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Critical quasienergy states in driven many-body systems
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(Received 22 October 2014; published 19 December 2014)

We discuss singularities in the spectrum of driven many-body spin systems. In contrast to undriven models,
the driving allows us to control the geometry of the quasienergy landscape. As a consequence, one can engineer
singularities in the density of quasienergy states by tuning an external control. We show that the density of levels
exhibits logarithmic divergences at the saddle points, while jumps are due to local minima of the quasienergy
landscape. We discuss the characteristic signatures of these divergences in observables such as the magnetization,
which should be measurable with current technology.
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I. INTRODUCTION

A quantum phase transition (QPT) is characterized by
nonanalytical behavior of the ground-state properties of the
system, when a control parameter crosses the quantum critical
point [1]. Rather recently it has been shown that quantum
criticality can appear also in excited states of the system, which
is referred to as an excited-state quantum phase transition
(ESQPT) [2–5]. This kind of quantum criticality can be found
in a wide variety of models in different communities, which
range from nuclear physics, with the interacting boson [6,7]
and the Lipkin-Meshkov-Glick (LMG) models [8], to quantum
monodromy in molecular physics [9], and the Dicke and
Jaynes-Cummings models in quantum optics [10–13].

ESQPTs can induce dramatic effects on the quantum
dynamics of the system. For example, environments with
ESQPTs enhance decoherence on quantum registers, which
has implications for quantum computation [14]. In addition,
thermalization processes can be affected by ESQPTs due to
degeneracies in the spectrum [15].

Most of the aforementioned models exhibit a ESQPT, that
leads to a logarithmic singularity in the density of states [3].
Such a singularity occurs at a critical energy, and it is a
quantum manifestation of the separatrix, i.e., a homoclinic or
heteroclinic orbit of the corresponding semiclassical model.

Observing such a separatrix experimentally is an active
field for nondriven models. Recently, the classical bifurcation
in the anisotropic LMG model has been observed in Bose-
Einstein condensates [16,17]. Furthermore, in the context of
spinor Bose-Einstein condensates [18,19], quantum signatures
of a semiclassical separatrix have been realized experimen-
tally [20,21]. In these experiments, a Gaussian initial state is
prepared at the hyperbolic fixed point of the separatrix, where
the subsequent evolution leads to non-Gaussian states, and the
creation of spin squeezing [22,23].

On the other hand, periodically driven systems, as depicted
in Fig. 1, have been proven to be a seminal playground in
both a theoretical and experimental manner. Starting from
the possibility to create effective interactions, it is possible
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to control the topological states of matter [24–30], create
unconventional phases in the Dicke, LMG and the Ising
models [31–34], and suppress coherent tunneling in a two-
mode Bose-Hubbard model [32].

Since there is currently a rising interest in the experimental
investigation of driven mean-field-type spin models [35–38], it
is natural to ask if signatures analogous to ESQPTs in undriven
systems can also be found in driven systems, where the energy
is not conserved and it is not possible to define either a ground
state or excited states.

In this paper we take a step in this direction, and develop
a general formalism to calculate analytically the density
of quasienergy states (DOQSs) under the stationary-phase
approximation [39]. To illustrate this, we show in Fig. 1
how driving can generate a separatrix leading to characteristic
features in the DOQS. Specifically, we apply this method to
the well-known kicked top model [39,40] and to the ac-driven
LMG model [32,33].

Concerning the kicked top, in a previous work, we found
signatures of quantum criticality in its spectrum in the regular
regime [40]. A recent paper describes a method to improve
the convergence of the effective Hamiltonian [41]. However,
it is an open question whether quantum criticality and a
convergent effective Hamiltonian could still be found in the
chaotic regime [39].

The rest of the paper is organized as follows. In Sec. II
we introduce the general theory, including a very short
introduction to Floquet theory (Sec. II A), the definition of
the DOQS (Sec. II B), the bosonization procedure (Sec. II C)
and the actual calculation of the DOQS (Sec. II D). In
Sec. III we then apply the theory to two different models.
We introduce their effective Hamiltonians (Sec. III A), discuss
the quasienergy landscapes (Sec. III B) and the corresponding
critical quasienergy states (Sec. III C). Last, we look at experi-
mentally accessible signatures of these states (Sec. III D). The
conclusion (Sec. IV) is followed by the Appendix, containing
some more detailed calculations.

II. GENERAL THEORY

In this section we introduce the general idea. We first
discuss the basics of Floquet theory and how to obtain effective
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FIG. 1. (Color online) Applying an external control g(t) to the
undriven system (a) allows us to engineer geometrical features of
the quasienergy landscape, which leaves measurable signatures in
observables. Depending on the shape of the external control, e.g.,
δ-kick-type (solid red) or monochromatic (dashed blue), the emergent
saddle points are connected via (b) homoclinic or (c) heteroclinic
orbits, giving rise to characteristic density of quasienergy states.

Hamiltonians, then we look at a suitable formulation for the
DOQS in this context. Next, we discuss the bosonization of
mean-field type models and show how this allows one to obtain
analytic results for the DOQS.

A. Floquet theory and effective Hamiltonian

In this paper we discuss quantum criticality arising in
excited states of time periodic Hamiltonians H (t) = H (t + T )
describing mean-field-type many-body systems. Throughout
this paper, T = 2π/� denotes the period and � the frequency
of the external driving. Due to the periodicity of the Hamilto-
nian, it is convenient to use Floquet theory [42,43] to describe
the quantum evolution of the system. For this purpose, we use
the Floquet operator, which is the evolution operator in one
period of the external driving

F̂ = Û (T ) = T̂ exp

[
−i

∫ T

0
Ĥ (τ ) dτ

]
, (1)

where T̂ is the time-ordering operator. The Floquet modes
|�μ(t)〉 = |�μ(t + T )〉 are obtained by solving the eigenvalue
problem

F̂ |�μ(0)〉 = e−iεμT |�μ(0)〉, (2)

where εμ are the quasienergies [44].
In contrast to undriven systems, the energy is not conserved

under external driving. Correspondingly, quasienergies do not
have an intrinsic ordering as energies do. This situation arises
because if |�μ(0)〉 satisfies Eq. (2), there is an infinite set of
states |�μ,n(t)〉 = ein�t |�μ(t)〉, such that

F̂ |�μ,n(0)〉 = e−iεμ,nT |�μ,n(0)〉, (3)

with quasienergies εμ,n = εμ + n�. Due to the lack of order-
ing of the quasienergies, throughout the paper we consider

only the first Brillouin zone, which is defined by −�/2 �
εμ � �/2.

The Floquet operator allows one to describe the system
stroboscopically [39,42–44]. That is, given an initial state
|�(0)〉 = ∑

μ cμ|�μ(0)〉, the state at discrete times tm = mT

is given by

|�(mT )〉 = F̂m|�(0)〉 =
∑

μ

cμe−imεμT |�μ(0)〉, (4)

which resembles the evolution operator for a time-independent
Hamiltonian [29,31–34]. This motivates the introduction of an
effective Hamiltonian (EH) ĤE for the system, such that F̂ =
e−iĤET . Thus, this EH will generate stroboscopic dynamics.

Following the definition of the EH, it is clear that the
Floquet modes satisfy ĤE|�μ(0)〉 = Eμ|�μ(0)〉, where {Eμ}
are the unfolded quasienergies, as it is discussed in Ref. [40].
In contrast to the genuine ones {εμ}, they obey an intrinsic
ordering. Furthermore, it is possible to map Eμ onto genuine
quasienergies εμ by εμ = Eμ mod �.

It is worth noticing that unfolded quasienergies are anal-
ogous to the energies of an undriven system. Therefore, by
using them, one can take advantage of the knowledge we have
about QPTs and ESQPTs in undriven systems [1–5] in order
to analyze quantum criticality in driven systems.

B. Density of quasienergy states

In this section we develop a general formalism to calculate
the DOQS for mean-field-type driven systems. To this end, we
assume that we are working in a parameter regime where the
EH is well defined, justifying F̂ = e−iĤET .

Unlike for undriven systems, the lack of ordering of the
quasienergies {εμ} leads to subtleties in the definition of the
DOQS. Similarly to Ref. [39], we consider here an alternative
representation of the DOQS

ρ(ε) = 1

2π
+ 1

πM
Re

[ ∞∑
n=1

Tne
inεT

]
, (5)

whereTn = ∑
μ e−inεμT = trF̂n is the trace of the nth power of

the Floquet operatorF defined in Eq. (1), and we have assumed
a Hilbert space of dimension M as in the supplementary
material of Ref. [40].

To calculate the trace, in the following we discuss the
bosonization of mean-field-type models [45], which leads to
the definition of the quasienergy landscape (QEL) and enables
us to calculate the DOQS analytically.

C. Bosonization and the quasienergy landscape

We begin by assuming that our EH can be written as
a function of the generators {La} of a Lie algebra g [45].
Furthermore, we require a representation of g in terms of a
set of f bosonic operators a = (a1,a2, . . . ,af ). For example,
in the case of g = su(2), we have f = 1 if we invoke the
Holstein-Primakoff representation [46]

Jx = j − a
†
1a1,

Jz + iJy = a
†
1

√
2j − a

†
1a1, (6)

Jz − iJy =
√

2j − a
†
1a1 a1.
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Given a convenient bosonic representation of the Lie alge-
bra [45], the bosonization procedure can be generalized to
other mean-field-type systems with higher spin, such as spinor
Bose-Einstein condensates [18,19] or atomic systems coupled
to optical cavities, such as the Dicke model [10,11] or cavity
QED with atoms in 
 configuration [47,48].

After bosonization of the EH, we introduce the mean fields
α = (α1,α2, . . . ,αf ). Formally this can be achieved by using
a displacement operator [49]

D̂(
√
Nα) = exp[

√
N (α· a† − α∗· a)], (7)

where α is a complex variational parameter such that

D̂†(
√
Nα)alD̂(

√
Nα) = al +

√
Nαl (8)

for l ∈ {1,2, . . . ,f }. The scaling factor
√
N depends on the

model and the dimension M of the Hilbert space. In the case
of Hamiltonian (20), the dimension of the Hilbert space is
M = 2j + 1 and the scaling factor reads

√
N = √

j .
We define the shifted Hamiltonian as

Ĥ
(α)
E = D̂†(

√
Nα)ĤED̂(

√
Nα) (9)

and expand it neglecting terms of the order O(N−1/2)

Ĥ
(α)
E ≈ NEG(α,α∗) +

√
N ĤL

E (α,α∗) + Ĥ
Q
E (α,α∗), (10)

where EG(α,α∗) denotes the quasienergy landscape (QEL).
The QEL determines features of the quadratic (ĤQ

E ) and linear
(ĤL

E ) terms in the bosonic operators a and a†. For example, the
term ĤL

E vanishes at the critical points where ∂
∂αl

EG(α,α∗) =
∂

∂α∗
l

EG(α,α∗) = 0. In addition, Ĥ
Q
E (α,α∗) contains informa-

tion about the local curvature of the QEL at the critical points
and provides the first quantum correction to the mean-field
approach [10]. A similar analysis was described in the context
of the energy landscape for an ensemble of three-level systems
in 
 configuration, which are collectively coupled to two
bosonic modes [47,48].

D. Explicit calculation of the DOQS

After the bosonization procedure, one can use the machin-
ery of coherent states [49] to calculate the traces Tn and the
DOQS analytically.

The operator Eq. (7) also allows one to generate
bosonic coherent states |√Nα〉 = D̂(

√
Nα)|0〉, where |0〉 =

|0,0, . . . ,0〉 is the vacuum state of the bosonic operators [49].
Consequently, the traces Tn in Eq. (5) can be easily calculated
in the basis {|√Nα〉} of bosonic coherent states

Tn = trF̂n =
(N

π

)f ∫
d2f α〈

√
Nα|F̂n|

√
Nα〉

=
(N

π

)f ∫
d2f α〈0|D̂†(

√
Nα)e−inĤET D̂(

√
Nα)|0〉

=
(N

π

)f ∫
d2f α〈0|e−inĤ

(α)
E T |0〉

≈
(N

π

)f ∫
d2f αe−inNEG(α,α∗)T Fn(α,α∗), (11)

where Ĥ
(α)
E is the Hamiltonian of Eq. (10). Furthermore, in

Eq. (11) we have defined a kernel

Fn(α,α∗) = 〈0|e−in

[√
N ĤL

E (α,α∗)+Ĥ
Q
E (α,α∗)

]
T |0〉, (12)

containing quantum contributions of order 1/N .
As in our previous work [40], we calculate the trace of

Eq. (11) in the thermodynamic limit N 	 1 by means of the
stationary-phase approximation [39]. Thereby, the trace reads

Tn = 1

nf

∑
αc∈C

(
2
T

)f
Fn(αc,α

∗
c )eiβcπ/4e−inNEG(αc,α

∗
c )T√| det[MG(α,α∗)]|α=αc

, (13)

where

MG(α,α∗) =

⎛⎜⎜⎝
∂2EG(α,α∗)

∂α2
1

. . . ∂2EG(α,α∗)
∂α1∂α∗

f

...
. . .

...
∂2EG(α,α∗)

∂α∗
f ∂α1

. . . ∂2EG(α,α∗)
∂(α∗

f )2

⎞⎟⎟⎠ (14)

is the Hessian matrix of EG(α,α∗). The sum in Eq. (13) is
over αc ∈ C, where C is the set of critical points satisfying
the conditions ∂EG

∂αl
|α=αc

= ∂EG

∂α∗
l

|α∗=α∗
c
= 0. The index βc is the

difference in the number of positive and negative eigenvalues
of the Hessian matrix MG(α,α∗) for a given critical point.

The stationary-phase approximation also simplifies the
kernel in Eq. (12)

Fn(αc,α
∗
c ) = 〈0|e−in[ĤQ

E (αc,α
∗
c )]T |0〉, (15)

because the linear bosonic terms in the argument of the
exponential function vanish at the critical points αc ∈ C. For
completeness we have included a calculation of the Kernel
Fn(αc,α

∗
c ) for f = 1 in Appendix A. In the limit N 	 1, we

can safely neglect the contribution of the kernel of Eq. (15),
which has order 1/N . Therefore, we consider Fn(αc,α

∗
c ) ≈ 1

for all the critical points αc ∈ C.
After neglecting the quantum kernel of Eq. (15), we are able

to get a semiclassical approximation for the DOQS of Eq. (5)

ρcl(ε) = 1

2π
+ Re

{∑
c∈C

Ac eiβcπ/4Lif [ei(ε−Ec)T ]

}
, (16)

where Ec = NEG(αc,α
∗
c ) and Lif (z) = ∑∞

n=1
zn

nf is the poly-
logarithm [50]. Correspondingly, the amplitudes Ac for each
critical point are given by

Ac = (2/T )f

πM
√| det[MG(α,α∗)]|α=αc

. (17)

Interestingly, in the general case of f > 1, the (f − 1)th
derivative of the DOQS

∂f −1ρcl(ε)

∂εf −1
= Re

{∑
c∈C

Ac ei
(f −1)π

2 ei
βcπ

4 Li1[ei(ε−Ec)T ]

}
(18)

exhibits a logarithmic divergence if for a given k ∈ Z, the
condition 2(f − 1) + βc = 8k is fulfilled. Let us assume that
such a condition is satisfied for a particular critical point αc ∈ C
with quasienergy Ec. In this case, the (f − 1)th derivative of
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the DOQS scales as

∂f −1ρcl(ε)

∂εf −1
≈ −Ac ln |ε − εc|, (19)

where εc = Ec mod � is the genuine critical quasienergy.
This is reminiscent of similar results for nondriven systems
that show an ESQPT [51]. We have included a more precise
discussion of the derivation in Appendix B.

III. APPLICATIONS FOR f = 1

To apply the general formalism, in this section we describe
the explicit form of the effective Hamiltonians for a fully con-
nected network of two-level systems with two different kinds
of external driving, i.e., δ-kick-type and monochromatic. In
addition we show the corresponding quasienergy landscapes,
calculate the DOQS, and discuss the emergence of critical
quasienergy states and their effects on the magnetization. This
work extends and generalizes previous results, published in
Ref. [40].

We assume a fully connected network of two-level systems
with time-dependent interactions given by [32,33]

Ĥ (t) = h

2

N∑
i=1

σ (i)
x + g(t)

4N

N∑
i,j=1

σ (i)
z σ (j )

z

= hJx + g(t)

2j
Jz

2, (20)

where we have defined the collective angular momentum
operators Ja = 1

2

∑N
i=1 σ (i)

a with a ∈ {x,y,z,±}. Throughout
the paper, we restrict ourselves to the subspace of maximally
symmetric states |j,m〉 with maximal total angular momentum
j = N/2, also known as Dicke states [52].

We consider two different kinds of time-dependent
inter-particle interactions, namely δ-kick-type g(t) =
K

∑∞
l=−∞ δ(t − lT ) and monochromatic g(t) = G cos �t .

The δ-kick-type driven model is also known as the kicked
top [39,40].

Independent of the chosen driving, in the particular case of
Eq. (20), the Hamiltonian is written in terms of the generators
La = Ja of the Lie algebra g = su(2) [45]. Thus, we are strictly
limited to the f = 1 case of the more general theory.

A. Effective Hamiltonian and the quasienergy landscape

Let us first discuss Hamiltonian (20) with interparticle inter-
action g(t) = K

∑∞
l=−∞ δ(t − lT ), which corresponds to the

kicked top, well studied in the quantum chaos community [39].
In our work, however, to be able to derive the EH one needs to
work in the regular regime hT ∼ K � 1. Following the same
procedure as in Ref. [40] we obtain the EH

ĤE = K

2j
J 2

z + h

2

{ −i K
2j

J+(2Jz + 1̂)

exp
[ − i K

2j
(2Jz + 1̂)

] − 1̂
+ H.c.

}
.

(21)

For a more detailed derivation of the EH see Appendix C. The
EH exists as long as we are in the regular regime, as discussed
in Ref. [40,53].

To obtain the EH for g(t) = G cos �t in the high-frequency
limit h � � and arbitrary driving amplitude G, we consider
here a derivation of the EH following Refs. [32,33]. This leads
to the EH

ĤE = h

2
J+J0

[
G

2j�
(2Jz + 1̂)

]
+ H.c. , (22)

where Jm(z) is the mth-order Bessel function [50,54]. For
completeness, we have included details of the derivation in
Appendix C.

For both Eqs. (21) and (22), the bosonization procedure
can be carried out by means of the Holstein-Primakoff
representation of the angular momentum operators [46]. In
order to provide a geometrical picture, it is convenient to
define the coordinates (X,Y,Z) = (Jx/j,Jy/j,Jz/j ), which
commute in the thermodynamic limit. Once we perform the
Holstein-Primakoff and the shift transformation (for f = 1)
given by Eq. (6) and Eq. (7) respectively, we can write

X = Jx

j
= 1 − α∗α,

Y = Jy

j
= α∗ − α

2i

√
2 − α∗α, (23)

Z = Jz

j
= α∗ + α

2

√
2 − α∗α,

for j 	 1. To simplify the notation, we have dropped the
index of the mean fields defined in Eq. (8). In addition, due
to the conservation of the angular momentum, Eq. (23) is
the parametrization of the unit sphere in R3, i.e., the Bloch
sphere [33].

B. Discussion of the QEL

Now we are able to obtain the QEL for the two cases we
are interested in. The QEL for the δ-kick-type driving reads

EG(α,α∗) = K

2
Z2 + hKZ

2

[
X cot

(
KZ

2

)
− Y

]
, (24)

and for monochromatic driving we obtain

EG(α,α∗) = hXJ0

(
G

�
Z

)
. (25)

Figure 2 depicts the isocurve values of the energy landscapes
of Eqs. (24) and (25). It is worth to mention that an equivalent
result can be obtained by using spin coherent states [40].

The QEL for the kicked top, unlike for the ac-driving case,
exhibits singularities at mean-field level, along the isocurve
values KZ = 2lπ with l ∈ Z. This fact implies that as long
as we are far away from the chaotic regime, the QEL is well
defined [40].

Instead of using variables α and α∗, it is more convenient
to work with real and imaginary part of α = Q + iP , respec-
tively. The benefit of these variables is that one can depict
the Bloch sphere in a restricted domain Q2 + P 2 � 2 at once,
without splitting the surface in two parts, as required when
using, e.g., stereographic projection. The north pole of the
Bloch sphere (X,Y,Z) = (1,0,0) is mapped onto the origin
(Q,P ) = (0,0), while the south pole of the Bloch sphere
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(a) (b)

FIG. 2. (Color online) QEL for (a) the kicked top with K = 0.3
and (b) the ac-driven model with GT = 20. The yellow (light gray)
and blue (dark gray) regions have energy E > h and E < h for
the kicked top, and E > 0 and E < 0, for the ac-driven model,
respectively. Solid lines show levels of constant energy. Features
are denoted by S (saddle point), M (maxima), and m (minima). Other
parameters are �T = 2π and hT = 0.1.

(X,Y,Z) = (−1,0,0) is mapped to the boundary of the domain,
i.e., the points (Q,P ) such that Q2 + P 2 = 2.

Figure 2(a) depicts the QEL of the kicked top model.
There we can find two degenerated maxima M1,M2, one
saddle point S and a minimum m at the boundary of the
domain. We also represent with two different colors the regions
divided by the separatrix, which is a curve with constant
quasienergy, defined by EG(αS,α

∗
S) = h, where EG(αS,α

∗
S) is

the quasienergy corresponding to the saddle point (QS,PS).
Furthermore, the separatrix divides the region of the QEL
where the trajectories are connected, from the region of the
QEL where they are not.

Figure 2(b) depicts the QEL and the isocurve values for
the ac-driven model. In this case, we find three maxima
M1,M2,M3, four degenerated saddle points S1,S2,S3,S4 with
energy EG(αSi

,α∗
Si

) = 0, and three minima m1,m2,m3, includ-
ing the boundary of the domain. We represent the regions
divided by the separatrix defined by EG(α,α∗) = 0 with
different colors.

C. Critical quasienergy states

We have now all the necessary ingredients to calculate the
DOQS given by the general formula Eq. (16) with f = 1
for the QELs of Eqs. (24) and (25). Similar to our previous
work [40], in this case βM = 2 at the maxima and βm = −2 at
the minima, whereas βS = 0 for a saddle point. To calculate the
DOQS given by Eq. (16), in the case of δ-kick-type driving one
needs to sum over the critical points C = {αM1 ,αM2 ,αm1 ,αS},
while for monochromatic driving one has to sum over ten
critical points C = {αM1−3 ,αm1−3 ,αS1−4}.

Figure 3 shows the good agreement between the exact
numerical calculation of the DOQS (black triangles and
circles) and the analytical result given by Eq. (16) (red lines)
for (a) the kicked top and (b) the ac-driven model. For the sake
of completeness, Fig. 3 also depicts the integrated DOQS

N (ε) =
∫ ε

−�/2
ρ(ε) dε. (26)

FIG. 3. (Color online) DOQS ρ(εα) and integrated DOQS N (εα)
of (a) the kicked top with K = 0.3 and j = 100 and (b) the ac-driven
model with GT = 20 and j = 100 calculated analytically (red, solid
lines) and numerically exact (black symbols). Other parameters are
�T = 2π and hT = 0.1.

This quantity inherits the features of the DOQS, which are
reflected in a discontinuous change of slope at the critical
quasienergies.

As a general feature, we find that the saddle points
(QS,PS) of the QEL with quasienergies EG(αS,α

∗
S) lead to

logarithmic-type singularities in the DOQS at critical genuine
quasienergies εS = ES mod �, where ES = jEG(αS,α

∗
S).

In the case of δ-kick-type driving, the quasienergy of the
saddle point (QS,PS) = (0.0) reads EG(0,0)T = hT = 0.1,
for the parameters of Fig. 2(a). This implies that if we choose
j = 100, the singularity must appear at the critical quasienergy
εST ≈ −2.56, as can be seen in Fig. 3(a). In addition, in the
case of monochromatic driving, the quasienergy of the saddle
points is EG(0,0) = 0, as in Fig. 2(b), which leads to the
singularity located at the quasienergy εST = 0 in Fig. 3(b).

The singularities previously discussed emerge as a conse-
quence of a clustering of levels in the quasienergy spectrum
of the system [40]. This behavior is characteristic for undriven
systems, which undergo second-order ESQPTs [2–5]. This
leads to the concept of critical quasienergy states (CQSs)
for driven systems, which are the natural generalization of
ESQPTs to driven quantum systems. These CQSs are the quan-
tum manifestation of the separatrix defined by EG(α,α∗) =
EG(αS,α

∗
S), which is depicted in Fig. 2.

The jumps in the DOQS occur at the genuine quasiener-
gies εM and εm associated with the maxima and minima,
respectively. We note that in undriven systems the jumps
in the density of states are directly related to first order
ESQPTs [4], but in the case of external driving, they emerge
as a consequence of the periodicity of the quasienergies.

D. Signatures of critical quasienergy states arising
in observables of the system

It is well known that singular behavior of the density of
states in undriven systems is also reflected in observables
of the system [8,11]. In a similar fashion, under the effect
of external control, CQS should also appear in observables of
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the system, as they can be expressed in terms of derivatives of
the DOQS [40]. This is a direct consequence of the extension
of the Hellmann-Feynman theorem to Floquet theory [44].

While the DOQS is not very well accessible experimentally,
the magnetization has already been measured in driven
cold-atom experiments [16,17,37,38]. We thus focus in the
following on the scaled transverse magnetization 〈Jx/j 〉.
It is convenient to define the expectation value using the
quasienergy eigenstates,

〈Jx/j 〉μ ≡ 〈�μ(0)|Jx

j
|�μ(0)〉 , (27)

where |�μ(0)〉 is the Floquet mode with quasienergy εμ.
However, from an experimental point of view, it is challeng-

ing to prepare the system in a given Floquet mode |�μ(0)〉.
For this reason, similarly to Refs. [40,55], we propose here
a measurement protocol to observe the cusp behavior in
the transverse magnetization. To initialize the measurement,
we propose to prepare the system in a spin coherent state
|�(0)〉 = |γ 〉 following the definition of Ref. [23]

|γ 〉 = (1 + γ γ ∗)−j eγ (Jz−iJy )|j,j 〉x, (28)

where |j,j 〉x denotes Dicke states in the Jx basis. We choose
the spin coherent state to be centered at R0 = [X0,Y0,Z0] on
the Bloch sphere [22,23], in such a way that

γ = Z0

1 + X0
+ i

Y0

1 + X0
. (29)

The insets (I) in Fig. 4 depict the initial conditions R0 for the
measurement protocol both for Fig. 4(a) δ-kick type driving
and Fig. 4(b) monochromatic driving. Blue circles show initial
conditions between saddle point (S) and maximum (M), while
red triangles denote initial conditions between saddle point
and minimum (m).

Given an experimental register of the stroboscopic evo-
lution |�(lT )〉 = F l|�(0)〉 during L periods of the driving,
cf. Eq. (4), it is natural to define the time-averaged density
operator

ρ = 1

L + 1

L∑
l=0

|�(lT )〉〈�(lT )|. (30)

Correspondingly, the time-averaged expectation value of

an observable Ô reads 〈Ô〉 = tr(ρÔ). In our measurement
protocol, the initial state has a fixed unfolded quasienergy
〈�(0)|ĤE|�(0)〉 = Eμ, which remains constant after the

time average 〈ĤE〉 = Eμ. Now one can plot the coordi-
nates (Eμ,〈Jx/j 〉) to compare with the result in eigenstates
(Eμ,〈Jx/j 〉μ) as it is shown in Fig. 4.

The filled symbols in Fig. 4 depict the expectation value of
the scaled magnetization in Floquet modes for a finite system
size j = 50 for (a) δ-kick-type driving and (b) ac driving as a
function of the unfolded quasienergies 〈ĤE〉μ = Eμ. We note
that a cusp behavior of the magnetization appears at the critical
quasienergy EST = jhT = 5 for the kicked top, and EST = 0
for the ac-driven model. This result follows directly from the
behavior of the DOQS observed in Figs. 3(a) and 3(b). A
similar behavior of this observable has been found in undriven
LMG-type and Dicke-type models [3,11–13].

(a)

(b)

(I)

(II)

(I)

(II)

FIG. 4. (Color online) Magnetization 〈Jx/j〉μ for (a) the kicked
top with K = 0.3, and (b) the ac-driven LMG model with GT = 20.
Calculations in quasienergy states (filled, black squares) are compared
to time-averaged expectation values (blue circles and red triangles)
with initial conditions shown in insets (I), respectively. Insets (II)
show details of the cusp arising due to the CQS for the different
drivings. Features of the corresponding QEL are denoted by S (saddle
point), M (maxima), and m (minima). Other parameters are j = 50,
�T = 2π , and hT = 0.1.

The insets (I) in Fig. 4 depict the chosen initial conditions on
the Bloch spheres. For both cases, we select initial conditions
along a path joining the minimum with the saddle point, as
well as along a path joining the saddle point with a maximum
of the QELs depicted in Fig. 2. The points along the paths
R0 are chosen such that they exhibit a minimal velocity of

the semiclassical system V (α,α∗) =
√

( ∂EG

∂α
)2 + ( ∂EG

∂α∗ )2. This
leads to a minimal participation ratio of the initial state,
which results in a small deformation of the wave packet
during the time evolution [56–59]. In Ref. [55] this relation
is discussed in more detail for the undriven LMG model.
Additionally, the open symbols in Fig. 4(b) show the results
of the measurement protocol only for the upper branch of the
transverse magnetization. The lower branch can be obtained
by considering the symmetry transformation Jx → −Jx and
Eμ → −Eμ. The insets (II) show a zoom into the cusp
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region and underscore the good agreement of the measurement
protocol with the result for quasienergy eigenstates.

IV. CONCLUSIONS

We have studied signatures of CQS in mean-field-type spin
models under δ-kick-type and monochromatic driving. By
assuming that it is possible to bosonize the EH of the driven
system in terms of f bosonic operators, we have derived a
general formula for the DOQS. In the particular case of a fully
connected network of two-level systems with time-dependent
interactions, most of the features of the DOQS are due to the
nature of the critical points, which appear in the QELs, i.e.,
saddle points are responsible for logarithmic divergences in the
DOQS. Also, we have explored how this CQS can be observed
in the scaled magnetization of the system. For this purpose, we
have developed a measurement protocol to test experimentally
CQS in driven systems. This measurement protocol relies on
the time-averaged expectation values of the system initialized
in a coherent state on the Bloch sphere. We have shown that
the quantum signature of the separatrix appears in the cusp
behavior of the scaled magnetization, similarly to the cusp
that can be found in undriven systems.

Future directions of research include the application of the
theory to driven Dicke and 
 models (f = 2,4) [31,47], the
use of CQS for the generation of squeezed states and quan-
tum metrology [23], and the extension to driven-dissipative
systems [60].
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APPENDIX A: CALCULATION OF THE QUANTUM
KERNEL Fn(αc,α

∗
c )

Let us consider the quadratic part of the Hamiltonian (10)
for f = 1, which possesses the canonical form of the squeez-
ing Hamiltonian

Ĥ
Q
E (αc,α

∗
c ) = ωca

†a + �c[a2 + (a†)2], (A1)

where the parameters ωc and �c contain information of
the local geometry of the critical points αc ∈ C. Let us
write the Hamiltonian (A1) in terms of the quadratures q =
(2ωc)−1/2(a† + a) and p = i(ωc/2)1/2(a† − a) of the bosonic
field as in Ref. [10], as follows

Ĥ
Q
E (αc,α

∗
c ) = p2

2
+ ϑ2

c

2
q2 − ωc

2
, (A2)

where ϑ2
c = ω2

c − 4�2
c . The sign of ϑ2

c varies depending on the
geometry of the critical points, i.e., ϑ2

c > 0 for maxima (M)
and minima (m) and ϑ2

c < 0 for a saddle point (S).
In position representation we can write the quantum

correction Eq. (15) in terms of the propagator G(x,y; t) of

the one-dimensional harmonic oscillator [10]

Fn(αc,α
∗
c ) =

∫ ∞

−∞

∫ ∞

−∞
dq dq ′ ψ∗

0 (q)G(q,q ′; nT )ψ0(q ′),

(A3)

where ψ0(q) = 〈q|0〉 = (h/π )1/4e−(h/2)q2
and

G(q,q ′; t) = Nc exp

{
iϑc[(q2 + (q ′)2) cos(nϑcT ) − 2qq ′]

2 sin(nϑcT )

}
,

(A4)

with Nc = [2πi sin(nϑcT )/ϑc]−1/2. Now we proceed to write
the quantum correction of Eq. (15) in a suggestive way

Fn(αc,α
∗
c ) = Ñc

∫ ∞

−∞
d2r exp

(
−1

2
rT · A· r

)
= 2πÑc√

det A
,

(A5)

where Ñc = (h/π )1/2 [2πi sin(nϑcT )/ϑc]−1/2 and rT =
(q,q ′). The matrix representing the quadratic form in the
argument of the exponential reads

A =
(

h − iϑc cot(nϑcT ) iϑc

sin(nϑcT )
iϑc

sin(nϑcT ) h − iϑc cot(nϑcT )

)
. (A6)

Finally, we can write

Fn(αc,α
∗
c ) =

√
−2ihϑc sin(nϑcT )

[h sin(nϑcT ) − iϑc cos(nϑcT )]2 + ϑ2
c

. (A7)

APPENDIX B: DETAILED STUDY OF THE DOQS

In this Appendix we discuss in more detail the derivation
of Eq. (18) in the main text. For an arbitrary integer number
f , the DOQS given in Eq. (16) has interesting properties. Let
us begin by considering the identity

∂r

∂θr
Lif (eiθ ) = irLif −r (eiθ ) (B1)

satisfied by the polylogarithm Lif (eiθ ) [50]. As a consequence
of this, if one calculates the (f − 1)th derivative of the DOQS
given in Eq. (16) with respect to the quasienergy ε, one obtains
Eq. (18).

Motivated by a previous work [40], we can use the
expansion of polylogarithm [50]

Li1(eiθ ) = − ln

[
2 sin

(
θ

2

)]
+ i

(
π − θ

2

)
, (B2)

where 0 � θ < 2π . From Eq. (B2) follows that if 2(f −
1) + βc = 8k for k ∈ Z, the DOQS exhibits a logarithmic
divergence as in Eq. (19). In the particular case of f = 1,
one obtains k = 0 when one evaluates the index βS = 0 for a
saddle point S. In the case of maxima M and minima m does
not exists an integer k such that βM,m = 8k because βM = 2
and βm = −2 [40]. Therefore, in this case the DOQS exhibits
jumps at the quasienergies εM and εm.
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APPENDIX C: DERIVATION OF THE EFFECTIVE
HAMILTONIANS

Our first step is to show how to derive the EH for a δ-
kick-type modulation of the interparticle interaction g(t) =
K

∑∞
l=−∞ δ(t − lT ) in Eq. (20). Working in the regular regime

of the kicked top, within one period, the propagator factorizes
into two parts

F̂ = e−ihT Jx e−i(K/2j )J 2
z . (C1)

Following the same procedure as in Ref. [40], we use the
Baker-Campbell-Hausdorff (BCH) formula in the regime
hT ∼ K � 1 to construct ĤE. With this aim, we use that
the Floquet operator Eq. (C1) can be written in the form
F̂ = e−ihB̂e−iÂ = e−iĤE with Â = i K

2j
J 2

z and B̂ = iT Jx . The
BCH formula allows one to obtain the EH

ĤE = −iÂ + ih
adÂ

exp[−adÂ] − 1̂
B̂,

where adX̂Ŷ = [X̂,Ŷ ] denotes the adjoint representation of
the angular momentum algebra [53]. This finally leads to
expression (21).

To derive the EH for g(t) = G cos �t we need to construct
the evolution operator in one period of the driving for the
Hamiltonian (20). We consider here a derivation of the EH
following Refs. [32,33]. To accomplish this task, we work
in the interaction picture, in which the Floquet operator
reads F̂ = Û0(T )ÛI (T ), where Û0(t) = exp(−i G sin �t

2j�
Jz

2)

with Û0(T ) = 1̂, and

ÛI (t) = T̂ exp

(
−ih

∫ t

0
Û

†
0 (τ ) Jx Û0(τ ) dτ

)
(C2)

is the evolution operator in the interaction picture. In the high-
frequency limit h � �, one can expand the Floquet operator
as follows

F̂ = ÛI (T ) ≈ 1̂ − ih

∫ T

0
Û

†
0 (τ ) Jx Û0(τ ) dτ

= 1̂ − i
h

2

[
J+

∫ T

0
e
−i G sin �τ

2j�
(2Jz+1̂)

dτ + H.c.

]
. (C3)

By using the expansion eiz sin �t = ∑∞
m=−∞ Jm(z)eim�t , where

Jm(z) is the mth-order Bessel function [50], one can express
approximately the last line in terms of an exponential F̂ ≈
e−iĤET , which leads to the EH in Eq. (22).
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