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Unified position-dependent photon-number quantization in layered structures
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We have recently developed a position-dependent quantization scheme for describing the ladder and effective
photon-number operators associated with the electric field to analyze quantum optical energy transfer in lossy
and dispersive dielectrics [Phys. Rev. A 89, 033831 (2014)]. While having a simple connection to the thermal
balance of the system, these operators only described the electric field and its coupling to lossy dielectric bodies.
Here we extend this field quantization scheme to include the magnetic field and thus to enable description
of the total electromagnetic field and discuss conceptual measurement schemes to verify the predictions. In
addition to conveniently describing the formation of thermal balance, the generalized approach allows modeling
of the electromagnetic pressure and Casimir forces. We apply the formalism to study the local steady-state field
temperature distributions and electromagnetic force density in cavities with cavity walls at different temperatures.
The calculated local electric and magnetic field temperatures exhibit oscillations that depend on the position as
well as the photon energy. However, the effective photon number and field temperature associated with the total
electromagnetic field is always position independent in lossless media. Furthermore, we show that the direction
of the electromagnetic force varies as a function of frequency, position, and material thickness.
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I. INTRODUCTION

The quantum optical processes and field quantization in
lossy structures exhibiting interference represent a fascinating
challenge to our understanding of wave-particle dualism,
interwined electric and magnetic fields, and wave-matter
interactions. The quantization of the electromagnetic (EM)
field in a dielectric medium has been widely studied during the
last few decades especially in layered structures [1–6]. It has
been established that the field operators obey the well-known
canonical commutation relations [4,5], but there are reported
anomalies in the commutation relations of the intracavity
ladder operators [7–11] leading to difficulties in defining a
well-behaving photon number. We have recently introduced
photon ladder operators associated with the electric field in a
way that is consistent with the canonical commutation relations
and gives further insight on the local effective photon number,
thermal balance, and the formation of the local thermal equilib-
rium [12,13]. This approach, however, neglects the magnetic
contributions that are important in determining the properties
of the total EM field, its energy density, and EM pressure.

In this paper, we extend our ladder operator formalism to
describe also the magnetic field and the total EM field in
layered structures. We present the photon ladder and number
operators for the electric and magnetic fields and express the
photon number of the total EM field in terms of the electric and
magnetic photon-number operators. The electric and magnetic
field associated effective photon numbers generally oscillate
even in the vacuum, but we show that the oscillations balance
each other so that the photon number associated with the total
EM field is constant in the vacuum as expected. We also
establish the relation of the local photon-number operators
to the field temperatures, EM pressures, and thermal balance
of the system providing insight on the physical interpretation
of the quantities. This is followed by applying the presented
theoretical concepts to study the position and photon energy
dependence of the effective electric, magnetic, and total EM
field temperatures and corresponding local densities of states

(LDOS) in a geometry of a vacuum cavity formed between two
semi-infinite thermal reservoir media at different temperatures.
In addition, the relation of the effective photon number to the
EM pressure is studied by examining the force exerted on lossy
and lossless material slabs placed inside the vacuum cavity.

II. FIELD QUANTIZATION

A. Noise operator formalism

The theoretical foundations of the present work originate
from the noise operator formalism developed by Matloob
et al. [5,6]. In the noise operator formalism, the field operators
are expressed in terms of the Green’s function G(x,ω,x ′) of
the Helmholtz equation and the bosonic source field opera-
tor f̂ (x,ω) obeying [f̂ (x,ω),f̂ †(x ′,ω′)] = δ(x − x ′)δ(ω − ω′)
describing the material state. For example, the equation for
the positive frequency part of the vector potential operator
is given by Â+(x,ω) = ∫ ∞

−∞ GA(x,ω,x ′)f̂ (x ′,ω)dx ′, where
GA(x,ω,x ′) = μ0j0(x ′,ω)G(x,ω,x ′), in which j0(x,ω) =√

4π�ω2ε0Im[n(x,ω)2]/S is a scaling factor, n(x,ω) is the
refractive index of the medium, � is the reduced Planck’s con-
stant, ε0 is the permittivity of vacuum, μ0 is the permeability of
vacuum, and S is the area of quantization in the y-z plane [5].
Similar expressions are valid for electric and magnetic field
operators Ê+(x,ω) and B̂+(x,ω) with GA(x,ω,x ′) replaced
by GE(x,ω,x ′) = iωμ0j0(x ′,ω)G(x,ω,x ′) and GB(x,ω,x ′) =
μ0j0(x ′,ω)∂G(x,ω,x ′)/∂x as defined in Ref. [12].

B. Photon operators

In any quantum electrodynamics (QED) description, the
canonical commutation relations are satisfied for field quanti-
ties, i.e., [Â(x,t),Ê(x ′,t)] = −i�/(ε0S)δ(x − x ′) [14], but the
same is not generally true for the canonical commutation
relations of the ladder operators. The dominant approach in
evaluating the ladder operators has been to separate the field
operators obtained from QED either into the left and right
propagating normal modes or into the normal modes related
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to the left and right inputs and the corresponding ladder
operators [8,10,15]. This is tempting in view of the analogy
with classical EM, but in most cases results in ladder operators
that are not unambiguously determined due to the possibility
to scale the normal modes nearly arbitrarily. Also other defini-
tions based on separately accounting for the noise contribution
have been reported [11], but they do not result in the canonical
commutation relations for the ladder operators either.

We have very recently presented a quantization scheme
that uses the requirement of preservation of the canonical
commutation relation [â(x,ω),â†(x,ω′)] = δ(ω − ω′) as a
starting point for defining the photon annihilation operator that
describes the electric field [12,13]. In the developed formalism
the electric field annihilation operator is given by [13]

âe(x,ω) =
√

ε0

2π2�ωρe(x,ω)
Ê+(x,ω)

=
√

ε0

2π2�ωρe(x,ω)

∫ ∞

−∞
GE(x,ω,x ′)f̂ (x ′,ω)dx ′,

(1)

where the factor ρe(x,ω) has been shown to correspond to the
conventional definition of the electric contribution of the local
density of EM states (electric LDOS) defined as [16]

ρe(x,ω) = ε0

2π2�ω

∫ ∞

−∞
|GE(x,ω,x ′)|2dx ′

= 2ω3

πc4S

∫ ∞

−∞
Im[n(x ′,ω)2]|G(x,ω,x ′)|2dx ′

= 2ω

πc2S
Im[G(x,ω,x)], (2)

where c is the speed of light in vacuum.
In this work, we unify the previously introduced electric-

field-based photon-number picture to the description of the
total EM field. For this purpose, we first define a mag-
netic field annihilation operator proportional to the magnetic
field operator written for positive frequencies as B̂+(x,ω) =
C(x,ω)âm(x,ω). Just like in the case of the electric field [12],
the normalization coefficient C(x,ω) is defined by using
the requirement that the canonical commutation relation is
fulfilled leading to the relation,

âm(x,ω) =
√

ε0c2

2π2�ωρm(x,ω)
B̂+(x,ω)

=
√

ε0c2

2π2�ωρm(x,ω)

∫ ∞

−∞
GB(x,ω,x ′)f̂ (x ′,ω)dx ′.

(3)

In Eq. (3), the magnetic contribution of the local density of
EM states (magnetic LDOS) is given by

ρm(x,ω) = ε0c
2

2π2�ω

∫ ∞

−∞
|GB(x,ω,x ′)|2dx ′

= 2ω3

πc4S

∫ ∞

−∞
Im[n(x ′,ω)2]

∣∣∣∣∂G(x,ω,x ′)
k0∂x

∣∣∣∣
2

dx ′

= 2ω

πc2S
Im[n(x,ω)2G{−r}(x,ω,x)], (4)

where k0 = ω/c and G{−r}(x,ω,x) has been defined as
an auxiliary Green’s function calculated for a structure
where all reflection coefficients have been transformed by
r(ω) −→ −r(ω). The transformation enables writing the
magnetic LDOS expression in a form resembling the electric
LDOS. In homogeneous media, the electric and magnetic
field annihilation operators are identical, but generally the
annihilation operator for the magnetic field is different from
the annihilation operator for the electric field due to different
spatial dependence of electric and magnetic fields as seen from
the definitions of GE(x,ω,x ′) and GB(x,ω,x ′).

The electric and magnetic photon-number operators
are obtained from the ladder operators as n̂i(x,ω) =∫

â
†
i (x,ω)âi(x,ω′)dω′, i ∈ {e,m}, and, therefore, their expec-

tation values are given in terms of the Green’s functions and
the source field photon-number operator as

〈n̂e(x,ω)〉 = ε0

2π2�ωρe(x,ω)

∫ ∞

−∞
|GE(x,ω,x ′)|2〈η̂(x ′,ω)〉dx ′

= 2ω3

πc4Sρe(x,ω)

∫ ∞

−∞
Im[n(x ′,ω)2]|G(x,ω,x ′)|2

×〈η̂(x ′,ω)〉dx ′, (5)

〈n̂m(x,ω)〉 = ε0c
2

2π2�ωρm(x,ω)

∫ ∞

−∞
|GB(x,ω,x ′)|2〈η̂(x ′,ω)〉dx ′

= 2ω3

πc4Sρm(x,ω)

∫ ∞

−∞
Im[n(x ′,ω)2]

∣∣∣∣∂G(x,ω,x ′)
k0∂x

∣∣∣∣
2

×〈η̂(x ′,ω)〉dx ′, (6)

where we have defined the source field photon-number
operator as η̂(x,ω) = ∫

f̂ †(x,ω)f̂ (x ′,ω′) dx ′dω′ and assumed
that the noise operators at different positions and at different
frequencies are uncorrelated. For media in local thermal
equilibrium, the source field photon-number expectation value
at position x is

〈η̂(x,ω)〉 = 1

e�ω/[kBT (x)] − 1
, (7)

where kB is the Boltzmann constant and T (x) is the temperature
distribution of the medium.

The expectation value of the total photon-number operator
describing the energy quanta of the total EM field is obtained
either by using a similar quantization scheme as for electric
and magnetic fields or directly written as an LDOS weighted
sum of the electric and magnetic photon numbers as

〈n̂tot(x,ω)〉

= |n(x,ω)|2ρe(x,ω)〈n̂e(x,ω)〉 + ρm(x,ω)〈n̂m(x,ω)〉
|n(x,ω)|2ρe(x,ω) + ρm(x,ω)

= ω3|n(x,ω)|2
πc4Sρtot(x,ω)

∫ ∞

−∞
Im[n(x ′,ω)2]

(
|G(x,ω,x ′)|2

+
∣∣∣∣∂G(x,ω,x ′)

k(x,ω)∂x

∣∣∣∣
2)

〈η̂(x ′,ω)〉dx ′, (8)

where k(x,ω) = ωn(x,ω)/c and the total EM LDOS is the sum
of the electric and magnetic contributions in Eqs. (2) and (4)
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given by

ρtot(x,ω) = ω3|n(x,ω)|2
πc4S

∫ ∞

−∞
Im[n(x ′,ω)2]

×
(

|G(x,ω,x ′)|2 +
∣∣∣∣∂G(x,ω,x ′)

k(x,ω)∂x

∣∣∣∣
2)

dx ′. (9)

The total field photon number in Eq. (8) will be shown
to be related to the total field energy and EM pressure
providing a meaningful definition for the photon number of
the total EM field. In contrast to the corresponding electric
quantities, the above total EM LDOS and the photon-number
expectation value are always constant in lossless media, as can
be easily shown by calculating the derivatives ∂ρtot(x,ω)/∂x

and ∂〈n̂tot(x,ω)〉/∂x, which are equal to zero when the
nonhomogeneous Helmholtz equation is fulfilled and the
refractive index at position x is n(x,ω) = 1. In the case of
thermal fields, the photon-number operators in Eqs. (5), (6),
and (8) also allow one to calculate effective local electric,
magnetic, and total field temperatures as

Ti(x,ω) = �ω

kB ln[1 + 1/〈n̂i(x,ω)〉] , i ∈ {e,m,tot}. (10)

C. Thermal balance

A particularly insightful view of the electric field photon
number is provided by its connection to local thermal balance
between the field and matter [12]. The spectral net emission
rate can be compactly written as a product of the electric LDOS
and the difference of the local source field photon number and
the electric field photon number as [12]

〈Q(x,t)〉ω = �ω2Im[n(x,ω)2]ρe(x,ω)[〈η̂(x,ω)〉 − 〈n̂e(x,ω)〉].
(11)

In resonant systems where the energy exchange is dominated
by a narrow frequency band, condition 〈Q̂(x,ω)〉ω = 0 can be
used to approximately determine the steady-state temperature
of a weakly interacting resonant particle [17]. This suggests
that the electric field temperature is experimentally measurable
by measuring the steady-state temperature reached by a
detector with a weak field-matter interaction that is dominated
by the coupling to the electric field. Similar temperature
measurement setup to measure the magnetic field photon
number is expected to be also possible using materials whose
field-matter interactions have been engineered to be sensitive
to magnetic fields instead of electric fields, using, e.g., micro-
coil sensors [18] or magnetic metamaterials [19] at least at
microwave frequencies. Another possible measurement setup
for the local electric field temperature could, for example,
use the transparent intracavity photodetector studied by Lazar
et al. [20,21]. Measuring the electric field at equilibrium
conditions using a movable transparent intracavity detector
allows one to determine the electric LDOS since the photon
number is known and constant. Then changing the cavity
wall temperatures and using the determined LDOS allows one
to calculate the position-dependent photon number from the
measured field. Measuring the magnetic field by using a similar
scheme is not straightforward at optical frequencies, but the
existence of the predicted phenomena could be demonstrated

at microwave frequencies by using micro-coil sensors that
practically do not disturb the measured magnetic field [18].
The electric and magnetic field LDOSs and photon numbers
together also determine the total EM field quantities.

D. Energy density and EM pressure

Despite its natural connection to the energy balance, the
photon-number operator related to the electric field can exhibit
oscillatory behavior, e.g., in vacuum cavities [12,13]. The total
photon-number operator presented in Eq. (8) does not share
the same peculiarity as it accounts for both the electric and
magnetic contributions, which balance out the oscillations. To
further study the physical significance of the total field photon
number, we will next discuss the energy density associated
with the electric and magnetic contributions, and their relation
to the total energy density and EM pressure.

The electric and magnetic field fluctuations and the
total energy density 〈û(x,t)〉ω = ε0|n(x,ω)|2〈Ê(x,t)〉ω/2 +
〈B̂(x,t)〉ω/(2μ0) for a single polarization and angular fre-
quency ω in terms of the position-dependent photon-number
operators are given by

〈Ê(x,t)2〉ω = �ω

ε0
ρe(x,ω)

(
〈n̂e(x,ω)〉 + 1

2

)
, (12)

〈B̂(x,t)2〉ω = �ω

ε0c2
ρm(x,ω)

(
〈n̂m(x,ω)〉 + 1

2

)
, (13)

〈û(x,t)〉ω = �ω ρtot(x,ω)

(
〈n̂tot(x,ω)〉 + 1

2

)
. (14)

In defining the total energy density, we have used the definition
accounting for the energy of the polarizability of the matter.
Furthermore, the media are assumed to be nonmagnetic. The
magnitudes of the field fluctuations calculated from Eqs. (12)
and (13) are continuous at interfaces as required by the
boundary conditions, but the energy density in Eq. (14) can be
discontinuous due to the effect of material polarizability.

Classically, EM forces are calculated using Maxwell’s
stress tensor [22,23]. We apply the Maxwell’s stress tensor
in the form,

↔
T(x,t) = ε0|n(x,ω)|2Ê(x,t)2yy + 1

μ0
B̂(x,t)2zz − û(x,t)

↔
I ,

(15)

where the classical fields have been replaced by their quantum

analogs and
↔
I is the unit dyadic presented in the Cartesian basis

(x,y,z) as
↔
I = xx + yy + zz. The mechanical force density

operator is given by [24,25]

F̂(x,t) = ∇ ·
↔
T(x,t) − 1

c2

∂

∂t
Ŝ(x,t), (16)

where Ŝ(x,t) is the Poynting vector operator and the last term
in Eq. (16) gives the force density experienced by the EM
field. In the steady state the expectation value of the last term
is zero since the expectation value of the Poynting vector does
not change in time. In one dimension the x component of the
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spectral force density expectation value then becomes

〈F̂x(x,t)〉ω = − ∂

∂x
〈û(x,t)〉ω

= −�ω

2

(
∂

∂x
ρtot(x,ω)

)
− �ω

(
∂

∂x
ρtot(x,ω)

)

×〈n̂tot(x,ω)〉 − �ω ρtot(x,ω)
∂

∂x
〈n̂tot(x,ω)〉.

(17)

The first term corresponds to the familiar zero-point Casimir
force (ZCF) [26,27], the second term is known as the thermal
Casimir force (TCF) [28–30], and the last term arising from the
changes in the total photon number is called a nonequilibrium
Casimir force (NCF) since it disappears at thermal equilibrium
when the derivative of the photon number is zero. The net force
on any solid object extending from x1 to x2 can then be obtained
as 〈F̂(t)〉ω/S = ∫ x2

x1
〈F̂x(x,t)〉ωdx.

The net force can be also obtained by using the concept
of EM pressure. The EM pressure along the x direction is

obtained directly from the stress tensor as −
↔
Txx , giving

〈p̂(x,t)〉ω = �ω ρtot(x,ω)

(
〈n̂tot(x,ω)〉 + 1

2

)
. (18)

Therefore, the net force on an object extending from x1 to x2

can be obtained as 〈F̂(t)〉ω/S = 〈p̂(x1,t)〉ω − 〈p̂(x2,t)〉ω.
In small cavities the zero-point Casimir force usually

dominates in the EM force. A possible measurement setup in
which the thermal and nonequilibrium contributions would be
essential is, for example, the measurement of force exerted on
a material slab placed in the middle of a symmetric cavity with
boundaries at different temperatures. In this case, the densities
of states on the different boundaries outside the slab would
be equal [ρtot(x1,ω) = ρtot(x2,ω)] due to the symmetry, and
therefore, the zero-point Casimir contribution would cancel
out. Then the spectral force on the slab simplifies to

〈F̂(t)〉ω
S

= �ω ρtot(x1,ω)[〈n̂tot(x1,ω)〉 − 〈n̂tot(x2,ω)〉]. (19)

Measuring forces on cavity walls also provides a possible
scheme for determining the total EM LDOS and the total EM
photon number inside the cavity. Knowing the source field
photon numbers and measuring the forces (1) at equilibrium
and (2) varying one of the reservoir temperatures, one can
unambiguously solve the unknown LDOSs and the EM photon
number inside the cavity. This is simplest in the nearly
monochromatic case where the emissivity of the reservoirs
are concentrated over a narrow spectrum, but it should also be
possible in the more general case. The total EM LDOS and
the total photon number can also be determined inside a cavity
structure by separately measuring the electric and magnetic
field LDOSs and photon numbers, which together determine
the total field quantities as discussed in Sec. II C.

III. RESULTS

A. Field temperatures

To investigate the physical implications of the concepts
presented in Sec. II we study the properties of the effective field

temperatures and the corresponding local densities of states in
a vacuum cavity formed between two semi-infinite media with
refractive indices n1 = 1.5 + 0.3i and n2 = 2.5 + 0.5i. The
temperatures of the left and right thermal reservoirs formed by
the semi-infinite media are T1 = 400 K and T2 = 300 K and
the width of the vacuum gap is 10 μm.

Figure 1 shows the LDOS for the electric, magnetic,
and total EM fields and the corresponding effective field
temperatures as a function of position. The electric LDOS
in Fig. 1(a) oscillates in the vacuum and saturates to constant
values in the lossy media far from the interfaces reflecting
the formation of partial standing waves due to interference.
The oscillation of the electric LDOS inside the cavity is
strongest at resonant energies �ω = 0.056 eV (λ = 22.1 μm),
�ω = 0.118 eV (λ = 10.5 μm), and �ω = 0.180 eV (λ =
6.89 μm). The oscillations in the electric LDOS manifest the
Purcell effect and the related position-dependent strength of
the field-matter coupling of particles placed in the cavity. The
magnetic LDOS in Fig. 1(b) also oscillates inside the cavity.
However, the positions of the peaks coincide with the minima
of the electric LDOS in Fig. 1(a). In contrast to electric LDOS,
the magnetic LDOS reaches its maximum values within the
semi-infinite media due to the low finesse cavity and different
dependence on the refractive index as can be seen in the latter
form in Eq. (4) compared to the electric LDOS in Eq. (2). The
total EM LDOS in Fig. 1(c) is constant with respect to position
inside the cavity. This illustrates how the EM energy oscillates
between its electric and magnetic forms in a way preserving the
total energy. However, the total LDOS is position dependent
and oscillatory near interfaces inside the lossy media since the
electric and magnetic LDOSs are not equal due to the bound
states related to the material polarizability.

The effective field temperature defined using Eq. (10) is
plotted for the electric field in Fig. 1(d). It has a strong
position dependence and it oscillates both in the vacuum and
inside the lossy media. The position dependence originates
from the nonuniform coupling to the two thermal reservoirs.
In the lossy media the oscillations are damped and the effective
electric field temperature saturates to the reservoir temperature
far from the interfaces. The characteristic distance for the
damping of the oscillations depends on the photon energy
and the material absorptivity and, in the selected example
structure, it has a typical value of the order of 10 μm increasing
for smaller photon energies and decreasing for larger photon
energies. Since the field-matter interaction takes place through
the electric field, the local electric field temperature directly
reveals the local material temperature required for having
no net heat energy exchange between the field and matter
making it an experimentally measurable quantity as discussed
in Sec. II C. The magnetic field temperature is plotted in
Fig. 1(e). It also has a strong position dependence, but the
peaks are located at different positions when compared to the
electric field temperature in Fig. 1(d).

The total EM field temperature in Fig. 1(f) is constant with
respect to position inside the cavity as the total EM LDOS
in Fig. 1(c). The position independence of the total field
temperature follows from the position independence of the
total EM photon number in the vacuum as discussed in Sec. II.
In contrast to the electric and magnetic field temperatures
in Figs. 1(d) and 1(e), the changes of the total EM field
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FIG. 1. (Color online) (a) Electric LDOS, (b) magnetic LDOS, (c) total EM LDOS, (d) electric field temperature, (e) magnetic field
temperature, and (f) total field temperature in the vicinity of a vacuum gap separating lossy media with refractive indices n1 = 1.5 + 0.3i and
n2 = 2.5 + 0.5i at temperatures 400 and 300 K. Solid lines denote the boundaries of the cavity and dashed lines denote resonant energies. The
LDOSs are given in the units of 2/(πcS).

temperature and photon number near interfaces are always
monotonic with respect to position, which is an expected result
for the photon number of the total EM field.

B. Electromagnetic forces

Next we study the Casimir force densities in a lossy cavity
filled with material having refractive index nc = 1.1 + 0.1i.
As before, the cavity width is 10 μm and the left and right
cavity boundaries have refractive indices n1 = 1.5 + 0.3i and
n2 = 2.5 + 0.5i and temperatures 400 and 300 K. In contrast
to the vacuum cavity case, the lossy cavity medium acts as
an additional field source emitting photons. In this work, we
calculate the temperature of the lossy cavity medium self-
consistently so that the photon emission equals absorption at
every point, i.e., the net emission rate in Eq. (11) is zero.

This also means that other heat conduction mechanisms than
radiation are neglected.

The force density contributions calculated by using Eq. (17)
are plotted in Fig. 2 as a function of the position and photon
energy. Since the refractive index forms step functions at
the interfaces, it follows from definitions (8) and (9) that
the total EM LDOS and the total EM photon number are
also discontinuous so that the force density contributions
contain delta functions at the interfaces. This cannot be seen
in the figures and it will give an additional contribution when
integrating the total force. The spectral component of the zero-
point Casimir force is shown in Fig. 2(a), the thermal Casimir
force in Fig. 2(b), and the nonequilibrium Casimir force in
Fig. 2(c). The zero-point Casimir force dominates especially in
the case of high frequencies except close to its zeros where the
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FIG. 2. (Color online) (a) The zero-point, (b) thermal, and (c) nonequilibrium Casimir force contributions of the spectral force density
in the case of a 10-μm wide lossy cavity with refractive index nc = 1.1 + 0.1i. The left and right cavity boundaries have refractive indices
n1 = 1.5 + 0.3i and n2 = 2.5 + 0.5i and temperatures 400 and 300 K. Solid lines denote the boundaries of the cavity and dashed lines denote
resonant energies.
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FIG. 3. (Color online) (a) The spectral force exerted on a lossy material slab with refractive index nslab = 1.5 + 0.3i inside the 10-μm wide
vacuum cavity. (b) The spectral force in the case of a lossless material slab with refractive index nslab = 1.5. The left and right cavity boundaries
have equal refractive indices n1 = n2 = 2.5 + 0.5i and temperatures 400 and 300 K. The center of the slab is positioned in the middle of the
cavity.

thermal and nonequilibrium contributions become important.
The thermal and nonequilibrium contributions decay at high
frequencies due to the smaller thermal excitation of the high
energy states. In contrast, the zero-point Casimir force does
not decay but increases with frequency since the materials
are assumed to be nondispersive in the studied frequency
range. One can also see that the zero-point and thermal
Casimir contributions both obtain positive and negative values
corresponding to forces to the left and right depending on the
position and photon energy. In contrast, the nonequilibrium
Casimir force is always positive since the derivative of the
photon number is negative in Eq. (17) because the total photon
number monotonically decreases towards the colder medium.
The direction and magnitude of the total force density depends
on the value of the integral when the spectral force density is
integrated over the frequency axis. The observable total force
exerted on a volume is the sum of the three force density
components integrated over the volume.

To learn more on the EM pressure under conditions where
the well-known zero-point Casimir force vanishes we study
the force exerted on lossy and lossless material slabs placed
in the middle of a symmetric vacuum cavity. In the case of a
slab in the middle of a symmetric cavity, the force is nonzero
only for setups that are not under thermal equilibrium since the
zero-point Casimir contribution to the force cancels resulting
in the force in Eq. (19). In contrast to the previous geometry,
the refractive indices of cavity boundaries are equal n1 = n2 =
2.5 + 0.5i, but the left and right reservoir temperatures are 400
and 300 K as before.

The total spectral force experienced by the lossy slab with
refractive index nslab = 1.5 + 0.3i is plotted in Fig. 3(a) as
a function of the slab width and photon energy. The force
is always directed towards the colder material. In the limit
of zero slab width, the force goes to zero since the volume
of the interacting slab material disappears. When the slab
width is increased, also the force increases. However, the
force disappears for low and high frequencies as the photon
energy �ω or the photon probability given by the Bose-Einstein
distribution becomes zero. Also note that the force becomes

zero for all slab widths and photon energies if the left and right
reservoir temperatures are equal.

The total force experienced by the lossless slab with real
refractive index nslab = 1.5 is plotted in Fig. 3(b). Comparison
with the case of a lossy slab in Fig. 3(a) shows that the
force strongly depends on losses. The force on a lossless slab
can clearly obtain negative values for some frequencies and
slab widths indicating that the force is unexpectedly towards
the medium at higher temperature while the energy flow
according to the Poynting vector is towards the medium at
lower temperature. This is called optical pulling force [31] and
it is expected to be possible because of the combined effect
of cavity resonances and the proportionally larger contribution
of the low energy photons of the lower temperature thermal
reservoir.

IV. CONCLUSIONS

The quantization approach we recently introduced to define
position-dependent ladder operators to describe the quantized
electric field and light-matter interactions was extended to
also describe the quantization of the magnetic and total EM
fields. The quantization is based on defining electric, magnetic,
and total EM photon ladder operators that by definition
obey the canonical commutation relations. The previous
electric-field-based quantization was only able to describe the
electric field photon number and local energy balance, whereas
the generalized approach also allows consistent quantum
optical description of the magnetic and total EM field photon
numbers, energy balance of magnetic interactions, radiation
pressure, and EM forces in lossy and dispersive structures. One
additional strength of the formalism is that formulas involving
photon-number expectation values are expected to generalize
to fields with any kind of quantum statistics, such as single
photon and laser fields.

We have studied the energy flow and induced EM forces in
cavity structures with cavity walls at different temperatures.
Our results show that the electric and magnetic field operators
and temperatures are generally position dependent under
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nonequilibrium conditions due to being defined in terms of
the position-dependent noise fields generating them. However,
the photon number associated with the total EM field is always
constant in lossless media as one might also intuitively expect
from a quantum number describing the energy density of the
total EM field. Furthermore, the direction of the EM force
in the cavity was shown to be position dependent producing
optical pulling and pushing forces at different cavity positions.

We expect that our model will give insight in studying the
optical energy transfer in nanodevices as well as modeling

optomechanical devices. In addition, extending the formalism
to quantum systems that are not limited to thermal fields could
possibly enable a versatile approach to model various quantum
optical experiments.
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