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Self-induced mode mixing of ultraintense lasers in vacuum

Angel Paredes,"” David Novoa,? and Daniele Tommasini'
' Departamento de Fisica Aplicada, Universidade de Vigo, As Lagoas s/n, ES-32004 Ourense, Spain
2Max Planck Institute for the Science of Light, Giinther-Scharowsky Str. 1, 91058 Erlangen, Germany
(Received 25 June 2014; revised manuscript received 17 September 2014; published 1 December 2014)

We study the effects of the quantum vacuum on the propagation of a Gaussian laser beam in vacuum. By means
of a double perturbative expansion in paraxiality and quantum vacuum terms, we provide analytical expressions
for the self-induced transverse mode mixing, rotation of polarization, and third harmonic generarion. We discuss
the possibility of searching for the self-induced, spatially dependent phase shift of a multipetawatt laser pulse,
which may allow the testing of quantum electrodynamics and new physics models, such as Born-Infeld theory
and models involving new minicharged or axion-like particles, in parametric regions that have not yet been

explored in laboratory experiments.
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I. INTRODUCTION

Ultraintense lasers are important tools for nuclear fusion,
ultrafast microscopy, or particle acceleration [1]. In addition,
the unprecedented photon concentrations at beam foci may
allow us to probe the quantum vacuum (QV) [2] in a regime
of extremely high luminosity and low single-particle energy,
complementary to the high energy and moderate luminosity
of charged particle pulses in conventional colliders. Even
for pulses comprising the electric-field amplitude below
the Schwinger limit Es = m?2c®/(eh) ~ 1.3 x 10" V/m [3],
quantum electrodynamics (QED) and several new physics
models, such as Born-Infeld (BI) theory [4] and models
involving minicharged or axion-like particles [5,6], predict
the existence of nonlinear corrections to Maxwell equations
in vacuum. Stringent laboratory constraints on the parameters
driving these corrections have been obtained from the searches
for vacuum birefringence on a low-intensity laser beam
propagating in a strong external magnetic field [7]. However,
they are still several orders of magnitude above the values
predicted by QED. Therefore, the search for the effects of the
QV on the propagation of optical beams is of great interest both
to test QED in the regime of low-energy photons and to search
for signatures of new physics. Although QV effects in the
interaction of lasers with matter have already been observed
[8], all-optical experiments are interesting for probing the
behavior of light in a different, matterless regime.

Several new petawatt and multipetawatt facilities are being
projected around the globe for the near-future. The growing
peak intensities that they will provide can hopefully be used
to test the QV [9]. This may be done by searching for
harmonic generation in an ultraintense standing wave [10]
or using frequency upshifting to increase the photon-photon
scattering cross section [11]. Another option is to study the
collision of two laser beams [6,12] or to devise a photon
collider [13]. Setups in which three beams coincide have also
been considered since they would allow for a clear signature
[14]. An array of intense laser beams can be used to create a
Bragg grating to deflect a probe pulse [15]. It has also been
argued that photon-photon scattering in vacuum may affect the
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propagation of a finite-size pulse in a waveguide [16] or in the
presence of background fields [17].

In this paper, we study the propagation and self-interaction
of a single ultraintense pulse in vacuum, which is of great
relevance since it occurs in any ultraintense laser facility and
will become increasingly important as higher intensities are
achieved. We explicitly compute the QV corrections to the
propagation of the beam under assumptions that are accurate
for the intensities that will be available in the not-too-distant
future. All the results are derived analytically for an incoming
Gaussian beam and are presented in a closed and rather
simple form, without the need for any numerical integrations.
Remarkably, we find that the nonlinear QV effects drive
the mixing of different transverse modes, resulting in a
self-induced modulated shift of the phase of the pulse. We
argue that this is the dominant effect under general conditions,
in principle, being observable at intensities lower than those
needed to measure other QV effects on the propagation of
a pulse [18-20]. All effects decrease for increasing waists, as
expected for the non-self-interaction of plane waves. We finally
discuss the possibility of searching for such self-induced phase
shift of the pulse in future multipetawatt facilities.

II. MATHEMATICAL FORMALISM

We use conventions in terms of the electromagnetic tensor
and its potential F,, = 9, A, — d,A,. Greek indices p and
v run from 0 to 3, with 9 = ¢~19,, 8; = 9, etc. Roman
indices will take wvalues i = 1,2,3. Einstein summation
convention is used. We take a mostly minus metric g,, =
diag(1, — 1, — 1, — 1) and €"'?> =1 for the Levi-Civita
tensor. The relation to the electric and magnetic fields is

0 E./c Ey/c E;/c
—E, 0 —B. B,
Fo = | 75 S )
—Ey/c B 0 -B,
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Assuming parity, Lorentz, and gauge symmetry, the most
general effective Lagrangian density for the electromagnetic
field F,, = 9,A, — 9,A,, up to O(F*) without derivatives
[38] of F'is

L=Lo+ELy+ELy, 3)

where &, and &7 are real parameters and Ly r are given by

1 € = -
Lo = ——€yc*Fu F*' = —(E> = *B),

4 2 , @
Lr = ﬁegc“(e/“/’” FuFop)* = Zegcz(E - B).

This effective action neglects the possibility of the creation of
real particles [8,21] and is valid for |E| < Es, hw < m.c?.
In QED, the nonlinear terms come from loops of virtual
electron-positron pairs, Yyielding the FEuler-Heisenberg
Lagrangian [22,23], in which the parameters take the values

8 3
2 ~6Tx 100 (5)
45(4meg)E J

where o >~ 1/137 is the fine-structure constant. In theories
beyond the standard model, such as the BI theory [4] or
models involving axion-like or minicharged particles [5], the
values of &, and &7 can be different [6]. The best laboratory
constraints on the £, and &7 parameters have been obtained by
the PVLAS collaboration [7]. Their failure to detect nonlinear
QV effects implies that

76 — 4 3
|‘§T3—5L| <1.7x 1072 mT —25%x10%.  (6)

In the particular case where & = &7, this limit is three orders
of magnitude larger than the QED prediction, thus leaving
room for the possible emergence of new physics. Note that
PVLAS does not bound BI theory, for which 4§, = 7&7. In
this article, we put forward an alternative setup to search for
this kind of QV effects. We show that our proposal can explore
regions of the &, &y parameter space that have not been
constrained by PVLAS, e.g., allowing us to test BI theory.
Furthermore, if the pulse is powerful enough, it can also
improve the sensitivity of PVLAS for any value of the ratio
&1 /&r and, possibly, lead to the detection of QV polarization
effects due to QED or new physics.
The Euler-Lagrange equations read

— 9y F"* + 5(5L€0c™)0u[(Fpo FP7)FH]
+ L (Ereoc®)eP P e ™ Fy 0. [Fp, F3,1 = 0. (7)

QED _ .QED _ . _
L - 5T :‘i:_

The nonlinear terms are small compared to the leading one
in situations conceivable for near-future facilities. Therefore
Eq. (3) can be solved using a perturbative expansion. Choosing
Lorenz gauge

9, A" =0, ®)
we get
A = Al + (ELeoc) AL + Ereoc) AL + O,  (9)

where A} solves JA;; =0, and A, and A7 encode the
leading nonlinear corrections and satisfy

OAS = J7 = 10,[(F,e FP7)F"],

OAG = Jf = LePr* e ™ F,,0:[Fg, Fs,).

(10)
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The currents on the right-hand side, linked to the QV polariza-
tion, are computed using Aj; (first Born approximation). The

electric field is E; = —9, A" — ¢3; A° and we define
E; = Eijin + (re0c”)E L + Greoc))eir + 0% (11
and write
O&iir = jip = =8, J{y — cd: Jx. (12)
The paraxial approximation considers a beam of
wavelength A =2m/k propagating in the z direction
f(x,y,z)e! @~k with a slowly varying envelope, 3, f < k f,
83 f <K k0, f. Hereafter, we require all the equations to be
satisfied at leading order in the paraxial limit. A solution of

the linear equations in this approximation, linearly polarized
along x, is

. Oy
Al =Re [elw-“) (O,f,O, —i f)} (13)

k
with f satisfying
Polf)=2ikd.f— 0 f —

A paraxial beam can be written as a linear combination of the
Hermite-Gauss transverse modes [24],

i /k ZO(Z _ iZO)m/2+n/2
Upmn(X,Y,2) = ,
[ 2m+nm!n!(z +1i Z0)1+m/2+n/2

()

o f =0. (14)

V1+(z/20)?

b, (Y ) s
V14 (z/207

where the H,, are Hermite polynomials and zo is an
integration constant (the Rayleigh length). These functions
solve Eq. (14) and form a complete orthonormal basis,

o0 o0
/ / wy UpgdXxdy = 8pbng. (16)

Since in the considered system there is third harmonic
generation, let us also introduce the paraxial operator for
frequency 3w,

Pso(f) = 6ikd. f — 0] f — 0}, f, (17)

15)

and the Hermite-Gauss modes v,,,(x,y,z), which are just the
Uy, With k — 3k.

The j ; in (10) and (12) include terms involving frequen-
cies w and 3w. Let us split the terms as

i = R[] 1)
Similarly, for the electric field we define
Eir = Re[e" &, 11 + I, 1], 19)
In the paraxial approximation, Eqs. (12) can be written as
Pol&iin) = jir: Pro(&irn) = jir. (20)

Given the function f that describes the incident beam, (13),
we can compute jj - using (10) and (12) and then solve (20) to
find the corrections to the electric field.
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We deal with these equations by expanding in modes.
Let us introduce some notation for the terms of frequency
w; analogous definitions can be made for the third harmonic
terms. Consider the expansion,

i =Y v @, @1)
where
Mf@%=/ /‘u%ﬁJdmy (22)
—00 J —00
Accordingly,
gAi,LT = Z ﬁyiy,,]y;T(Z)umn, (23)
with
2i k3Bl (2) = v (2). (24)

The correction to each component is found by solving the
corresponding set of ordinary differential equations with the
initial condition lim,_, _» B.:LT(z) = 0. The outgoing wave is
parametrized by

. 1
1- i,LT — /
10 B (9 = 5

—0Q

o0

Y (2)dz. (25)

III. CORRECTIONS FOR A GAUSSIAN BEAM

The Gaussian beam is the lowest order mode, f = A uqy,
where A is a real constant related to the power and energy den-
sity of the beam atits focusx = y =z =0as P = %eo cw?A?

and pg = nzuiz)c, where wy is the waist radius and zg = k w(z) /2

is the Rayleigh length. The paraxial approximation can be
ultimately considered as an expansion controlled by the small
parameter (k wo)~".

The differential equations for the electric field correction,
(20), of frequency w read

Puler) = 2M{K2220Gx* — 2%y — y) + (2 + 22)°
+ 2k (2 + z5)[i x*(z + 3i 20) + ¥*(z0 — i )1},
PoEer) = JMIZ + zo(—2k x* + 20)]
x [2% + zo(—=2k y* + z0)],
Py 1) = 4MK*Z2x y (x* — y?),
Py 1) = TMhxy{2i 2° — 42°2 + 2i 2 22

+ [k + 3y%) — 420l (26)
where we have defined the common factor
7
Adrickiz? k(x2 + y?
S AT I | KTy
(z —iz0)(z+1iz0) 2(z22 4+ 23)

27)

For each of the four fﬁT, there is an infinite number of y,,,(z)
nontrivial terms, (22). They can be found analytically since
the integration over the x-y plane only involves products
of Gaussians and polynomials. Therefore, the y,,,(z) are
quotients of complex polynomials which can also be explicitly
integrated to find B,,,(z) in (24). To illustrate this point, let us
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FIG. 1. (Color online) Absolute value of the coefficients of
the higher transverse modes 0 <m +n < 6 as a function of
z, for x-polarized modes. & = & is assumed and the verti-
cal axis is in units of Aslff

. Curves, from top to bottom:
“0
Uzo, Uo2, Uso, U2, U4, Uep, Ud2, U4, Ugs.

explicitly write the result for the correction due to &, to the x
polarization for the 00 mode,

3.74.3
oL . A’ck®zg

vog! = —i———",
o 4r (22 +22)°

A3 k3 5 3 3 3
By = . [ Gt ¥ Sz +3 <z + arctan i) ,

642 | (22+2)° 2 2
giving B;"(00) = —3gjif3. As a second example, consider
*0
the 60 mode,
o V3AYCkiZi(31z0 — 12i 2)
Yoo 1287z +i2°
,BX’L . Ale k3zg(2810 + 15i z)
60 =

25657 (z0 + i 2)°

which yields ﬂg(’)L(oo) =0.

This energy transfer to higher transverse modes is depicted
in Figs. 1 and 2, where we plot |8,,,(z)| for modes with 0 <
m +n < 6 assuming &, = &7.

Remarkably, only a few terms f,,,(co0) are nonvanishing,
allowing us to write explicitly the corrections to the outgoing
wave,

coc®Gréer + &b,

—3 A%k3epc? 7 U0 + o2
6422 |:<§L 4ET> (Moo 7 )

+§+21§ un»
T ) 16

\F 7 > 28
tVs1s <$L + Z§T> (a0 + uo4)}» (28)

coc*ELéy L +Eréy )|

\/§A3k3€06‘3 7
= 512—\/52(2) (EL - Z§T> (w13 — uszy). (29)
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> —= 7/z0

FIG. 2. (Color online) Absolute value of the coefficients of the
higher transverse modes m 4 n < 6 as a function of z, for y-polarized
modes. &, = &7 is assumed and the vertical axis is in units of L’;‘

<0
Curves, from top to bottom: w1y, u13, Uz, Uis, U3z, Usi.

Therefore, the QV corrections generate higher transverse
modes of both polarizations. As expected, all corrections
vanish as zg — o0; see the discussion in Sec. IV. We now
study the physical consequences in more detail.

A. Spatially dependent phase shift

For an x-polarized beam of frequency w at z — 0o, we can
write E,(z — 00) ~ Re[—i w A ugpe' @ *:-9)], where

6062

¢=— Eéer +Er€er). (30)

a)f‘uoo

Using (28) and the explicit form of the modes u,,, given in
Eq. (16), we obtain

K 1 7 7
_r 14282 4272 4+ o272 4 Lzt 4 g4
¢ 4|:§L(+x+y+2xy+12x+12y

7 3 5 5
+ Z&(l 2824277 4+ SR+ =3+ —y“)],

2 12 12
31)
where
o JVkz
(&9) = %(x,y) (32)
and
3A2k2¢)c? 37
K="= = (kwo) po. (33)

6423 16

The heuristic interpretation is that the intense radiation effec-
tively changes the refractive index to a value slightly larger
than unity, thus increasing the optical path length followed by
the beam. Since this effective refractive index depends on the
local intensity and therefore on the position, the wavefront is
distorted, yielding a position-dependent phase shift analogous
to that caused by the Kerr effect.

By detecting the on-axis (X = y = 0) self-induced phase
shift when an ultraintense pulse propagates in vacuum, a
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FIG. 3. (Color online) Predicted sensitivity of &, and &7 (on a
logarithmic scale) from the search for the on-axis self-induced phase
shift of a laser pulse in vacuum. The region outside the solid black
lines has been excluded by PVLAS experiment. The diagonal (blue)
solid line corresponds to the relation 767 — 4£;, = 0, predicted by
BI theory. Regions outside the dashed lines can be tested with
ultraintense lasers of increasing power. Line (a) corresponds to the
limit achievable at a 5-PW laser facility; (b), to 10 PW; (c), to 20 PW;
(d), to 80 PW; (e), to 10° PW; and (f), to 10° PW.

combination of the &; and &7 can be measured:

45 +T6r ( ¢ )(@)4< A )2
£ ~ \10-8rad/ \ A 800 nm

4.8 x 100 W
X ——.
P

(34)

Figure 3 shows the resulting discovery potentials for this QV
effect in the &, -&7 parameter space for several values of the
peak power P of the pulse, considering a diffraction-limited
wo ~ A beam with the typical Ti:sapphire wavelength A &
800 nm. Even if the paraxial approximation breaks down
near the diffraction limit, Eq. (34) yields limiting benchmark
values. For the plot, we assume that the phase shift can be
measured down to the level ¢ ~ 1073 rad, as for lower intensity
pulses [6,25-27]. This is certainly a technological challenge
for ultraintense lasers and it is not obvious which experimental
technique would give the best precision. On the other hand,
the sensitivity can be noticeably enhanced with an off-axis
measurement, since the phase shift increases according to
Eq. (31). In an actual experiment, this fact may compensate a
noise level on ¢ higher than 10~% rad.

The search for self-induced phase shifts in vacuum can
improve the sensitivity on the measurement of &; and &7 for
laser powers exceeding 80 PW. Even for lower powers, this
kind of experiment could be used to explore the parameter
region around the solid (blue) diagonal line, representing BI
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FIG. 4. (Color online) Normalized angular distribution of
y-polarized photons at z>>zo, given by %|M13 —uy P~
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theory. QED can only be tested with P ~ 103 PW, which is
probably beyond the reach of near-future facilities.

B. Rotation of polarization

We now discuss the generation of y-polarized photons,
orthogonal to the initial polarization of the beam; see also [18].
From Eqgs. (29), we can compute the fraction of the incident
power that goes into this transverse polarization:

P, 3x? 7 g
- = S Gewo™ [(& - Z&) ,00] ENES)

The distribution of y-polarized photons in the transverse plane
is depicted in Fig. 4.

For a possible experimental realization, not only is it nec-
essary to produce a detectable number of y-polarized photons,
but also an extremely high purity of the linear polarization
of the laser source is mandatory in order to avoid undesired
background. For state-of-art PW-class lasers worldwide, the
so-called extinction ratio of the outgoing radiation, defined
as 10 - loglO(P}lf‘ser/P) dB, is typically in the range of —20
to —30 dB. However, recent developments have achieved
extinction ratios ~—100 dB for the polarization purity of
x-ray sources [28]. Assuming that these improvements can be
transferred to the optical domain, we can envisage a situation
with P)l,aser /P ~ 10~'°. We can compare directly the predicted
sensitivity derived from searching for the generation of the
orthogonal polarization P, with the current limits provided by
PVLAS, since they depend on the same combination of the
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parameters:
(e
|46 — T&r| pyLas by 800 nm

1/2

Pt/ p\ 2 5 3 5 1020 w

X > .
1010 P

(36)

Taking A =~ 800 nm, wy = A, and Pyl.aser/P ~ 10719, we find
that searching for self-induced rotation of polarization can
improve the PVLAS sensitivity for P ~ 3 x 103 PW.

C. Third harmonic

The consequences of the terms of frequency 3w [19] can
also be studied by expanding in modes. Curiously, if we
insert the Gaussian beam ansatz, f = A ugo, the currents ]f T
defined in (18) vanish. This nontrivial cancellation happefls
for any polarization of the Gaussian beam. Thus, there are two
options for having third harmonic generation: either we go to
the next paraxial order in the Gaussian beam description or we
consider the incoming beam as a different transverse mode.
We examine these possibilities in turn.

1. Gaussian beam, subleading paraxial term

The classical corrections associated with the paraxial
expansion for the propagation of a Gaussian beam were
discussed long ago, in [29]; see also [30] and [31]. We add
to (13) the first correction term,

i(wt— . f,x .8.x 1
Aﬁn:Re[e( t kz)(O,f—l-g,O,—lT—l?—k—zfxz .
(37
The function g must satisfy P, (g) = 3;7{ Taking the Gaussian
beam f = A ug, g can be written as [29]

_ Az(rkzg) [(k(x2+y2>>2 _BKGC 4y +s]

8(z0 —iz)? (zo—i2) (zo—i2)

k(x* + yz)] (38)

exp [_ 2(z0—i2)

We can now insert (37) into (10) and (12) to compute the ji
as defined in (18). Unlike the case of frequency w, the currents
can be written explicitly in terms of a few Hermite-Gaussian
modes. The computation yields

N [11z 4+ 10i zo V2 }
Pw 5x =C s Voo — s v s
(L) | GHizS Y Gtizy
s [ 7z +2i z0) 72 }
Pw gx = C - . v - . v )
30(Ex,T) T Atz hech
- i 1
Pio,(E =C| - ——— ,
30(Ey,L) I (Z—i—lzo)sv“]
Pso(Ey1) c_ ! ]
[3] ) = — =V )
30(Ey,T G T iz 1

063803-5



ANGEL PAREDES, DAVID NOVOA, AND DANIELE TOMMASINI

3.13 . .
where C = AGCT];;“. These expressions can be integrated to find

the third harmonic Fourier component of the electric field as a
function of (x,y,z). We get

GOCZ(ELgx,L + &€ 1)
. A3k2Z()€()C3 { [SSZ + 51i zg 75z + 9i zp)
T 14437 L 5Go—iz Tt 20(z0 — i 2)°

i\ 2
L (&Uoz + Z—léTU20> },

C(o—it
eoc*ELé L+ & 1)

A3k2Z06003 i

7
T 1443r <_$L * ZéT) o —iot

Note that all the coefficients vanish as z — oo. Therefore,
even if third harmonic radiation is generated in the vicinity of
the beam focus, it fades away due to destructive interference
in the outgoing wave. This is rather similar to what happens
in a non-phase-matched material. In fact, one can think of this
result in the following way: in vacuum, energy-momentum
conservation, in a nonlinear process in which three w photons
are converted to a single 3w photon, requires the initial photons
to be parallel. But parallel photons do not interact via QV
corrections: for instance, the Lorentz invariants F,, F*” and
€M7 F,, F, vanish for a plane wave canceling the J# currents
defined in (10). Thus, it is not possible to have phase matching
and, so, efficient nonlinear effects allowing for the mentioned
process. However, this argument does not straightforwardly
apply to alaser beam in which N + 3 of the w photons could be
converted to N @ photons and one 3w photon for some integer
N, because the N extra photons might potentially absorb
the energy-momentum excess. Thus, we expect to find third
harmonic generation to the next order in the Euler-Heisenberg
expansion, which includes six-photon interactions, allowing
N =1 in the above argument. This is in agreement with the
results reported in [19], where a number of the order of (£,00)*
3w photons were predicted by using a different modelization
of the incoming beam.

Despite the neutralization of the outgoing wave, it is
interesting to discuss the fraction of the power which is
converted to third harmonic as a function of z:

P3a) _ ‘/‘_oooo ffom(|Ex|2 + |E)|2)dxdy
Pn w?A? )

& T] Voo

(39)

This is a bell-shaped function with a width of the order of
the Rayleigh length. It reaches its maximum at z = 0. If we
assume that &, = & = &, we find

P3w

= 0.06(po §)*(wok) ™", (40)
Pin lz=0.6.=t7
where py is the energy density at the beam focus py = 2.
7T'LUOC

2. Higher transverse modes for the incoming beam

Let us consider the TEy; mode, namely, take f = A uq
instead of f = Aug. We can compute the third harmonic
wave at leading paraxial order, which turns out to be x
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polarized and stemming only from the &; term,

i Aleow®z3Er

LA s 41
367(z0 —i ) “D

b
€ocEréxr =

Again, the third harmonic wave vanishes as z — oo. The
fraction of power of the incoming wave transformed to third
harmonic in the focal plane z = 0 is

‘ 2
! (2P‘“$L> (wok) ™. (42)

=0 81 \m wgc

P3a)
P,

Note that we have expressed the right-hand side in terms of P;,
instead of py, since py was defined for the TEy, mode as the
energy density of the incoming beam at focus 7 = 0, a quantity
that vanishes for the TEy; mode. Note also the different power
of wok compared to (40), related to the order in the paraxial
expansion.

Similar considerations apply if the incoming beam enters
in any particular transverse mode or any linear combination of
them, including vortices. The QV corrections generate a wave
of frequency 3w around the focal plane. This wave appears
at leading paraxial order except for the particular TEy, case
discussed above. In all cases, there is destructive interference
and the outgoing third harmonic wave is canceled out. This
fact implies that the experimental verification of the existence
of third harmonic is challenging, if not impossible, as long as
the paraxial approximation holds.

D. Self-steepening

The self-induced phase shift experienced by ultraintense
lasers in vacuum depends on the intensity profile of the laser
itself; see Eq. (31). Because of this, we can establish a formal
analogy between the QV and the Kerr nonlinear media in which
n = ngy + n, I, where ng stands for the linear refractive index of
the medium and the coefficient n, describes the strength of the
nonlinear correction because of the presence of light. Using the
results presented above, it is straightforward to show that the
effective nonlinear coefficient of the QV is n}* ~ %(kwo)_“.

Bearing this analogy in mind, in the limit of very short
laser pulses other higher order nonlinear effects such as optical
pulse self-steepening may also take place [32]. The latter effect
arises from the intensity dependence of the group velocity and
typically becomes important for pulses shorter than 100 fs.
The strength of self-steepening can be quantified using the
dimensionless parameter s = 1/wfy, where w is the central
angular frequency of the pulse and 7 is the pulse duration.
Remarkably, this effect implies that different parts of the
pulse will experience different temporal displacements upon
propagation, depending on the local intensity. In particular,
the higher the intensity, the more slowly the pulse will evolve.
This fact indeed leads to an interesting limiting case in which
the trailing edge of the pulse catches the central part, thus
creating a shock front similar to that observed in material
waves. Interestingly, the characteristic distance z; at which the
shock occurs (in the absence of any dispersion or attenuation)
can be estimated to be [32]

0.39Ly,

N

ZS%

) (43)
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where the numerical coefficient in the numerator accounts for
the influence of the specific pulse shape (e.g., for a “sech”-
shaped pulse it would indeed be different) and L) = c/(nywl)
is the so-called characteristic nonlinear distance [33], i.e., the
typical distance at which nonlinear effects become dominant
in the evolution of ultrashort pulses. We recall that zy should
be comparable to z; for the shock effect to be observed, since
the Rayleigh length zo delimits the spatial interaction region
of the ultraintense pulse with the QV.

Let us now consider a set of parameters related to some
realistic experimental schemes that could be accomplished in
the near-future. For typical PW-class laser systems, P = 1 PW,
to = 30fs, and A = 800 nm. Thus, assuming that one can focus
the PW laser beam close to the diffraction limit, we would
end up with maximum peak intensities of ~10?* W/cm?,
which would then correspond to z; & 3 x 10* km, far beyond
the Rayleigh length, zp &~ 1 um. Pushing to the limit, z; ~
30 m for the Schwinger intensity Is ~ 2.3 x 10* W/cm?.
Thus, this rough calculation suggests that the effect of self-
steepening could not be observed at optical frequencies even
in the vicinity of the Schwinger limit.

IV. DISCUSSION

As early as in 1952, it was noted that plane waves are
unaffected by QV polaritzation [34]. Accordingly, all effects
computed above vanish as wg — oo and grow for decreasing
waists, for which a Gaussian beam can be reinterpreted as a
collection of plane waves crossing at increasing angles. With
a single beam, these “crossing angles” are limited. The largest
possible angles and therefore the largest signatures can only be
achieved y making several pulses collide [12,14]. Neverthe-
less, synchronizing and making beams collide head-to-head
near their focus is rather nontrivial. Thus, it is worthwhile to
consider the present setup as a complementary possibility.

A relevant question is whether an imperfect vacuum may
spoil a faint signal as a phase shift, ¢ ~ 1073 rad. If a few
molecules remain in the vacuum chamber, their leading effect
on the beam comes from nonlinear Thomson scattering [35]
(for high intensities, the system is in the barrier suppression
regime and electrons can be considered free). In order to
roughly estimate the effect on the phase, we write the electric
field as a sum of incoming and scattered waves, Aelot 4
i€e'®Fhe x Al (@+€/4) Teading to a phase correction of the

order of |[e/A| = \/ny, sc/ny.;i, where n,, 4 (n,,;) is the number
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of scattered (incoming) photons. To make it smaller than 1078,
we need n, s/n,,; < 107!, The quotient can be estimated

using the results of [36] and is of the order of Z k};;’f’\/ m3—:f’5,
where p is the pressure and ry the classical electron radius.
Taking, e.g., P = 100 PW, T =300 K, wy = 1 um, we get
P < Plim ~ 10~® Pa, an ultrahigh vacuum achievable with
present-day technology. We remark that the pressure may also
be gauged with the ultraintense laser itself [36,37].

A more constraining problem comes from the incoming
pulse profile. Even if it is not a Gaussian beam, an expression
similar to Eq. (31) can be found as long as the pulse can
be written in terms of the modes. In any case, a spatially
modulated phase shift of the order of K & will appear. Since
the distortion of the wavefront depends on the pulse intensity,
one can, in principle, think of measuring how it changes by
tuning the peak power of the pulse, in a version of the P-scan
technique customarily used in the determination of nonlinear
optical properties of materials. However, with present-day
technology, the temporal and spatial profile of ultraintense
pulses is only poorly known and fluctuates from shot to shot.
Precisely measuring the subtle effects discussed in this paper
would be rather challenging if a better control of ultraintense
pulse profiles is not developed.

V. CONCLUSION

We have discussed how QV polarization affects the
propagation of ultraintense laser pulses, giving analytical
expressions for the leading corrections. These effects are
ubiquitous and will become increasingly important as facilities
with higher peak powers are built. We have shown that the first
effect that may be measured is a wavefront distortion resulting
in a spatially dependent phase shift. If upgrades regarding
peak power, beam quality, and precise phase measurements
are met, it would be possible to search for new physics in
yet unexplored parametric regions. These requirements do
not seem too far-fetched for next-generation lasers, although
nontrivial technological advances are necessary.
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