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Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates
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We investigate thermal relaxation of superfluid turbulence in a highly oblate Bose-Einstein condensate. We
generate turbulent flow in the condensate by sweeping the center region of the condensate with a repulsive
optical potential. The turbulent condensate shows a spatially disordered distribution of quantized vortices, and
the vortex number of the condensate exhibits nonexponential decay behavior which we attribute to the vortex pair
annihilation. The vortex-antivortex collisions in the condensate are identified with crescent-shaped, coalesced
vortex cores. We observe that the nonexponential decay of the vortex number is quantitatively well described by
a rate equation consisting of one-body and two-body decay terms. In our measurement, we find that the local
two-body decay rate is closely proportional to T 2/μ, where T is the temperature and μ is the chemical potential.
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I. INTRODUCTION

In a two-dimensional (2D) superfluid, quantized vortices
are topological, point-like objects and they can be created and
also annihilated as a pair of vortices of opposite circulation.
Vortex-antivortex pairs play essential roles in 2D superfluid
phenomena such as the Berezinskii-Kosterlitz-Thouless tran-
sition [1,2], phase transition dynamics [3], and superfluid
turbulence [4,5]. Recently, controlled experimental studies
of vortex dipole dynamics have been enabled in atomic
Bose-Einstein condensate (BEC) systems [6,7] and thermal
activation of vortex pairs has been observed in quasi-2D Bose
gases [8,9]. However, the annihilation of a vortex-antivortex
pair has not been clearly observed yet.

Vortex pair annihilation is of particular importance in
2D superfluid turbulence. In 2D turbulence of a classical
hydrodynamic fluid, the kinetic energy of the system flows
toward large length scales due to the conservation of enstrophy
which is integral of squared vorticity [10]. This is known as
the inverse energy cascade and manifests itself in generating
large-scale flow structures from small-scale forcing. This
phenomenon is qualitatively different from three-dimensional
(3D) turbulence where energy is typically dissipated into small
length scales. An interesting question is whether the inverse
cascade can occur in an atomic BEC. Since the enstrophy,
proportional to the total number of quantized vortices in
quantum turbulence, is not conserved in a compressible 2D
superfluid due to the vortex-antivortex annihilation, there has
been a theoretical controversy on this issue [11–20]. Recently,
Neely et al. [21] reported an experimental and numerical study
to show that there are conditions for which 2D turbulence in a
BEC can dissipatively evolve into large-scale flow.

In this paper, we investigate thermal relaxation of turbulent
superflow in highly oblate BECs. By sweeping the center re-
gion of a trapped condensate with a repulsive optical potential,
we generate turbulent flow with a spatially disordered vortex
distribution. We measure the temporal evolution of the vortex
number and observe nonexponential decay behavior in the re-
laxation, which we attribute to the vortex pair annihilation. The
vortex-antivortex collisions in the condensate are identified
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with crescent-shaped, coalesced vortex cores. We characterize
the nonexponential decay of the vortex number with one-body
and two-body decay rates, and find in our measurements
that the local two-body decay rate is closely proportional
to T 2/μ, where T is the temperature and μ is the chemical
potential of the sample. Our results for the decay rates provide
quantitative information on the thermal dissipation in 2D
quantum turbulence, in particular, with finite compressibility.

This paper is organized as follows. In Sec. II, we describe
our experimental setup and the experimental procedure for
generating turbulent flow in the condensate. In Sec. III, we
present the experimental observations on the vortex-antivortex
collision and the analysis of the nonexponential decay of the
vortex number of the turbulent condensate. Finally, a summary
is presented in Sev. IV.

II. EXPERIMENT

We prepare a highly oblate BEC of 23Na atoms in the
|F = 1,mF = −1〉 state in a harmonic trap, where the axial
and radial confinements are provided by optical and magnetic
trapping potentials, respectively. The magnetic potential is
generated from an axially symmetric, magnetic quadrupole
field [9]. The trapping frequencies are ωr,z = 2π×(15,350)
Hz. For a condensate of N0 = 1.8×106 atoms, the chemical
potential is μ ≈ kB×60 nK and the radial Thomas-Fermi
radius is R = √

2μ/mω2
r ≈ 70 μm, where m is the atomic

mass. Because of the large aspect ratio of the condensate,
ωz/ωr > 20, the vortex line excitations are highly sup-
pressed [22,23] and we expect that the vortex dynamics in
our system is 2D. Note that μ> 3�ωz and the condensate is
thermodynamically 3D.

To generate turbulent flow in the condensate, we employ a
repulsive Gaussian laser beam as a stirring obstacle [6]. Having
the laser beam axially penetrating through the condensate, we
translate the condensate in a transverse direction by moving
the magnetic trap center by 37 μm for 30 ms (Fig. 1), and
adiabatically turn off the laser beam for 0.4 s. Here the laser
beam, fixed in the laboratory frame, sweeps the center region
of the condensate. The Gaussian beam waist is 15 μm and
the potential barrier height is about 15μ. The translation speed
corresponds to ∼0.3c, where c = √

μ/m is the speed of sound
in the center region of the condensate. With this procedure, we
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FIG. 1. Generation of turbulent flow in a BEC. A repulsive laser
beam penetrates through the condensate and sweeps its center region
by horizontally translating the trapped condensate by 37 μm. Images
of the trapped condensate (a) before and (b) after the translation.
(c) Number of the vortices in the perturbed condensate as a function
of the translation speed v. The speed of sound is estimated to be
c ≈ 4.6 mm/s at the center of the condensate.

could generate over 60 vortices in our coldest sample without
inducing noticeable shape oscillations of the condensate. The
critical velocity for the vortex nucleation was measured to be
≈0.1c [Fig. 1(c)].

We detect vortices in the turbulent flow by taking an
absorption image after 24 ms time of flight. In releasing
the trapping potential, we turn off the magnetic potential
12 ms earlier than the optical potential. This was found to be
helpful to improve the vortex core visibility because the axial
confinement direction of the optical trap was well aligned to
the imaging axis [9].

An image processing method is developed to facilitate
measuring the number of vortices Nv in a turbulent sample
(Fig. 2). First, we produce a blurred image by applying boxcar
smoothing to an absorption image, where the box width is set to
be 30 μm, comparable to the vortex core diameter in the image.
We divide the original absorption image by its blurred image
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FIG. 2. (Color online) Vortex number counting for a turbulent
condensate with a large number of vortices. (a) Absorption image of
the condensate after expansion. (b) A binary image obtained from
(a) and its blurred version (see the text). Black particles correspond
to the vortex cores and red particles, having area sizes less than
15 pixels, are artifacts due to image defects. (c) Histogram of the
particle area size from 24 image data. We set the vortex number
transition lines (dashed lines) in the middle of the peaks. (d)–(f)
display another example set of the image analysis, where the
condensate contains about 30 vortices.

and then convert it into a binary image for a certain threshold
value. With this image processing, the density-depleted vortex
cores in the absorption image are transformed into particles
in the binary image [Figs. 2(b) and 2(e)]. Each particle has a
different area size depending on the number of vortices it has.
The histogram of the particle area size shows a multiple-peak
structure. We set the vortex number transition lines in the
middle of the peaks and assign a vortex number to each particle
[Figs. 2(c) and 2(f)]. The particles having an area size less than
15 pixels are due to image defects and ignored in our counting.

In order to validate this Nv counting method, we compared
its results with the results obtained from hand counting
for many images and confirmed that the image processing
method gives a consistent counting within less than 10%
(∼5 vortices). The positions of the vortex number transition
lines do not significantly affect the counting because the
relative number of the particles having many vortices is small.
Most of the uncertainty in the counting was found to come from
the vortices in the the boundary region. In our analysis, we used
the image processing method for the images with a large num-
ber of vortices and for Nv < 30, we counted vortices by hand.

III. RESULTS

A. Nonexponential decay

Figure 3 displays images of condensates with turbulent flow
after various relaxation times. The turbulent condensate shows
spatially disordered distributions of vortices. In the early phase
of the evolution, some features in the condensate seem to be
suggestive of vortex clustering, but we observed no evidence
in the spatial analysis of the vortex distributions using Ripley’s
K function [24]. The turbulent condensate eventually relaxes
into a stationary state as the vortex number decreases.

We observe nonexponential decay behavior of the vortex
number in the relaxation [Fig. 4(a)], where the decay rate
is faster for higher vortex number. There are only two ways
for a quantum vortex to disappear from a condensate of
finite spatial extent: drifting out of the condensate or being
annihilated as a vortex-antivortex pair inside the condensate.
Since our turbulence generation method imparts no angular
momentum to the condensate, the initial turbulent condensate
would have equal numbers of vortices for clockwise and
counterclockwise circulations, and both of the drifting-out
and the pair annihilation processes must be involved in
the relaxation dynamics. Since the pair annihilation is
intrinsically a two-vortex process, it might be a reason for the
nonexponential decay of the vortex number.

To examine the details of the decay behavior of Nv , we
determine the decay rate −dNv/dt from the measured Nv

data, and Fig. 4(b) displays it as a function of Nv . In the
log-log plot, it is clearly seen that the dependence of the decay
rate on Nv cannot be captured by a single power-law relation
over the whole range of our measurements. The power-law
fits for the low-vortex-number (Nv < 10) data and the high-
vortex-number (Nv > 10) data give the exponents of 1.29(17)
and 1.77(20), respectively.

Partly motivated by the measured values of the exponents,
we suggest a phenomenological rate equation for Nv as

dNv

dt
= −�1Nv − �2N

2
v , (1)
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FIG. 3. Relaxation of turbulent superflow in a highly oblate BEC. Examples of images for various relaxation times, where the atom number
of the condensate N0 ≈ 1.8×106 and the condensate fraction η ≈ 0.8.

and observe that the measured decay curve of Nv is remarkably
well described with this rate equation. The residue of the
experiment data from the fitting line of the rate equation
is smaller than two vortices [Fig. 4(a) inset]. A simple
consideration based on the kinetic gas theory suggests that
the one-body and two-body decay rates �1 and �2 might
be mainly determined by the drifting-out process and the
pair annihilation process, respectively. However, we cannot
exclude many-vortex effects on the drifting-out process, which
would possibly affect the two-body decay rate �2. To the best
of our knowledge, there is no predicted form for the decay
curve of Nv in a turbulent trapped condensate, taking both of
the drifting-out and pair annihilation processes into account.
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FIG. 4. (Color online) Nonexponential decay of the vortex num-
ber. (a) Mean number of vortices versus relaxation time. The sample
condition is the same as in Fig. 3. Each measurement point consists
of at least 12 realizations of the same experiment and the error
bars indicate the standard deviations of the mean vortex number.
The solid line denotes a fit of the rate equation in Eq. (1) to the
data. The inset shows the residue of the data from the fitting line.
(b) Decay rate of the mean vortex number, −dNv/dt , as a function of
Nv . The dashed and dotted lines are power-law fitting lines to the data
points for Nv < 10 and Nv > 10, giving the exponents of 1.29(17)
and 1.77(20), respectively.

In this work, we employ the two decay rates �1 and �2 to
characterize the relaxation of the turbulent condensate.

B. Vortex-antivortex collision

Vortex pair annihilation occurs when two vortices of
opposite circulation collide, converting their energy into sound
waves in the superfluid. Numerical studies showed that a dark
or gray soliton of a crescent shape is formed via coalescing the
vortex cores in the collision and it can dissipatively evolve into
a shock wave [4,25,26]. Indeed, we observe crescent-shaped
density-depleted regions in the condensate (Fig. 5), revealing
the vortex-antivortex collision events in the turbulent flow.
The bending structure can be accounted for by the linear
momentum of the vortex dipole which is perpendicular to
the vortex dipole direction. Because of the movement, the
atomic density on the convex side of the vortex dipole is higher
than that on the opposite side. Some of the coalesced vortex
cores appear with significantly reduced visibility [Fig. 5(c)],
possibly indicating that they are being annihilated.

We emphasize that such a crescent-shaped vortex core was
not observed in rotating, turbulent condensates [27,28]. In
this case, turbulent flow was generated by circularly shaking
the magnetic trapping potential, where most of the vortices
have the same circulation. The trap geometry and the imaging
procedure were identical to those in this work, thus excluding
the possibility of imaging artifacts such as vortex line tilting.
The crescent-shaped density dimple obviously comes from a
vortex-antivortex pair.

The appearance frequency of the crescent-shaped density
dimple is found to be almost linearly proportional to the total
vortex number Nv and insensitive to the sample temperature
(Fig. 6). At high vortex density nv , a 2D turbulent superfluid
can be considered as a gas of vortex-antivortex pairs [16,17].
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FIG. 5. Vortex pair annihilation in the turbulent superflow.
Density-depleted regions with a crescent shape are observed in the
turbulent condensates. In a vortex-antivortex collision event, two
vortex cores can coalesce (a), evolve into a dark soliton (b), and
disappear as atoms fill up the density-depleted region (c). The bending
structure results from the linear momentum of the vortex dipole.
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FIG. 6. (Color online) The number of crescent-shaped vortex
cores versus the total vortex number Nv in a turbulent condensate.
Each measurement point consists of at least 12 realizations of the same
experiment. The inset shows an image of a turbulent condensate with
two crescent-shaped vortex cores (red dashed circles).

For a vortex pair of size d, the collisional cross section σ ∼ d

and the linear velocity v ∼ �/md, giving the vortex collision
rate as γc = σvnv/2 ∼ (�/2m)nv . This estimation provides a
qualitative explanation of the observed Nv dependence of the
appearance frequency of the crescent-shaped density dimple.
We note that the numerical results in Refs. [16,17] for a
homogeneous system showed that γc has different power-law
dependence on nv at low vortex density, nvξ

2 < 3×10−3

(ξ = �/
√

2mμ is the vortex core size). The vortex density
of our sample is nvξ

2 < 10−3 with nv = Nv/(πR2), but direct
comparison of our observation to the prediction is limited due
to the sample inhomogeneity.

It should be pointed out that a vortex-antivortex collision
event does not necessarily result in pair annihilation. A tightly
bound pair, having a high linear momentum, would cross the
condensate to the boundary region and the pair might have a
chance to move out of the condensate with the aid of a certain
energy dissipation mechanism.

C. Decay rate measurements

The local vortex dynamics in a homogeneous system is
governed by the temperature T and the chemical potential μ of
the system: at finite temperature, a vortex experiences a friction
force caused by collisional exchange of atoms between the
condensate and the thermal cloud [29–31], and the chemical
potential determines the vortex core size ξ ∝ μ−1/2, providing
a characteristic length scale in the vortex dynamics. In this
section, we present the measurement results of the decay rates
of the vortex number for various sample conditions.

1. Temperature

We first investigate the temperature dependence of the
decay rates. In order to reduce the effects from the variation
of μ, which determines the radial extent of the condensate,
R, as well as the vortex core size ξ , the atom number of the
condensate, N0 = ηN , is kept almost constant [Fig. 7(a) inset],
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FIG. 7. (Color online) Temporal evolution of the vortex number.
(a) Decay curves obtained for various condensate fractions η. Solid
lines are fitting curves from the rate equation in Eq. (1). The inset
shows the atom number of the condensate, N0, for each η. The data
points for η = 0.80 are identical to those in Fig. 4(a). Decay rates (b)
�1 and (c) �2 as functions of the sample temperature T . Solid lines
are power-law fits to the data with exponents of 0.87(20) and 1.88(12)
for �1 and �2, respectively.

where η is the condensate fraction and N is the total
atom number. In the Thomas-Fermi approximation, μ =
(15N0a/ā)2/5

�ω̄/2 = 1
2mω2

r R
2 with a being the scattering

length of atoms, ā = √
�/mω̄, and ω̄ = ω

2/3
r ω

1/3
z . N and η

are measured right after turning off the repulsive laser beam.
The temperature is estimated from the mean-field relations
T = Tc(1 − η)1/3 and kBTc = 0.94�ω̄N1/3. During 15 s hold
time, the condensate fraction η was observed to decrease by
less than 10%, showing that there is no significant heating in the
relaxation. The lifetime of the sample in the trap was over 60 s.

The measurement results are displayed in Fig. 7. Both of
the decay rates monotonically increase as the temperature is
increased [Figs. 7(b) and 7(c)], demonstrating the thermal
nature of the relaxation dynamics. It is noticeable that the
two-body decay rate �2 shows a faster response to the
temperature than the one-body decay rate �1, and this seems
to imply that the physical mechanisms determining each decay
rate are different. The power-law fits to �1(T ) and �2(T ) give
the exponents of 0.87(20) and 1.88(12), respectively, showing
almost linear and quadratic dependence on the temperature.
Here, we assume that the decay rates vanish at T = 0. The
turbulent condensate may dynamically relax even at T = 0,
i.e., without thermal atoms, but in the temperature range
of our measurements, kBT /μ > 2, we presume that thermal
dissipation effects primarily govern the decay dynamics.

The one-body decay rate �1 is predominantly determined
from the decay behavior at low Nv , which is mainly driven
by the vortex drifting-out process. Thus, we might regard �1

as the thermal damping rate of a trapped BEC containing
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FIG. 8. (Color online) Decay rate �2 as a function of (a) the radial
trapping frequency ωr (η ≈ 0.80 and N ≈ 2.4×106) and (b) the total
atom number N (η ≈ 0.63 and ωr/2π = 15 Hz). The power-law fits
(solid lines) give the exponents of (a) 1.82(9) and (b) −0.10(6) for
ωr and N , respectively.

vortices, in particular, with zero net vorticity. In previous
theoretical studies on nonequilibrium dynamics of trapped
BECs, linear T dependence of the thermal damping rate
was anticipated for low-energy excitations [32] and vortex
lattice formation [33,34]. However, its applicability to our
measurements will require further theoretical work.

2. Chemical potential

The vortex core size ξ ∝ μ−1/2 not only provides a charac-
teristic length scale in the vortex dynamics but also defines
the lower bound for the separation of two distinguishable
vortex cores. The two-body decay rate �2 is associated with
many-vortex effects including the vortex pair annihilation
process and thus it would be significantly affected by a change
of the chemical potential.

To investigate the μ dependence of �2, we make two
additional sets of measurements of �2 for the variations of
the trapping frequency ωr and the total atom number N ,
respectively. In each measurement set, the condensate fraction
η is controlled to be fixed within a few percent. For varying ωr ,
we adiabatically ramp the magnetic trapping potential while
the repulsive laser beam is turned off. From the mean-field
relations, T ∝ (ω2

r N )1/3 and μ ∝ (ω2
r N )2/5 for a fixed η.

The change in μ entails a change in the spatial extent of
the condensate as μ = 1

2mω2
r R

2. To decouple this effect, we
define a local two-body decay rate as γ2 ≡ (πR2)�2, crudely
neglecting the details of the sample inhomogeneity. If γ2 were
proportional to T αμβ , then we would have �2 ∝ ω

2+2κ/3
r Nκ/3,

where κ = α + 6
5 (β − 1).

Figure 8 shows the decay rate �2 as functions of ωr and
N . The power-law fit to the data gives �2 ∝ ω1.82(9)

r N−0.10(6)

and the obtained exponents for ωr and N correspond to κ =
−0.27(14) and −0.30(18), respectively. It is remarkable to
observe that the two measurement sets give a consistent result.
With the previous result α ≈ 1.9, κ ≈ −0.3 suggests β ≈
−0.8. In Fig. 9, we plot all the �2 measurements in the plane of
γ2 and (kBT )2/μ and see that they collapse fairly well in a line.

Our analysis shows that the local two-body decay rate
is a useful quantity for characterizing the relaxation of our
system. An important but still open question is what is the
exact physical mechanism determining γ2 in the relaxation
dynamics. Let us consider the case where the two-body decay
term in the rate equation purely originates from the vortex pair
annihilation, assuming the vortex collision rate γc = (�/2m)nv

as discussed for the system at high nv . From the relation

η
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FIG. 9. (Color online) Local two-body decay rate γ2 = (πR2)�2

versus (kBT )2/μ. The solid line denotes a linear fit to the data. Black
solid circles, red open squares, and blue open diamonds correspond
to the �2 data points in Figs. 7(c), 8(c), and 8(b), respectively.

�2Nv = 2paγc, where pa is the annihilation probability for
a vortex-antivortex collision event, the decay rate γ2 would
be expressed as γ2 = (�/m)pa . Here, the observation of γ2 ∝
T 2/μ has the interesting implication that the dimensionless
quantity pa is not determined as a function of the reduced
temperature T̃ = kBT /μ. This means that the vortex pair
annihilation dynamics in our system cannot be explained with
a purely 2D model which intrinsically preserves T̃ -scaling
behavior. The vortex line excitations, although their thermal
excitations are suppressed, might play a role in the annihilation
dynamics. Or the inhomogeneity of the trapped sample might
be involved in a more intricate manner.

IV. SUMMARY

In summary, we have investigated thermal relaxation
of superfluid turbulence in highly oblate Bose-Einstein
condensates and presented possible evidences on the
vortex-antivortex annihilation. We have characterized the
relaxation of the turbulent condensate with the one-body and
two-body decay rates of the vortex number. Our measurement
results on the decay rates should provide a quantitative test
of finite-temperature theories for vortex dynamics [29–31].
One interesting extension of this work would be to explore
the crossover regime from 3D to 2D by increasing the axial
confinement [17,35]. Even in a quasi-2D superfluid with
μ < �ωz, thermal phase fluctuations might qualitatively
modify the relaxation behavior of quantum turbulence.

Note added in the proof. A numerical study on our
experiment has recently been reported [36] and it reveals that
the nonexponential decay of the vortex number originates from
the pair annihilation in the turbulent condensate.
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