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The existence of compacton matter waves in binary mixtures of quasi-one-dimensional Bose-Einstein
condensates in deep optical lattices, and in the presence of nonlinearity management, is demonstrated. For
this, we derive an averaged vector discrete nonlinear Schrödinger equation (DNLSE) and show that compacton
solutions of different types can exist as stable excitations. Stability properties are studied by linear analysis
and by direct numerical integrations of the DNLSE system and their dependence on the inter- and intraspecies
scattering lengths investigated. We show that under proper management conditions, compactons can be very
robust excitations that can emerge spontaneously from generic initial conditions. A possible experimental setting
for compacton observation is also discussed.
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I. INTRODUCTION

It has been recently demonstrated that Bose-Einstein
condensates (BECs) in deep optical lattices (OLs) when
exposed to strong and rapid periodic time modulations of the
scattering lengths can support matter wave compactons, i.e.,
localized excitations with a compact support [1]. Similarly
to discrete breathers, compactons are intrinsically localized
stable excitations. In contrast with them, however, compactons
have no exponential tails, the lacking being due to the effective
nonlinear dispersion induced by the modulation, which permits
the vanishing of the tunneling just at the compacton edges. In
particular, it was shown (see [1] for details) that after averaging
out the fast time scale dynamics, the tunneling rate of the
resulting averaged system depends not only on modulation
parameters but also on local field density differences (atom
numbers in the BEC case) between neighboring sites. Thus, the
periodic modulation in time of the scattering length (nonlinear
management) can be used to change the original dispersion
(e.g., the one in the absence of management) into an effective
nonlinear dispersion essential for the compacton existence.

Field-dependent tunneling suppression in the presence of
strongly and rapidly modulated interactions was demonstrated
in Ref. [2] for the case of a BEC trapped in a double-well poten-
tial (compacton formation being severely restricted in this case
by the size of the system) and in Ref. [1] for a one-dimensional
BEC array modeled by the discrete nonlinear Schrödinger
equation (DNLSE). The phenomenon of compacton forma-
tion, however, is of general validity and, as we demonstrate in
this paper, can occur also in more complicated BEC systems.

From an experimental point of view, periodic time modula-
tions of the scattering length can be achieved by the Feshbach
resonance (FR) technique [3], e.g., by varying the external
magnetic field near a resonant value. Besides compacton
excitations, periodic modulations of the scattering lengths can
be used to create density dependent gauge fields [4], this being
presently a field of rapidly growing interest, connected with
interesting physical phenomena, including pair superfluidity,
exactly defect-free Mott-insulator states, etc. [5]. Properties
of the superfluid-Mott transition in a two-dimensional (2D)
square and a three-dimensional (3D) cubic optical lattice

with periodic modulation of the atomic scattering length have
been investigated in Ref. [6]. Modulations of the interactions
were used also to design new correlated-hopping models
for fermions in optical lattices [7] and, in combination with
OL shaking, for engineering unconventional Bose-Hubbard
models [8].

Spatial and temporal periodic changes of the scattering
lengths have been shown to be effective tools to change
stability properties of nonlinear excitations, leading to the
existence of two-dimensional bright solitons in one- and
two-component attractive condensates [9–13]. Moreover, they
were used to induce long-lived Bloch oscillations [14–16],
dynamical localization [17], Rabi oscillations [18] of BEC
gap solitons in optical lattices, Faraday waves [19,20], etc.
Nonlinear management techniques were considered also in
nonlinear optics to stabilize 2D and 3D solitons and to reduce
collapse in optically layered media with self-focusing inter-
action [9], to improve communication capacities via soliton
dispersion management in optical fibers [21], to create linear
superpositions of gap solitons in periodic Kerr media [22], etc.

All these studies refer to the single-component case, e.g.,
BEC made by a a single atomic species. An interesting question
to ask, however, is whether compacton excitations could exist
also in multicomponent systems of interest both for BEC and
nonlinear optics. The aim of the present paper is just to provide
an answer to this question.

In this respect we introduce an averaged vector DNLSE
with effective nonlinear discrete dispersion terms which
describes the dynamics of a BEC array in the presence of strong
interspecies and intraspecies scattering length modulations.
The existence of different compacton states in the form of
bright-bright (B-B), bright-dark (B-D), and dark-dark (D-D)
pairs, is first demonstrated and stability properties of these
states investigated both by means of a linear stability analysis
and by direct numerical integrations of the model equations. As
a result we find that while single site and two sites out of phase
B-B compactons are stable in the whole parameter range, for
the other modes there exist thresholds in the tunneling constant
rate below which they cannot exist as stable excitations.
The dependence of the compacton stability on interspecies
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interaction is also investigated. For D-D compactons we
find that when the interspecies scattering length is detuned
to zero (e.g., in the uncoupled single-component limit) the
stability becomes narrower compared to that of the pure
two-component case. The predictions of our analysis are
shown to be in good agreement with the results obtained from
direct numerical simulations of the model. The emergence
of compact excitations from generic initial excitations and
possible experimental settings for their observation are also
discussed.

The paper is organized as follows. In Sec. II we introduce
the model equations and discuss the averaged equations. In
Sec. III we derive the conditions for existence of two compo-
nents of B-B, B-D, and D-D compactons and discuss stability
properties. In Sec. IV we consider the case of D-D compactons
in the uncoupled limit corresponding to the single-component
dark compacton case. In Sec. V the emergence of compact
excitations from generic initial excitations is investigated and
possible experimental parameter design provided. Finally, in
Sec. VI the results of the paper are briefly summarized.

II. MODEL EQUATIONS AND AVERAGING

Two-component atomic BEC in a deep OL can be described
in the tight binding approximation by the following vector
DNLSE [23],

iu̇n = −κ1(un+1 + un−1) − (γ1|un|2 + γ12|vn|2)un,
(1)

iv̇n = −κ2(vn+1 + vn−1) − (γ12|un|2 + γ2|vn|2)vn,

where the overdot stands for time derivative, the coefficients
κi, i = 1,2, are related to the tunneling rates of atoms between
neighboring wells of the optical lattice, and γ12, γi, i = 1,2
are nonlinear coefficients related to the interspecies (a12)
and intraspecies (aii, i = 1,2) scattering lengths, respectively.
Equation (1) arises also in nonlinear optics where they model
the propagation of the electric field in an array of optical
waveguides with variable Kerr nonlinearity. In this context
the role of time is played by the longitudinal propagation
distance along the optical fiber and the nonlinear coefficients
γi,γ12 correspond to self- and cross-phase modulations of the
electric field components, respectively [24,25]. Notice that
the above two-component DNLSE has the Hamiltonian form
χ̇n = δH/δχ∗

n with χn = un,vn and the Hamiltonian H given
by

H = −
∑

n

[
(κ1un+1u

∗
n + κ2vn+1v

∗
n + c.c.)

+ 1

2
(γ1|un|4 + γ2|vn|4) + γ12|un|2|vn|2

]
. (2)

Here the ∗ stands for the complex conjugation and c.c. denotes
the complex conjugate of the expression in the parenthesis.
Also notice that the number of atoms Ni = ∑

n |χn|2, χn =
un,vn are conserved for each component.

Taking into account that Eq. (1) arises in the tight binding
approximation [26,27], the nonlinear coefficients γi,γ12 can
be expressed in terms of the overlap integrals of Wannier
W (i)

n (x) functions of the corresponding continuous periodic

Gross-Pitaevskii mean field model [28] as

γ12 = 2π�
√

N1N2a12

m

∫
dx

∣∣W (1)
n

∣∣2|W (2)
n

∣∣2
,

γi = 4π�Niaii

mi

∫
dx

∣∣Wi
n

∣∣4
, i = 1,2,

with mi, i = 1,2 denoting the atomic masses and m =
m1m2/(m1 + m2) the reduced mass (functions Wn are normal-
ized on the whole line:

∫ |Wi
n(x)|2dx = 1). The modulations

of the nonlinear coefficients γi,γ12 is assumed to be of the
form,

γi(t) = γ
(0)
i + 1

ε
γ

(1)
i

(
t

ε

)
, (3)

with γ (0) a constant, γ (1)(t) a rapidly varying periodic function
of time, and ε a small parameter that controls the strength
and the frequency of the modulation (strong nonlinearity
management corresponds to ε � 1). For γ

(1)
i (t) we consider,

periodic modulations of the type,

γ
(1)
i (t) = γ

(1)
i

ε
cos

(
�

t

ε

)
, �, γ

(1)
i ∼ O(1), (4)

of period T = 2π/� in the fast time variable τ = t/ε. Al-
though in general one could consider independent modulations
of the nonlinear coefficients, in practical contexts one usually
deals with the simpler settings,

(i) γi = γi(t/ε), γ12 = const, i = 1,2,

(ii) γ12 = γ12(t/ε), γi = const, i = 1,2.

In the BEC context, case (i) corresponds to a modulation in
time of the intraspecies scattering lengths, keeping interspecies
scattering length constant, while in case (ii) it is done just
the opposite. Although these settings are both feasible for
BEC mixtures, case (ii) is not easy to implement in nonlinear
optics because in this context cross-phase modulations are
usually difficult to control. Moreover, the averaged equations
obtained in case (ii) are mathematically more involved due
to the presence of a complicated nonlinear dispersion (see
below). In the following we concentrate mainly on case (i) and
discuss case (ii) only briefly at the end of the section.

Let us consider then a fixed interspecies scattering length
(γ12 = const) and assume the intraspecies scattering lengths
modulated as follows:

γ1 = γ
(0)
1 + γ

(1)
1 (t/ε), γ2 = γ

(0)
2 + γ

(1)
2 (t/ε). (5)

To find effective nonlinear evolution equations, we use
the averaging method to eliminate the fast time, τ = t/ε,
dependence. In this respect it is convenient to perform the
following transformation,

un = Une
i
1|Un|2 , vn = Vne

i
2|Vn|2 , (6)

where 
i are the antiderivatives of γ
(1)
i (t),


i(t) =
∫ t

0
γ

(1)
i (t ′)dt ′ − 1

T

∫ T

0

∫ t

0
γ

(1)
i (t ′)dt ′dt,
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where T is the period. By substituting Eq. (6) into Eq. (1) we
obtain

iU̇n = iκ1
1(τ )Un[U ∗
n X1 − UnX

∗
1]

− κ1X1 − (
γ

(0)
1 |Un|2 + γ12|Vn|2

)
Un, (7)

iV̇n = iκ2
2(τ )Vn[V ∗
n X2 − VnX

∗
2]

− κ2X2 − (
γ

(0)
2 |Vn|2 + γ12|Un|2

)
Vn, (8)

where X1 = Un+1e
i
1θ

+
1 + Un−1e

i
1θ
−
1 , X2 = Vn+1e

i
2θ
+
2 +

Vn−1e
i
2θ

−
2 , and

θ±
1 = |Un±1|2 − |Un|2, θ±

2 = |Vn±1|2 − |Vn|2. (9)

The average over the rapid modulation can be done with the
help of the relations:

〈e±i
iθ
±〉 = J0(αiθ

±),

〈
ie
±i
iθ

±〉 = ±i αiJ1(αiθ
±),

(10)

where J0, J1 are Bessel functions [29] of the first kind of zeroth
and first order, respectively, and with αi given by

αi = γi/�, i = 1,2. (11)

Here the angular bracket denotes average with respect to
the fast time variable, e.g., 〈F 〉 ≡ (1/T )

∫ T

0 Fdτ . The system
of averaged equations is then obtained as

iU̇n = −α1κ1Un[J1(α1θ
+
1 ) (U ∗

n Un+1 + UnU
∗
n+1)

+ J1(α1θ
−
1 ) (U ∗

n Un−1 + UnU
∗
n−1)]

− κ1[Un+1J0(α1θ
+
1 ) + Un−1J0(α1θ

−
1 )]

− [
γ

(0)
1 |Un|2 + γ12|Vn|2

]
Un, (12)

iV̇n = −α2κ2Vn[J1(α2θ
+
2 ) (V ∗

n Vn+1 + VnV
∗
n+1)

+ J1(α2θ
−
2 ) (V ∗

n Vn−1 + VnV
∗
n−1)]

− κ2[Vn+1J0(α2θ
+
2 ) + Vn−1J0(α2θ

−
2 )]

− [
γ

(0)
2 |Vn|2 + γ12|Un|2

]
Vn. (13)

Note that Eqs. (12) and (13) have the Hamiltonian form
with averaged Hamiltonian Hav given by

Hav = −
∑

n

[
κ1J0(α1θ

+
1 ) [Un+1U

∗
n + c.c.]

+ κ2J0(α2θ
+
2 )[Vn+1V

∗
n + c.c.]

+ 1

2

(
γ

(0)
1 |Un|4 + γ

(0)
2 |Vn|4

) + γ12|Un|2|Vn|2
]
. (14)

By comparing Eq. (14) with the corresponding unperturbed
Hamiltonian Eq. (2), one can see that the effect of the scattering
lengths modulation simply reflects in the following nonlinear
rescaling of the tunneling constants:

κi → κiJ0(αiθ
+
i ), i = 1,2. (15)

From this equation and from Eq. (11) it is clear that
the interspecies interaction γ12 play no role in determining

the lattice sites where the zero tunneling condition occurs
(compacton boundaries) when the nonlinear management
is made with respect to the intraspecies interactions (see
below for explicit examples). Thus, in analogy with the
single-component case considered in Ref. [1] the tunneling
constants depend on the atom difference between neighboring
sites [1,2]. This introduces an effective nonlinear dispersion
in the system which leads to the existence of two-component
compactons.

In closing this section it is interesting to discuss the changes
in the above derivation implied by a nonlinear management of
the interspecies scattering length,

γ12 = γ
(0)
12 + γ

(1)
12 (t), (16)

with constant (not necessarily equal) intraspecies parameters
γ1, γ2. In this case, to remove the explicit time dependence
from Eq. (1), the transformation in Eq. (6) must be replaced
by

un = Une
i
(t)|Vn|2 , vn = Vne

i
(t)|Un|2 , (17)

with 
(t) the antiderivative of γ
(1)
12 (t). Following the same

approach as before, it is not difficult to show that one arrives
at the same averaged Hamiltonian as in Eq. (14) but with
the interchanges κ1 ↔ κ2, U ↔ V , operated in the tunneling
terms and the obvious replacements γ12 → γ

(0)
12 , γ

(0)
i → γi .

This implies a different rescaling of the tunneling constants,

κi → κiJ0(αθ+
3−i), i = 1,2, (18)

and leads to more complicated nonlinear dispersion terms
in the averaged equations. In view of this complexity, in
the following we restrict only to compactons induced by
intraspecies management. A detailed study of the interspecies
management requires more investigations and will be dis-
cussed elsewhere [30].

III. EXISTENCE AND STABILITY OF COMPACTONS
IN BINARY BEC MIXTURES

Exact compacton solutions of the averaged system can be
searched as stationary states of the form:

Un = Ane
−iμut , Vn = Bne

−iμvt , (19)

with μu,μv chemical potentials of the two atomic species.
Substituting these expressions into Eqs. (12) and (13) one gets
the following stationary equations:

μuAn + (
γ1A

3
n + γ12B

2
nAn

)
+ κ1[An+1J0(α1θ

+
1 ) + An−1J0(α1θ

−
1 )]

+ 2α1κ1A
2
n[An+1J1(α1θ

+
1 ) + An−1J1(α1θ

−
1 )] = 0, (20)

μvBn + (
γ2B

3
n + γ12A

2
nBn

)
+ κ2[Bn+1J0(α2θ

+
2 ) + Bn−1J0(α2θ

−
2 )]

+ 2α2κ2B
2
n[Bn+1J1(α2θ

+
2 ) + Bn−1J1(α2θ

−
2 )] = 0, (21)

to be solved for the chemical potentials and amplitudes An,Bn

of the compacton modes. The compact nature of the solution
[Ai,Bi = 0 outside a finite (small) range of sites], allows one
to truncate the above infinite system into a finite number of
relations between the above variables, which can be solved
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exactly. In the following subsections this is shown explicitly
for the different compacton types.

A. Bright-bright compactons

To search compacton solutions of the B-B type we need
to look for the last sites of vanishing amplitude, say n0 ± 1,
where the vanishing of the tunneling rate is realized. For
a single site B-B compacton we assume An0 = a, Bn0 =
b, An0±j = 0, Bn0±j = 0 for all j � 1. Substituting this ansatz
in Eqs. (20) and (21) we obtain the corresponding condition
for the compacton existence as

J0(α1a
2) = 0, a2 = ξ0/α1,

(22)
J0(α2b

2) = 0, b2 = ξ0/α2,

where ξ0 is a zero of the Bessel function J0 (in all numerical
calculations below we take the first zero of J0: ξ0 = 2.4048).
This condition together with

μu = −γ1a
2 − γ12b

2, μv = −γ2b
2 − γ12a

2 (23)

gives us the single-site B-B compacton pair.
Typical examples of single-site B-B compactons are de-

picted in the top panels of Figs. 1 and 2. Stability properties
of the solution have been investigated by standard linear
analysis. Denoting by ω the eigenfrequencies of the linearized
averaged equations, associated with growing perturbations of
the form e−iωt , we have that linear stability is granted if all
ω have zero imaginary parts. For the considered single-site
B-B compacton, this condition is well satisfied, as one can see
from the left panel in the second row of Fig. 1. Actually we
find that single-site B-B compactons are generically stable for
a wide range of parameters. This can be seen from the second
top right panel of Fig. 1 where the dependence of the lowest
squared eigenfrequencies ω2 is reported as a function of κ

(to reduce the number of parameters we fix, here and in the
following, κ1 = κ2 ≡ κ). Extensive numerical linear stability
studies show that ω2 is always non-negative, meaning that the
solution is linearly stable.

Nonlinear stability properties have been investigated by
direct numerical integrations of Eqs. (12) and (13) taking as
initial conditions exact compactons perturbed with a random
uniformly distributed noise field of amplitude 10−4. Results
are found in full agreement with the linear stability results
discussed above. Excellent agreement is also obtained from
direct numerical integrations of the original vector DNLSE (1),
as one can see from the third and fourth row panels of Fig. 1. In
particular notice from the bottom row panels that the deviation
of the original dynamics from the exact averaged dynamics is
very small (four orders of magnitude small for ε = 0.01) and
can be made even smaller by further decreasing ε.

In Fig. 2 stability properties of single-site B-B compactons
have been investigated as a function of the interspecies
interaction γ12 for a particular choice of the remaining
parameters. As one can see, the obtained behavior is very
similar to the one obtained for the κ dependence in Fig. 1, this
further confirming the robustness of the one site B-B solution
with respect to wide parameter variations.

Two-site B-B compactons can also be found and, simi-
larly to discrete breathers, can be of two types: in-phase
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FIG. 1. (Color online) First row panels. Exact single site
B-B compacton of Eqs. (12) and (13) for γ1 = γ2 = 1, γ12 = 0.5,
κ1 = κ2 ≡ κ = 1, α1 = 1, and α2 = 2. Second row panels. Real
and imaginary parts of the eigenfrequency spectrum (left panel)
corresponding to the B-B compacton depicted in the top row panels.
Right panel shows the lowest (solid line), third lowest (dash line),
and fifth lowest (dash-dot line) ω2 values as a function of κ . Third
row panels. Space-time evolution of |An|2 (left panel) and |Bn|2 (right
panel) as obtained from direct numerical integration of Eq. (1) with
κi = 0.5, γi = 1 + αi

ε
cos(t/ε),i = 1,2, ε = 0.01, taking as initial

condition the corresponding exact single-site B-B compacton of the
averaged system (other parameters are fixed as for top row panels).
Bottom row panel. Deviation of the dynamics depicted in third row
panels from the corresponding one obtained from Eqs. (12) and (13).

and of out-of-phase. Two-site in-phase compactons fol-
low from the ansatz: An0 = a,An0−1 = 0, An0+1 = a, Bn0 =
b, Bn0−1 = 0, Bn+1 = b. By substituting into Eqs. (20)
and (21) one gets Eq. (22) as before with chemical potentials
given by

μu = −γ1a
2 − γ12b

2 − κ1, μv = −γ2b
2 − γ12a

2 − κ2.

The first two top panels of Fig. 3 show a typical two-site
in-phase B-B stationary compacton. Notice from the second
row panels that the linear eigenfrequencies are all positive in
the interval (0.25,1) this implying a wide stability rate also
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FIG. 2. (Color online) Same as the first two rows panels of Fig. 1,
except for compacton in the top panels computed for γ12 = 1 and
stability properties in the bottom right panel computed as a function
of γ12. Other parameters are fixed as in Fig. 1.

in this case. Direct numerical integrations of the averaged
equation is shown in the last two rows of Fig. 3.

Out-phase B-B compactons can be obtained from the
ansatz An0 = a,An0−1 = 0, An0+1 = −a, Bn0 = b, Bn0−1 = 0,

Bn+1 = −b. In this case the chemical potentials are given by

μu = −γ1a
2 − γ12b

2 + κ1, μv = −γ2b
2 − γ12a

2 + κ2,

with a,b fixed as in Eq. (22).
Typical two-site out-of-phase compacton and related lin-

ear stability analysis and time evolutions, are reported in
Fig. 4.

Quite remarkably it is also possible to find exact three-site
B-B compactons. In this case assuming An0 = a1, An0±1 =
a2, An0±2 = 0, Bn0 = b1, Bn0±1 = b2, Bn±2 = 0, we obtain
chemical potentials as

μu = − γ1a
2
2 − γ12b

2
2 − κ1a1J0(ξu)/a2 − 2α1κ1a1a2J1(ξu)

μv = − γ2b
2
2 − γ12a

2
2 − κ2b1J0(ξv)/b2 − 2α2κ2b1b2J1(ξv),

where ξu = α1(a2
1 − a2

2) and ξv = α1(b2
1 − b2

2).
The constraint equations for the amplitudes are Eq. (22)

and

γ1a1a2
(
a2

2 − a2
1

) + γ12a1a2
(
b2

2 − b2
1

)
+ κ1

(
2a2

1 − a2
2

)
J0(ξu) + 6α1κ1a

2
1a

2
2J1(ξu) = 0,

γ2b1b2
(
b2

2 − b2
1

) + γ12b1b2
(
a2

2 − a2
1

)
+ κ2

(
2b2

1 − b2
2

)
J0(ξv) + 6α2κ2b

2
1b

2
2J1(ξv) = 0.

Results are depicted in Fig. 5 for a typical example. Notice
from the second row right panel that stability range in this case
is strongly reduced and stability is possible only for κ >≈ 0.5.
Also notice from the bottom panels that the deviation of the
original dynamics is relatively higher than the previous cases
of B-B. The amplitude profile differs mainly at the middle
point but this discrepancy, however, stays bounded in time and
is quite small if compared to the maximum amplitudes of the
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FIG. 3. (Color online) Same as in Fig. 1 but for a two-site in-
phase B-B compacton. All parameters are fixed as in Fig. 1.

exact solution for each component (for the considered case it
never exceeds the 2% of the exact amplitudes).

We also find that three-site B-B solutions with small α

values display higher discrepancy compared to the respective
solution with large α (by increasing α, however, the amplitudes
of the compacton also become smaller). These discrepancies
may be ascribed to the management functions being not
sufficiently strong. It is worth remarking here that in the
limit ε → 0 (infinitely strong management) exact compactons
of the averaged system should be exact also for Eq. (1)
(limiting cases of very small ε, however, are quite difficult
to investigate numerically due to the very high accuracy
required).

B. Bright-dark compactons

It is interesting to look for novel types of solutions to the
averaged DNLSE, which are more characteristic of the two-
component systems, and in particular to B-D (or dark-bright)
one-site compactons. Existence of such solutions follows
from the general stationary Eqs. (20) and (21) by letting
An0 = a, Bn0 = b, and An = 0, Bn = c for n = n0. In this
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FIG. 4. (Color online) Same as in Fig. 1 but for a two-site out-
of-phase B-B compacton. All parameters are fixed as in Fig. 1.

case one finds that exact solutions exist if chemical potentials
and parameters a,b,c of the B-D compacton are related by the
following equations,

a2 = ξ0/α1, μ1 = −a2γ 0
1 − c2γ12,

(24)
μ2 = −2κ2 + b2γ 0

2 ,

cJ0((b2 − c2)α2) − b(1 + 2bcα2J1((b2 − c2)α2)) = 0,

2bκ2J0((b2 − c2)α2) + c

[
(c2 − b2)γ 0

2 − 2κ2

+ ξ0

α1
γ12 + 4bcκ2α2J1((b2 − c2)α2)

]
= 0, (25)

with ξ0 a zero of J0. The last equations can be solved
numerically to determine the amplitude b and the background
c of the dark component.

Typical one-site B-D compactons are depicted in Figs. 6
and 7 (see top panels) together with their stability property
(see left middle panels of these figures). Stability properties
versus κ and γ12 parameters are displayed in the second
row right panels of Figs. 6 and 7, respectively, from which
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FIG. 5. (Color online) Same as in Fig. 1 but for a three-site B-B
compacton. All parameters are fixed as in Fig. 1.

we see that in spite of the presence of some instability
region, the range of stability is still quite large. Numerical
time evolution obtained from Eq. (1) and deviation from
the exact stationary dynamics, are investigated for a B-D
compacton taken in the left and right bottom panels of Fig. 6.
The figure refers only to the dark component, being the
bright component in very good agreement with the stationary
solution. Notice from the right bottom panel the presence of
fine periodical ripples on the background and small oscillations
of the deep amplitude in the middle. These deviations,
however, are relatively small compared to dark amplitude and
background of the exact solution, remaining bounded on a long
time scale.

C. Dark-dark compactons

Single site dark-dark (D-D) compactons can be searched of
the form An0 = b1,Bn0 = b2 and An = a1,Bn = a2 for n = n0.
The equations for chemical potential and amplitudes in this
case are

μu = −γ1a
2
1 − γ12a

2
2 − 2κ1,

(26)
μv = −γ2a

2
2 − γ12a

2
1 − 2κ2,
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FIG. 6. (Color online) First row panels show the amplitude pro-
file and second row left panel shows eigenfrequency spectrum
of one-site B-D compactons for case κ = 1, γ1 = 1, γ2 = −1,
γ12 = −0.5, α1 = 1, and α2 = 1. Second row right panel shows
the numerical linear stability analysis as a function of κ . Bottom
panels show the space-time evolution (left panel) obtained from
Eq. (1), of the dark component (square modulus) of the compacton
depicted in top panels, and its deviation from the exact stationary
solution (right panel). Modulation functions in Eq. (1) are taken as
γi = 1 + αi

ε
cos(t/ε), i = 1,2, with ε = 0.01.

2κ1a1(2α1b1J1(ξ1) + J0(ξ1)/b1) − γ1
(
a2

1 − b2
1

)
− γ12

(
a2

2 − b2
2

) − 2κ1 = 0,

2κ2a2(2α2b2J1(ξ2) + J0(ξ2)/b2) − γ2
(
a2

2 − b2
2

)
− γ12

(
a2

1 − b2
1

) − 2κ2 = 0,

2α1a1b1J1(ξ1) − b1J0(ξ1)/a1 − 1 = 0,

2α2a2b2J1(ξ2) − b2J0(ξ2)/a2 − 1 = 0,

with ξi = αi(a2
i − b2

i ),i = 1,2.
The first row panels of Fig. 8 show the amplitude profile

for γ12 = 0.2 and respective numerical linear stability as a
function of κ . In the second row panels we report stability
properties for two increasing values of the interspecies
interaction: γ12 = 0.5,0.8 (left and right panel, respectively).
As one can see, the κ region of stability becomes wider as
γ12 is increased, this indicating a tendency of the coupling
to stabilize dark-dark pairs. Time evolutions with respect to
the averaged and original systems and their deviations from
the exact solution are shown in the bottom two rows of the
left and right panels, respectively. In general we find that
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FIG. 7. (Color online) Same as first two rows of panels in Fig. 6,
except for one-site B-D compacton in the top panels computed for
γ12 = 0 and stability properties in the bottom right panel computed
as a function of γ12. Other parameters are fixed as in Fig. 6.

D-D system is more sensitive to disturbance compared to
all previous cases and for higher values of κ and γ12 (such
as κ = 1 and γ12 = 0.8, for example) much smaller ε and
numerical time step are needed to numerically simulate stable
dynamics on a long time scale (exact initial solutions can be
perturbed only by a very small noise of the order 10−6). A
possible reason for this weak stability is discussed in the next
section.

IV. SINGLE-COMPONENT DARK COMPACTON

From the above analysis it appears evident that stability
properties become more critical for compactons that involve
dark components. This is true for B-D and even more for
D-D pairs. This fact may result from a possible instability of
the single component dark compacton. We remark that for
single component BEC, compactons were investigated only
for the bright case [1], so the question of whether stable
single-component dark compactons can exist, is open. In this
section we provide the answer to the question by studying the
uncoupling limit γ12 → 0 of the D-D compacton discussed
before.

In this respect the averaged equations in Eqs. (12) and (13)
for γ12 = 0 with κi ≡ κ, αi ≡ α, θi,± ≡ θ± reduce to the
same equations considered in Ref. [1] for the single field
variable Un = Vn ≡ un. Considering un = An exp(−iμt) then
the equation becomes

μAn = −2καA2
n[An+1J1(αθ+) + An−1J1(αθ−)]

− κ[An+1J0(αθ+) + An−1J0(αθ−)] + γ0A
3
n, (27)

with θ± = A2
n±1 − A2

n. Dark modes are possible only for

repulsive interactions so that in the above equation −γ
(0)
1 ≡

γ0 > 0. A dark single-site compacton located at the n = n0

site can be determined by setting An = b if n = n0 and A = a

for n = n0 to yield

2aκJ0(ξ ) + b[(a2 − b2)γ0 − 2κ + 4abκαJ1(ξ )] = 0,
(28)

bJ0(ξ ) − a(1 + 2abαJ1(ξ )) = 0,
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FIG. 8. (Color online) First row left panel shows the amplitude
profile (identical for the two components) of a single-site D-D
compacton for parameter values κ = 1, γ1 = γ2 = −1, γ12 = 0.2,
α1 = 1, and α2 = 1. In the right panel the numerical linear stability is
reported as a function of κ . Second row panels show linear stability
analysis for cases γ12 = 0.5 (left) and γ12 = 0.8 (right). Third row
panels show the space-time dynamics (only one component shown)
as obtained from Eqs. (12) and (13) (left) and Eq. (1) (right), for a
D-D compacton with parameters fixed as in the top panel but with
γ12 = 0.5. Bottom panels show the deviation of the corresponding
above dynamics from the exact solution.

where ξ = α(a2 − b2). It follows that to satisfy the equation
at the nonvanishing sites, one must have

μ = a2γ0 − 2κ, (29)

then Eq. (28) can be numerically solved to obtain {a,b}.
Numerical linear stability analysis for parameter values

γ0 = 1 and α = 1 (see second row, right panel of Fig. 9) shows
that the solutions are unstable until κ > 0.65. A comparisons
with the first two rows of Fig. 8 indicates that the stability
regime can be improved by interspecies coupling in the
two-component DNLS system. Nevertheless, when κ > 0.65,
stable dark compactons exist as shown in the third row of Fig. 9
for case κ = 1.

From this it appears evident that, in contrast with the bright
compactons case, the strong nonlinear management does not

−10 0 10
−1

0

1

2

n

A
n

−1 0 1

−10

−5

0

5

10

ω
 i

ω
 r

κ = 0.50

−1 0 1

−20

−10

0

10

20

ω
 i

ω
 r

κ = 1.00

0 0.5 1

−1

0

1

κ

ω
2

t

n

 

 

0 50 100

−10

−5

0

5

10

0

2

4

x 10
−4

t

n
 

 

0 50 100

−10

−5

0

5

10

1

2

3

t
n

 

 

0 50 100

−10

−5

0

5

10
−0.05

0

0.05

t

n

 

 

0 50 100

−10

−5

0

5

10

1

2

3

FIG. 9. (Color online) First row panels show the amplitude pro-
file (left) and eigenfrequency spectrum (right) of uncoupled one-site
dark compacton for case κ = 1, γ0 = 1, and α = 1. Second row
panels show the eigenfrequency spectrum for case κ = 0.5 (left) and
the numerical linear stability analysis as a function of κ (right). Last
two row panels. Space-time evolution of one-site dark compacton
solution for parameter case as in upper panels. Third row panels show
the square modulus of the solution, the left side from the averaged
system Eqs. (12) and (13) and the right side from Eq. (1), while last
row panels show their respective deviations from the exact solution.

provide (at least for the simple real amplitude ansatz assumed)
stable single-component dark compacton solutions for a wide
range of parameters. It is interesting that this situation is
slightly improved when the interspecies interaction is switched
on, as discussed before.

V. GENERATION OF BINARY BEC COMPACTONS AND
EXPERIMENTAL SETTING

It is also interesting to discuss physical conditions for which
compactons could be experimentally observed in ultracold
BEC mixtures. From a first sight one could think that, in order
to keep the zero tunneling condition satisfied at the edges, one
needs a very precise control of the number of atoms inside the
compacton, a fact that could be difficult to arrange in a real
experiment. On the other hand, if the excitation is very stable,
it should appear also in the presence of generic fluctuations
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that are unavoidable in any real experiment. In this respect it
is of interest to address the problem of compacton generation
from generic initial excitations, this providing evidence of their
robust emergence even under unfavorable conditions. To this
end, let us concentrate on the most stable compact excitations,
which, as we have seen, are the ones of B-B type. Without
loss of generality, we take initial excitations of the Gaussian
type for both components un(0) = A exp(−η n2)/α1, vn(0) =
A exp(−η n2)/α2, with A,η fixed as A = 1.55,η = 0.2 in
the following numerical simulations (similar results can be
obtained with other types of initial conditions).

In Fig. 10 we show the generation of a single site (see top
two rows of panels) and a three-site (see bottom two rows
of panels) B-B compacton from a Gaussian initial condition
(same for both cases). The first and third row panels refer to
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FIG. 10. (Color online) Top two row panels. Single-site B-B
compacton emerging from the time evolution of an initial Gaussian
excitation (described in the text) of Eq. (1) with the nonlinear
management function taken as in Fig. 6 but with ε = 0.1. Parameters
are fixed as κ = 0.5, α1 = 1, α2 = 2, γ1 = γ2 = 1,γ12 = 0.5. Top
panels show the density profiles of the first (left) and second (right)
component at time t = 200 while second row panels show the
corresponding time evolutions. Bottom two row panels. Same as in
top two row panels but for ε = 0.01, and κ = 1 and for a three-site
B-B compacton displayed at time t = 150. Other parameters are as
in top two row panels.

the density profiles (at time t = 200 and t = 150, respectively)
while the second and forth row panels refer to time evolutions
of the two components. From the top two row panels we
see that after expelling some excess matter, a single-site
compacton on site n = 0 (plus some background noise)
emerges. The background noise is unavoidable because the
number of atoms (squared amplitudes) in the compacton for the
chosen parameter is fixed by the first zero of J0 and is smaller
than the number of atoms in the initial Gaussian. In spite of
this, the densities of the two components in the neighboring
sites, n = ±1, keep very small (although not exactly zero)
during their time evolution, irrespectively from the excess
radiation. For the considered case, ε was 0.1 and therefore
the management was not very strong. One can expect that by
further decreasing ε one can better and better approximate a
true compacton solution with vanishing densities at n = ±1
(this becoming exactly true in the limit ε → 0). The effect
of a stronger management can be seen from the bottom two
row panels of Fig. 10. In this case epsilon is one order
of magnitude smaller (ε = 0.01), κ = 1, and the mismatch
between numbers of atoms in the initial and final states is
quite small. As a result, we see that a three-site compacton,
practically indistinguishable from an exact solution based on
the first zero of J0, is formed. This clearly demonstrates
that, with proper parameter design and proper management
conditions, compactons can be very robust excitations that can
emerge spontaneously from generic initial conditions.

Further results shown in Fig. 11 address the problem of the
influence of the interspecies interaction γ12 on the compacton
formation. Here the same parameters and the same Gaussian
initial excitations as in bottom two rows of panels in Fig. 10
are used, but with a lower value of the interspecies interaction,
γ12 = 0.2. In this case we see that instead of a three-site
compacton, an intrinsic localized mode with exponential tail
is formed, in full agreement with the fact that by lowering the
interspecies interaction the compacton stability may be lost.

Let us now discuss possible experimental settings for the
observation of compacton modes. In this respect we remark
that the existence bound pairs of B-D solitons (localized
excitation with tails) has been experimentally demonstrated
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FIG. 11. (Color online) Same as in bottom two row panels of
Fig. 10 but for γ12 = 0.2.
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in Ref. [23] for the continuous case. A possible experimental
setting to observe the corresponding compacton modes could
be a BEC mixture of 41K and 87Rb atoms loaded in a deep
optical lattice considered in the experiment [31] and subjected
to interspecies scattering length modulations. An equivalent
setting could be implemented also in nonlinear optics with
an array of optical waveguides with varying Kerr nonlinearity
along the propagation [24,32]. For the case of binary BEC
mixtures, the time modulations of the scattering lengths can be
easily implemented by means of the FR technique by varying
the external magnetic field B, near a resonant value:

aij (t) = aij,br

(
1 − �

Bij,0 − B(t)

)
. (30)

Here aij,br denotes the background value of the respective
scattering lengths and Bij,0 the resonant value of the magnetic
field. In the case of 87Rb atoms, for example, there are several
narrow FR which could be used, the broadest one lying at
B0 = 1007G. The tight-binding limit, appropriate for a vector
DNLSE description, could be reached by considering optical
lattices of amplitude V0 > 10ER , where ER = �

2k2/2m is
the recoil energy. Thus, by changing periodically and rapidly
in time the magnetic field around an FR of the intraspecies
scattering lengths it should be possible to observe two-
component matter wave compactons to emerge from generic
initial conditions in real experiments.

VI. CONCLUSIONS

In conclusion, we have investigated the existence and
stability of binary mixture matter waves in arrays of BEC
subjected to time-dependent periodic variations of the scatter-
ing length, by means of an averaged two- component DNLSE.
In addition to B-B compactons we showed that B-D and D-D
compactons are also possible. The stability of these modes
has been investigated both by linear spectral analysis and by
direct numerical integrations. We found that the single-site and
the two-site (out-of-phase) B-B compactons are always very
stable in the whole parameter range, while for the other modes
there exist thresholds in the tunneling constant rate below
which they cannot exist as stable excitations. The stability
resulted in general to be more critical for pairs involving one
(or both) component of the dark type. In all cases, however,
the predictions of the averaged system were found in good
agreement (in some cases, excellent) with the results of the
numerical simulations.
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