually
super-Poissonian [Fig. 4(a)]. This is also a manifestation of the
correlated loss as an interference of the emission channels for
emitters arriving at the active medium. An individual emitter
emits a photon either to one mode or another, and due to a large
population and polarization losses the probability to have the
photon re-absorbed by the emitter is very low. This process
might not prevent noises of individual modes from exhibiting
bunching, but it induces anticorrelations between modes.

Maximal anticorrelation is reached in the intermediate
regime where the photocurrent spectrum of mode b exhibits
maximal noise reduction. With further decrease of the overlap,
anticorrelations are eventually washed out tending to small
positive correlations in the small overlap regime [Fig. 4(c)].
Notice that maximal increase of the anticorrelations has ob-
viously resonant character depending strongly on the overlap
and the frequency; the maximum anticorrelation is reached for
the overlap corresponding approximately to all three regions
R; being equally sized (see Fig. 1).

It should be noticed that correlations between modes are
even more sensitive to modal losses than nonclassicality of
individual modes [see Fig. 4(d)]. As should be expected, modal
losses into an independent additional dissipative reservoir are
prone to obliterate quickly the effect of the correlated loss (i.e.,
coupling to the same reservoir) [6]. One should really be not
far from the good cavity limit to have significant correlations
between modes in two coupled VECSELSs considered here.

VI. CONCLUSIONS

In this work we have demonstrated that the system of
two coupled VECSELs can indeed be a class-A laser, if
it is sufficiently close to the threshold. We have developed
a simple model based on the quantum Langevin equations
that leads to the semiclassical equations for the intensities of
two surviving orthogonally linearly polarized output modes
similar to the equations describing the class-A laser. We have
demonstrated that both suppression of photocurrent fluctuation
noise below the standard quantum limit and strongly negative
cross correlation (anticorrelation) are possible in the system. It
is remarkable that the mechanism of noise suppression arising
in this case is quite different from the already well-known
mechanism of inducing noise suppression through the regular
pumping. In our case nonclassicality arises through correlated
loss, i.e., due to simultaneous coupling of both modes to the
same emitter and quick decay of populations and polarization
of this emitter. It is demonstrated by disappearance of nonclas-
sicality for small overlap between active regions of VECSELs,
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when the dynamics of each VESCEL is essentially as for an
individual independent laser. For both strong and moderate
overlap it is possible to reach quite strong suppression of
photocurrent fluctuations (5—10 dB) and large anticorrelations.
Notice that regularity of the pumping does not enhance
nonclassicality available with coherent pumping. Actually, as
a consequence of partition noise arising due to the pump being
common for both VECSELSs, regularity of the pumping can
actually be harmful for nonclassicality.
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APPENDIX: LINEARIZED EQUATIONS FOR
QUANTUM FLUCTUATIONS

Here we write down vectors of variables and nonhomoge-
neous parts of the linearized system (40):

day Ja+
da_ fa-
(Sb+ fb+
Sh_ So—
t i
da Ja
sal f,j_
5bly N
sbl il
SPy Ff
SP_ F*
50+ F+Q
80- Fe
— o - FE
X=|sz |- Z=| 1% | (A1)
5P| [FP1f
sPl [FP]f
50 [F2]f
50" V2l
52l [FE]I
sat [FE]T
SMy, Ry
SM,_ F!
N
SN»y Fy
SNy FY
Aoy F3y
SA5_ Ff
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The 26 x 26 matrix D can be represented in the block form
as

Dssy  Dap Dyn
D=|{|Dps Dpp Dpn]|. (A2)
Dys  Dyp Dyy

Nonzero elements of the 8 x 8 matrix D44 are
Dya(j,j) = —k, for 1< j <4,
Daa(1,2) = Dpa(5,6)" = kap + iwgp,
Daa(j.j) = —kp for 5<j <8,
Daa(3,4) = Daa(7,8)" = kpp + iwpp,

and Daa(j,k) = Daa(k,j). The elements of the 8 x 6 matrix
D4y are zeros. Nonzero elements of the 8 x 12 matrix Dyp
are

j=125.6,
j=3,478.

Dap(j,j) = Dap(j,j +5) = g,
Dup(j,j) = Dap(j,j+2) = gp,

Nonzero elements of the 12 x 8 matrix Dp4 are

Dpa(j,j) = Dpa(j +6,j +4) = gaMax, j=12;

Dpa(j.j) = Dpa(j+6.j+4) =g Nox, j=34
Dpa(j+4.j) = Dpa(j 4+ 10,j +4) = go Aoz, j=12;
Dpa(j+2.j) = Dpa(j +8.j +3) = gphrs, j =34

where the stationary values of upper-level populations are
given by Eq. (39). Nonzero elements of the 12 x 12 ma-
trix Dpp are diagonal: Dpp(j,j) = [Dpp(j +4,j +H]* =
—y. —iv for 1 < j < 4. Nonzero elements of the 12 x 6
matrix Dpy are

Dpn(1,1) = [Dpy(T,D]* = gaay,
Dpn(2,2) = [Dpn(8,2)]" = gad—,
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Dpy(3.3) = [Dpn(9.3)]" = gpb,
Dpyn(4,4) = [Dpy(10,4)]" = gyb_,
Dpy(5.5) = [Dpn(11,5)]" = gady + gpby,
Dpy(6,6) = [Dpn(12,6)]" = gad— + gpb-_,

where stationary modal amplitudes are taken to be real and
positive (as was pointed out in Sec. V), and given by Eq. (37).
Nonzero elements of the 6 x 8 matrix Dy 4 are

[Dya(1,D]* = Dya(1,5) = g4 Py,
[Dna2,2)]" = Dya(2,6) = ga P,
[Dya(B.3)]* = Dya(3.7) = £, 0+,
[Dya(4.H)]" = Dya(4.8) = 8,0,
[Dya(5.D]* = Dya(5.5) = g &,
[Dya(6.3)]" = Dya(6,7) = g, &,
[Dya(5.2)]" = Dya(5.6) = g»E1,
[Dya(6.4)]" = Dya(6,8) = g,&_,

where stationary polarizations are given by Eq. (33). Nonzero
elements of the 6 x 12 matrix Dy p are

[Dyp(1,D]" = Dyp(1,7) = gady,
[Dnp(2,2)]" = Dyp(2,8) = gqa-,

]

]
[Dnp(3.3)]" = Dyp(3.9) = guby
[Dyp(4,4)]" = Dyp(4,10) = gob_,
[Dnp(5.5)]" = Dyp(5.11) = gady + gpby,
[Dnp(6,6)]" = Dyp(6,12) = gaa_ + gvb_.

Finally, nonzero elements of the 6 x 6 matrix Dyy are
Dyn(j,j)=—=y2—ycfor j =1,2...6; Dyn(j,j+ 1) =yc
for j = 1,3,5; also Dyn(j,k) = Dyn(k,j) for all j,k.
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