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Quantum correlations and entanglement in far-from-equilibrium spin systems
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By applying complementary analytic and numerical methods, we investigate the dynamics of spin—% XXZ
models with variable-range interactions in arbitrary dimensions. The dynamics we consider is initiated from
uncorrelated states that are easily prepared in experiments; it can be equivalently viewed as either Ramsey
spectroscopy or a quantum quench. Our primary focus is the dynamical emergence of correlations and
entanglement in these far-from-equilibrium interacting quantum systems: We characterize these correlations
by the entanglement entropy, concurrence, and squeezing, which are inequivalent measures of entanglement
corresponding to different quantum resources. In one spatial dimension, we show that the time evolution of
correlation functions manifests a nonperturbative dynamic singularity. This singularity is characterized by a
universal power-law exponent that is insensitive to small perturbations. Explicit realizations of these models in
current experiments using polar molecules, trapped ions, Rydberg atoms, magnetic atoms, and alkaline-earth and
alkali-metal atoms in optical lattices, along with the relative merits and limitations of these different systems, are

5

discussed.
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I. INTRODUCTION

Recent advances in ultracold atom, molecule, and ion
experiments [1] and the development and application of
ultrafast pulsed lasers to probe strongly correlated dynamics
in solid-state systems [2] have enabled the experimental study
of dynamics in far-from-equilibrium quantum many-body
systems [1]. For example, an abrupt change of parameters
in a system’s Hamiltonian can create entangled states suitable
for quantum metrology and information [3-5], enable one to
investigate equilibration and thermalization [6,7], and be
used to characterize fundamental quantum behavior. These
experimental capabilities have, in turn, stimulated a large body
of theoretical work, largely because the inherent complexity
of far-from-equilibrium interacting quantum systems renders
inapplicable most of the standard theoretical tools developed
for equilibrium physics.

In this work we study the time evolution of spin—%
X X Z models following a quantum quench. We treat systems
with varying—and often arbitrary—dimensionality and spatial
structure of the couplings, including interactions that decay as
a power law with distance, which recently have attracted much
attention due to their importance in, for example, ultracold
polar molecules [8,9], Rydberg atoms [10-15], magnetic
atoms [16], and trapped ions [17,18]. For simplicity we focus
most of our attention on initial states that are translationally
invariant and uncorrelated product states, which can easily
be created by subjecting an initially spin-polarized system to
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a strong resonant pulse that initiates the quantum dynamics.
The specific initialization protocol we consider and the spin
models that we study are relevant to numerous ultracold atomic
and molecular systems in which the motional degrees of
freedom have been frozen out, including trapped ions [17,18],
magnetic atoms [19-21], Rydberg atoms [10-15], ultracold
polar molecules [8,9], and optical atomic clocks [22-25], as
well as to condensed-matter systems ranging from nitrogen-
vacancy centers in diamond [26] and other magnetic defects in
solids [27] and to traditional quantum magnets where the spins
are realized by electrons localized in a nuclear lattice [28-31].
A more comprehensive discussion of physical realizations is
given in Sec. VIIL.

The main objective of this work is to characterize and un-
derstand the dynamics of local observables, correlations, and
entanglement and their dependence on initial conditions (e.g.,
spin direction) and range of interactions. Various analytical
and numerical techniques are employed, including short-time
perturbative methods, exact solutions for the Ising model,
and Luttinger liquid theory, together with numerically exact
methods [32] for one-dimensional spin chains. We compute the
von Neumann entanglement entropy, the concurrence, and the
spin-squeezing parameter, each of which quantifies a distinct
quantum correlation and resource. Spin squeezing, for exam-
ple, quantifies the quantum correlations that are useful for en-
hanced metrology with sensitivity beyond that achievable with
unentangled spins, referred to as the standard quantum limit.

An important issue addressed in this work is the strength
of the correlations and of the entanglement obtained in the
course of the time evolution. In general, we find that both
correlations and entanglement become significantly larger
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than they are in the corresponding ground state. Moreover, at
long times, we find evidence that, although not maximal, the
entanglement follows a volume law rather than an area law.
Such results provide a strong contrast with classical dynamics.
Although there is a large literature on the nonequilibrium
dynamics of classical spin models (Refs. [37-42] contain
recent reviews), which have some similarities to the quantum
case (for example, exponential decay of a nonconserved
quantity through local relaxation, as opposed global transport
through diffusion), there are also many properties that are
unique to the quantum dynamics. The entanglement measures
furnish a strong example, since they all vanish at all times
for classical systems. It would be interesting to explore more
thoroughly the similarities and differences between classical
and quantum dynamics, but such a comparison is beyond the
scope of the present paper, especially given the rich variety of
classical dynamical phenomena.

An important question regarding the growth of correlations
in nonequilibrium systems is whether they exhibit universal
behaviors and, if so, how that universality manifests. We show
in a one-dimensional system that universality is realized as a
dynamic power-law singularity appearing beyond any order of
perturbation theory. The behavior is controlled by a universal
power-law exponent; this exponent is universal in the sense
that it is insensitive to small perturbations.

We also aim to provide a brief but fairly comprehensive
overview of various experimental systems to which our results
apply, highlighting their unique features and tabulating the
form of the interactions, characteristic energy and time scales,
and parameter regimes available to each system. Table I
summarizes several of these and serves as a “dictionary” to
translate results between systems.

The paper is organized as follows. Section II introduces
the X XZ Hamiltonian and the quench protocol (equivalent
to Ramsey spectroscopy) that we study, along with notation
used throughout the rest of the text. Next we calculate the
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dynamics of correlation functions in the short-time limit
(Sec. III) and the Ising limit (Sec. IV A) and discuss its physical
interpretation. These calculations are primarily a review of
prior work and are included mainly to be self-contained
and set the context for calculations of entanglement and
universality out of equilibrium (although they do contain
some useful new results and rearrangements of prior results).
Section IV B considers various entanglement measures for
the Ising dynamics, including entanglement entropies for
two-site “cutout” bipartitions, spin squeezing, and concur-
rence. Although entanglement is a rather generic feature, a
quantitative analysis comparing the dynamics of these different
entanglement measures in a general many-body setting has
been lacking. We show that different types of entanglement,
each corresponding to a different quantum resource, become
dominant at different times of the Ising dynamics. Section V
turns to entanglement in the more general X XZ dynamics
in one-dimensional spin chains, where we apply the adaptive
time-dependent density matrix renormalization group method
(adaptive t-DMRG [33-36]). We quantify the strength of the
entanglement emerging in the dynamics by comparing to the
entanglement in the corresponding equilibrium systems as well
as to maximally entangled states. In Sec. VI we demonstrate
an explicit example of universal behavior out of equilibrium.
Section VII summarizes the applicability and relevance of our
finding to a variety of atomic, molecular, and optical systems,
some of which is summarized in Table I. Finally, Sec. VIII
concludes and presents an outlook on future theoretical and
experimental work.

II. HAMILTONIAN AND NONEQUILIBRIUM
DYNAMIC PROCEDURE

A. Hamiltonian

We consider the numerous physical systems in atomic and
condensed-matter physics that are unified by their description

TABLE I. (Color online) Properties of several physical systems that can be used to realize the spin models and nonequilibrium dynamics
considered in this paper. (a) Spin-coupling. Achievable spin couplings, reported as J,,Jy,J;, are to be understood as coefficients of the

Hamiltonian H = (1/2)3_,;

(J:S7ST + J,S]'S] 4 J.S;S3). (b) Spatial structure. The distance and angular dependence of the interactions is

presented. (c) Coupling strengths. Typical coupling strengths are given as a range (in Hertz), which is intended to reflect reasonable values
realizable in current implementations of these systems. (d) Coherence times. Coherence times given are rough lower bounds, but in some
special cases (for example, by using field-insensitive clock transitions in ions) these times can greatly exceed the stated values. (e) Number of
spins. System sizes quoted reflect rough upper limits achieved in current experiments. Rydberg atoms exist in a wide variety of regimes, and

the numbers given encompass many different experimental situations.

Polar molecules |Trapped ions Rydberg atoms o Superexchange Optical clocks Magnetic
S = Y 4 atoms
& > ’
(a) JJ_7']J_7JZ JJ_,JJ_,O or 0707‘]2 JJ_7JJ_7JZ or 0707Jz JJ_7JJ_7J2 JJ_v‘]Lsz JJ_v‘]J_?_Q‘]J_

(b) (1_30052 9)/7'3 r* 0<a<3 (1—30052 9)/7“3 or 1/7”6 Nearest neighbor | Variable long-range | (1—3 cos® 9)/7‘3

(c) | 10* < J<10° 102 < J <10t 10* < J <10 15 75 10 1< 75102 10<J<108
@| r>1072%s T>1072 s T>10"%s T>1s 7>10" s 72107 ts
€| N<10° N <102 N < 10° N < 10° N <10t N <10°
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in terms of a spin-% X X Z model,

J+
H= %Z [J,.;S,?Sj. + (5787 + Si‘S;.’):| ENCY
i#]

where the sum extends over all pairs of sites of an arbitrary
lattice. By S7 and Sl.jE = S'+iS;], we denote the usual
spin-1 operators at site i (S;”° are 1/2 times the Pauli
operators o; ). We refer to the first term in Eq. (1) as
the “direct” or Ising term and the second as the “exchange,”
“flip-flop,” or XX term. The XX terminology comes from
rewriting (1/2)(Si+Sj_ + S Sj.') = S'S7 + Sin; and observ-
ing that there are two couplings with the same strength along
the X and § spin directions. We refer to the case when the X X
term vanishes as the Ising Hamiltonian and the case when the
Ising term vanishes as the X X Hamiltonian. In the specific
case where J;; = Jij, it is possible to rewrite the Hamiltonian
as H = (1/2) Zi;ﬁj JijSi - S;, where S; = (S, 5], S7), which
we refer to as the Heisenberg Hamiltonian.

In our analysis we allow the couplings J;; and Jijl- to
take arbitrary values, and unless otherwise specified we do
not assume regularity of the couplings constants, translational
invariance, or any particular type of boundary conditions. We
note, however, that many of the numerical results that we
show for correlations and entanglement focus on systems with
open boundary conditions, especially since these lower the
computational cost when t-DMRG is employed.

We also allow the (i,j) dependence of the couplings
to be different for the Ising and XX terms, including
distance and angle dependence. Similar anisotropies have
been considered in models describing orbital magnetism in
solid-state materials [43—45]. They are also important in
exactly solvable models harboring topological phases, such
as the Kitaev honeycomb model [46] and the Yao-Kivelson
model [47], and in models harboring symmetry-protected
topological ground states [48]. Some of these models break
the U(1) symmetry assumed here (arising from the identical
strength of the S S} and S S} interactions and the absence of

cross terms like S7 S jy ). However, although the lack of total S*
conservation associated with the broken U(1) symmetry can
have important implications in the dynamics, we nevertheless
expect that several of the features calculated herein (e.g.,
long-distance correlations, entanglement, and nonequilibrium
universality) are likely to persist in these cases as well.
Spin-spin interactions involving three or more sites are also
possible, but these are beyond the scope of the present work.

In many situations, it is useful to add to H single-spin
Zeeman terms, given by

Hi=-) B;-Si, @

where the B; are local magnetic fields which can vary in space.
In this paper, such fields are useful for the preparation of initial
states for our time evolution, but we only consider dynamics
for B, = 0.

To give some idea of the form of the couplings Jl.(jl'Z) and
the physical systems in which these couplings can arise, we
start by briefly describing five disparate physical realizations
of Eq. (1), chosen to reflect the diversity of these systems:
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ultracold molecules in optical lattices, trapped ions, Rydberg
atoms, ultracold atoms in optical lattices, and ultracold
magnetic atoms (see Table I). Section VII provides a more
comprehensive review of realizations of Eq. (1), the physics
behind them, and basic characteristics of each system. The
following discussion is intended merely to provide context and
is unnecessary for understanding the formal results presented
in Secs. III-VL

In ultracold polar molecules pinned in optical lattices, two
rotational states can be used to form the spin-% degree of
freedom, and the spin-spin couplings are induced by dipolar
interactions. The difference in dipole moments between the
two states (which arises in the presence of an electric field)
generates the Ising term, while transition dipole moments
between the two rotational states (which can exist even in
the absence of an electric field) give rise to the spin-exchange
terms [49-56]. Unlike the nearest-neighbor interactions arising
from superexchange, the dipolar interactions are long-ranged
and anisotropic. For the choices of rotational states used so
far in experiments [8,9] ij and Jij are both proportional
to (1 —3cos? @,-j)/r?j, where r;; is the distance between
the dipoles and ©;; is the angle between the intermolecular
axis and the quantization axis provided by the external field
(electric or magnetic). More complicated spin-spin interaction
anisotropies, which can even break the U(1) symmetry, can be
generated by more general choices of rotational states and/or
by microwave dressing [50,55-58]. Other implementations
of spin models in polar molecules using hyperfine levels to
encode the spin have also been proposed; for example, see
Ref. [59] and references therein.

In one- and two-dimensional crystals of trapped ions,
hyperfine states can realize a spin-%. By addressing the ions
with a spin-dependent optical potential, the vibrations of the
crystal mediate a long-range Ising interaction that can be
approximately described by a spatial power law J;; oc 1/,
with 0 < o < 3, where r;; is the distance between ions i and
j [17,18,60-63]. To engineer an XX model, it suffices to
add a strong transverse field that projects out the off-resonant
terms in the Ising interactions that change the magnetization
along the field quantization direction [64]. More general X X Z
models can be implemented, for example, by using multiple
spin-dependent optical potentials [65].

In frozen Rydberg gases the Ising-type Hamiltonian can
be realized via the strong Rydberg-Rydberg van der Waals
interaction [66]. Typical experiments are very fast and limited
by the Rydberg lifetime, which, in turn, guarantees that
motional degrees of freedom remain frozen even without
an underlying lattice potential. To obtain an (anisotropic)
1/r3 first-order dipolar potential between resonant dipoles
oscillating between neighboring Rydberg states, one can
employ so-called Forster resonances. As only the size of
the Rydberg atoms limits the dipole moment, the resulting
interaction strength can be very large and scales in the dipolar
case as n* with the principal quantum number 7.

For ultracold spin-% atoms loaded into optical lattices,
spin models emerge in Mott-insulating states, in which on-site
interactions much stronger than the tunneling pin the lattice
filling (for a range of chemical potentials) to integer numbers
of atoms per site. In these systems, two hyperfine states
encode the spin-% degree of freedom and superexchange
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processes [67] lead to spin-spin interactions of the XXZ
form in Eq. (1). In this implementation the J;; couplings are
restricted to nearest neighbors. For spin-independent lattices,
fermions realize a Heisenberg model, while for bosons the
spin model is XX Z and depends on the relative sizes of the
three scattering lengths between the two spin states, asq, a,,
and ay,. More general XX Z models can be realized with
spin-dependent lattices.

Spin-exchange interactions also occur in magnetic atoms,
which therefore realize spin models when confined in optical
lattices [68]. In this case the spin degree of freedom is encoded
in atomic hyperfine states (and, in general, it is not restricted to
be spin%). Although, in general, magnetic dipole interactions
include magnetization-changing terms [68] not accounted for
in an XXZ spin model, these terms can be energetically
suppressed at high-enough magnetic field. The magnetization-
conserving dipolar interactions remain resonant and imple-
ment an X X Z spin model. In recent experiments carried out
with Cr atoms with effective spin S = 3, the corresponding
spin Hamiltonian realizes J* = —2J~+ [69].

B. Dynamic procedure

Figure 1 depicts the dynamic procedure considered in
this paper. All spins are initially aligned (at time ¢ = 0)
along some direction 7, and then this initial state |W(0)) =
®); |1); evolves under the X XZ Hamiltonian (1) for a time
t. Then one measures time-dependent expectation values of
observables (O(¢)), where the expectation value is taken in
the time-evolved state e~** |¥/(0)). Because the interaction
Hamiltonian possesses a U(1) symmetry associated with

(a) (b)
/\T:() T = Of\
%€ > RS
0 By/] 1

Py <‘\pr xj; t '

A 4

FIG. 1. (Color online) Three interpretations of the dynamic pro-
tocol that we study. (a) Sudden quench from the X X Z Hamiltonian
with a strong magnetic field Byfi polarizing the spins in the 7 direction
to zero field B = 0 for times 7 > 0, followed by a measurement of
the observables at time ¢ after the quench. (b) Sudden quench from
the XX Z Hamiltonian at a ferromagnetic SU(2) symmetric point
5= J,.jl.), where the ground states consist of all spins polarized
along the same axis, to the XXZ Hamiltonian of interest. One
adds an otherwise inconsequential infinitesimal magnetic field to
choose the proper initial ground state. (In fact, this interpretation
holds for antiferromagnetic interactions as well, since the dynamics
is independent of multiplying the Hamiltonian by —1.) (c) Ramsey
spectroscopy. Initial spins along the “down” (—Z) spin direction are
rotated by an angle ¢ about the j spin direction. These evolve under
the XXZ Hamiltonian (1) for an evolution time ¢. An arbitrary
component of the Bloch vector can be read out by proper choice
of the area (¢’) and phase of the second pulse, and other correlation
functions can be measured by high-resolution imaging and/or spin
manipulation.
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rotational invariance about the spin z axis, we can take the
initial vector 7 to lie in the x-z plane, /i = (sin ¢,0, — cos @),
without loss of generality. We refer to this angle ¢ as the
“tipping angle.”

This protocol has been used to observe dipolar spin-
exchange interactions in ultracold molecules [8,9], to bench-
mark quantum simulators of hundreds of trapped ions [18], and
to precisely measure atomic transitions as well as many-body
interactions in optical lattice clocks [23,24,70,71]. Related
protocols have been used or proposed for measuring spin
relaxation, diffusion, and transport [72-81], for determining
many-body interactions [8,13-15,18,24,82-86], for probing
real-space correlations [87,88], and for characterizing topo-
logical order [89,90].

Despite the simplicity of this protocol, we see that the
dynamics develops strong, long-ranged correlations, entangle-
ment, and interesting dynamics that is frequently not captured
by mean-field theory. Many of our results generalize to the
case where the initial direction 7 can vary for each spin (some
generalizations have been discussed in [91-93]), but here for
simplicity we restrict our attention to uniform 7.

The dynamic protocol can be viewed either as Ramsey
spectroscopy [illustrated in Fig. 1(c)] or as one of two different
types of quantum quenches. From the perspective of Ramsey
spectroscopy, the protocol begins by preparing all particles
in the same internal state, which we consider to be the
“spin-down” state. This preparation can typically be achieved
with very high fidelity in ultracold atomic and molecular
system, e.g., via optical pumping. An effective transverse
field BY; S; is then pulsed on for a time 7 chosen to
rotate each spin to the desired state 7 in the x-z plane by
an angle ¢ = Bt. This rotation requires that B > {J,J;7
(and thus, for a fixed ¢, that {Jér,]ﬁt} & 1), so that we
may neglect interactions during the pulse. After evolving for a
time ¢ under the interaction Hamiltonian, a final pulse rotates
a desired Bloch-vector component onto the z axis, where it
can be measured. The experimental appeal of the dynamic
protocol considered in this paper is now evident: While cooling
to ground states of interacting spin Hamiltonians can be
extremely challenging in atomic and molecular systems, the
preparation of each individual spin in its “down” state and the
application of a pulsed effective transverse magnetic field is
straightforward.

From the perspective of a quantum quench, the system
starts in the ground state of an initial Hamiltonian (discussed
below), the Hamiltonian is then suddenly switched to the X X Z
Hamiltonian in Eq. (1), and the state is allowed to evolve for a
time ¢ before being measured. The first quench interpretation
[illustrated in Fig. 1(a)] follows by considering the initial
state to be the ground state of the Hamiltonian H + H;, with
B; = BoA, in a large (B > J*,J1) magnetic field along the
7l direction, i.e., the ground state of H;. The dynamics is then
induced by suddenly turning off the magnetic field (from H;)
attime ¢t = 0, leaving only the X X Z Hamiltonian H in Eq. (1).
The second quench interpretation [illustrated in Fig. 1(b)] is
to consider the initial state as the ground state of an initial
Heisenberg Hamiltonian: ij = Jl.jr < 0 [94]. The states can
be massively degenerate for large systems, corresponding to
different directions in which the spins align. To break this
potential degeneracy and choose the desired initial state with
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all spins along 71, we can add a field B; = €71 for an infinitesimal
€ = 0™, In this way we can view the quench as being from
the ground state of an initial SU(2) invariant Hamiltonian
with Jj = Jj to the more general XXZ Hamiltonian in
Eq. (1). This perspective is particularly useful when Eq. (1)
has J;j ~ Jl.jr, such that the quench can be viewed as a small
change in the Hamiltonian parameters. This is relevant to
the emergence of universality out of equilibrium studied in
Sec. VI. The sign of the overall Hamiltonian is irrelevant for
the dynamics of many interesting observables, such as (S*()).
Therefore, when calculating such observables, the quench can
be regarded as a perturbation if Ji_zl- ~ JULA, regardless of the
overall sign of the couplings.

Before turning to our results, we emphasize that the
Hamiltonian (1) is time independent. (Although the Ramsey
spectroscopy’s preparation and readout may be viewed as a
time-dependent H; applied before and after the dynamics of
interest.) Further interesting features may arise by considering
dynamic coefficients, but they are beyond the scope of this

paper.

III. SHORT-TIME RESULTS

For short times satisfying {Jl.j*t,ijt} <L 1 (weset h=1
throughout), one can calculate correlation functions using
time-dependent perturbation theory. The expectation value of
an operator O evolves in time under a time-independent Hamil-
tonian H as (O(1)) = (O) — it([O, H]) — S([[O, H], H]) +
O(#3), where the expectation value is taken in the initial state.
We can evaluate these commutators and expectation values for
the dynamics of interest, at least for low orders of perturbation
theory.

Defining

b _ b
clP = (87s?), 3)
with a,b € {x,y,z, +,—}, fori # j we find

2
(s7) = % sing {1-%[8,@ sin? g + ((")” cos? (p]} +0(t*),

1

‘ t
(S7) ) sing {EEEI) COS((P)} + 0@,

. t sin(2¢) sin ¢ i (1) 2
o = T[(Jij. —J;) -8+ 0@,
oV 1 [sing)cos¢ ) + (5 - T sind o | + 0
T ) i ij ij ¢ >
4
where we have defined
—~(m) 1\m
g =Y (Ji—Jp)". 5)

J#i

The total z axis magnetization is conserved for all times:
> (S (1) = —(N/2)cos ¢ for N spins. The correlators not
shown (and those not trivially related to the shown correlators
above by transposing the indices) are given by their ¢t =0
values to linear order. These results hold for arbitrary couplings
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]i{jz’“ and thus are valid for arbitrary dimensionality and

boundary conditions, and with or without disorder.

Interestingly, the results given in Eq. (4) depend only
on J+ — J%. At quadratic order and higher order, however,
general observables can depend on other parameters, such as
[(J1)? — (J)?1¢2. The results for the case J+ = AJ7 and as-
suming translational invariance were given in Ref. [95], which
focused on dipolar interactions ]f]'. o (1 —3cos? ®; i)/ rl.3j,
with ©;; the angle between a quantization axis and the
interparticle separation. The more general results given by
Eq. (4) are useful for finite or disordered systems and
for compass-type models where the spatial anisotropy and
position-dependence may be different for the Ising and spin-
exchange terms [43-46,48,57,58].

The connected correlation functions

G = (S¢Sh) — (s¢)(S?) 6)

immediately follow from the results in Eq. (4),

xy  tsinQe)sing 2
G; = T(JU — Jij) + 0@,
, tsind ¢ . 1 s
g = 2 (J5 = i) + 0. @)

The single-spin expectation values and correlation func-
tions calculated here are directly accessible in experiments.
For example, Ci“.h , which will be crucial input for the en-
tanglement measures considered below, can be measured by
high-resolution imaging or related to scattering results. These
short-time expressions provide insight into the many-body
dynamics. For example, one can see two distinct contributions
to (SF): a decrease due to precession, proportional to cos® ¢,
and a decrease associated with a shrinking Bloch-vector
length of that spin due to entanglement with the other spins,
proportional to sin? ¢. The former can be understood within
mean-field theory, while the latter is due to quantum fluctua-
tions and cannot. The tipping angle dependence also suggests
the parameter regime in which a mean-field description of
the Bloch-vector dynamics is valid: For small tipping angles,
0 < ¢ < /2, mean-field effects dominate the dynamics,
while as ¢ approaches /2 the dynamics is dominated by
genuine many-body correlations. The short-time formulas are
also useful for estimating the convergence of new approximate
theories, such as the “moving average cluster expansion”
developed in Ref. [9].

IV. ISING LIMIT CORRELATIONS AND ENTANGLEMENT
A. Review of correlations in the Ising limit

Here we give an overview of the Bloch vector and
correlation function dynamics in the Ising limit (J; = 0).
These observables are the basis for the computation of
the entanglement entropy discussed in Sec. IVB. We also
make use of the Ising correlation functions in Sec. V when
comparing them to numerical results for the X XZ model in
one dimension. There we discuss which features are particular
to the Ising model and which generalize to the X X Z model.

While the equilibrium properties of the Ising model are
classical, this is not the case for its dynamical properties,
and mean-field theory fails to capture the dynamics in many
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regimes. For example, for an initial ¢ = 7 /2 tipping angle,
mean-field theory predicts that there is no dynamics, while, in
fact, evolution occurs on a time scale set by J<. Furthermore,
starting from a product state the dynamics generates entangled
states, including cluster states that suffice for one-way quan-
tum computation [5], spin-squeezed states enabling quantum
metrology [3,95], and Greenberger-Horne-Zeilinger (GHZ)
states [4,96], a type of Schrodinger cat state. Nevertheless,
the Ising limit does possess a special structure that facilitates
the exact calculation of arbitrary-order correlation functions
[91-93] and leads to unique dynamical features. In this work,
we focus on the single-spin and two-spin expectation values,
presented below.

In the Ising limit J; = 0, the X X Z Hamiltonian (1) reduces
to

Higing = % > JiSisE (8)
i#]

Note that we still consider completely arbitrary couplings
J&4) and therefore arbitrary boundary conditions. Because
all of the terms in this sum commute with one another, the
time-evolution operator U = e~ /e’ factorizes, rendering an-
alytic calculations possible [97-100]. Exact results have been
derived for correlation functions of the Ising Hamiltonian (8)
with arbitrary pure product initial states, even in the presence
of general Markovian decoherence mechanisms [91,92], and
for the coherent evolution of initial mixed product states [93].
Here we limit our calculations to initial states of the form

() = 6,9 (eW cos %| 1) + e sin %| ¢>,f),
©)

where 6; and ¢; are the polar and azimuthal angles in the Bloch
sphere representation, and | 1); and | | ); are eigenstates of S;
with eigenvalues +1/2 and —1/2, respectively.

Since S; commutes with Higpng, its expectation value
remains constant during the time evolution,

(Sj-)(t) = % cosb;,

(10)
Cﬁ(t) = icos 0; cos bk.
The expectation value of Sf =5/ £ iSJy- is
Loy .
(SHn) = Eeldu sin6); ]‘[g,juka), (11)

k#j

where
g7 (x) = cos’(0;/2)e "/ £sin*(6,;/2)?,  (12)
and the x and y spin components are then given by
(S7) =Re(SF), (8]} =1Im(S]). (13)
The remaining two-point correlation functions are given by

1., . _
C;’;{Z(l‘) = Ze“”/ slnejgk (ijf) 1_[ g;r(szt), (14)
1),k

1 .
Cii 0y = 3" @ sing;sinbp [ | & (Jut + Jun), (15)
I#).k
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1,
Clh(= Zel@f—@) sind; sin6, [ | & (Jut — Jut). (16)
1#].k

From the definitions, it follows that Cﬁ_(t) =Cy @y,
Cii') =Cy ()%, and Cjii(t) = C;7(1)*, and the x and y
components of the spin correlators are given by

xx __ 1 - - -

Gl =3C T +C + G +C., a7
_ lpt— —+ ++ ——

Cl);y = Z(ij +Cij _Cij _Ci] ): (18)

Xy _ 1o+t - += -t

CY =it - —cim . (19)

The connected correlators g;;.b follow from the expressions
above. One finds

i¢j

e
gj.}f =T sin 6; l—[ g;r(Jﬂt)
I#j.k
x [g; (Jjxt) — cos 0,8 (Jjxt)], (20)
i(¢j+6r)
= eT sin6; sinek[ [] & (it + Jut)
1#j.k
_glj_(ijt)g;_(ijt) l_[ g;_(let)g?_(Jlkt)iIa (21)
1#].k
i(p;—dx)
_ e . .
f =~ sing; sm@k[ [ st nt = Jun
I#j.k

— gl Unng (It [ ] g,*(J,mg,*(—Jzkr)}.
1#j,k
(22)

All higher-order correlation functions of S* and S° in-
volving more than two spins, such as (S7 Sﬁ? S;) with {a,b,c} €
{+£,z}, have simple exact expressions as well (see, for example,
Refs. [91-93]), but we omit them here because they are
unnecessary for our purposes.

B. Entanglement in the Ising limit

In this section we calculate and compare the dynamics
of distinct entanglement measures in the Ising limit. Each
measure quantifies a distinct quantum correlation and re-
source [101], and they help to classify and understand the
structure of many-body phases of matter and dynamics [102].

An example of the qualitatively different dynamics of
these distinct entanglement measures is furnished by the
well-understood all-to-all coupling limit, J;; = J for all i
and j, where Eq. (8) is known as the one-axis twisting
Hamiltonian [3]. For an initial tipping angle ¢ = 7/2, spin
squeezing (one type of entanglement) emerges in this model
at short times [3], while at later times an entangled GHZ
state is generated (more discussion and definitions are given
below) [103]. A spin-squeezed state exhibits enhanced phase
sensitivity with respect to the shot noise limit in standard
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Ramsey spectroscopy measurements but under Ising dynamics
never reaches the Heisenberg limit (the maximum sensitivity
allowed by quantum mechanics). In contrast, a GHZ state can
reach the Heisenberg limit but, utilizing it in spectroscopy
requires a modified Ramsey sequence, with a final readout
based, for example, on spin-parity measurements (—1)>5° [4].

Away from the all-to-all limit, the dynamics is much less
well understood; calculating and understanding it are the
main focuses of this section. For illustrative purposes, the
coupling constants in Eq. (1) are chosen to be ij =J/rj
where r;; denotes the distance between spins i and j. For
simplicity we consider one-dimensional lattices (i.e., chains),
but our qualitative conclusions do not depend on this. We
study the dependence of different entanglement measures on
the initial tipping angle (¢; = 0 and §; = —¢) and the range
of interactions (o). We note that Ref. [104] has explored the
a-dependence of the entanglement entropy dynamics in the
related transverse field Ising model in one dimension.

Spin squeezing. Spin squeezing, which was introduced for
the first time in Ref. [3], characterizes the sensitivity of a
state to SU(2) rotations and is relevant for both entanglement
detection (it is an entanglement witness) and quantum metrol-
ogy (see Refs. [105,106] for more complete reviews). It also
provides a lower bound on the minimum size of a genuine
many-body entangled subsystem [107]. Spin-squeezed states
can be visualized as states with anisotropic fluctuations of the
spin vector in the directions perpendicular to the mean spin.
Roughly speaking, a quantum state is considered spin squeezed
if the variance of one spin component is smaller than that of
an uncorrelated spin-coherent state. Due to the Heisenberg
uncertainty relation, reduction of the variance in one direction
causes an increase of fluctuations in the other. Spin squeezing
is relatively easy to visualize, generate, and measure experi-
mentally since it only involves the first and second moments of
the collective angular momentum operators. We note that there
are “generalized spin squeezing” entanglement witnesses that
also depend only on the first and second moments of collective
angular momentum operators [108,109], but to harness the
associated entanglement requires more sophisticated protocols
than the usual Ramsey spectroscopy.

There are multiple definitions of spin squeezing, depending
on the context where it is used. Here we adopt the squeezing
parameter introduced by Wineland et al. in the context of
Ramsey spectroscopy [105],

(23)

where the minimization is over unit vectors 7 perpendicular to
the mean spin direction (), S;). The correlation functions in
the definition of £ are readily evaluated using Eqs. (14)—(16)
of the previous section. A state is then said to be squeezed
when £ < 1. It is common to report squeezing in decibels,

dB squeezing = —101log,, &2, (24)

such that a state is squeezed when dB squeezing is positive.
‘We note that squeezing is an entanglement witness for general
mixed states: When dB squeezing is positive, the state is
necessarily entangled [106,110,111].
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In Ref. [3] the generation of spin squeezing was discussed
for the case of a one-axis twisting (OAT) Hamiltonian
Hoar = J(59)?%/2, corresponding to the o = 0 case of the
Ising Hamiltonian Eq. (8). The OAT Hamiltonian generates
spin-squeezed states at short times, a fact that has been
confirmed in a number of experiments [112,113], but the
squeezing is transient and disappears at longer times. However,
the loss of spin squeezing does not necessarily imply a loss
of entanglement; for example, at longer times (t = m/J)
entangled GHZ states occur [103].

Figure 2(a) shows a contour plot of dB squeezing in the («, 1)
plane, starting from a state that is fully polarized along the x
spindirection (¢ = /2, ¢ = 0). Increasing « leads to a slower
and weaker creation of entanglement, but at the same time to
a longer lifetime of the squeezed state. While there is a strong
dependence of the spin squeezing on « for o < d, where d is
the dimension of the system, the dependence becomes weaker
fora > d.

Figure 2(d) shows dB spin squeezing in the (¢,#) plane for
o = 3/4. Maximal spin squeezing occurs for a tipping angle
¢ = m /2, implying that a fully x-polarized initial state (or any
fully polarized state in the x-y plane) is the ideal choice for
creating squeezed states under time evolution. As the tipping
angle is decreased to around ¢ = /4, spin squeezing persists
and develops on a similar time scale to the ¢ = /2 case,
but reaches a smaller maximum value and disappears more
quickly. This can be understood by noting that correlations
ijz containing a z component build up quickly and reduce spin
squeezing, as illustrated in Fig. 3. As ¢ — 0, the squeezing
approaches zero, and the time at which the small amount of
squeezing is created increases.

Entanglement entropy. The entanglement entropy between
a subregion R and the rest of the system is given by

Sg = =Tr(prInpr), (25)

where pg is the reduced density matrix of the subregion R,
obtained by tracing out all those parts of the Hilbert space
not associated with R. The entanglement entropy is a measure
of the total entanglement of bipartite pure states (although
even unentangled mixed states can have finite entanglement
entropy) and is widely used in quantum information theory.

We consider subregions R;; = {i,j}, consisting of pairs
of (not necessarily neighboring) spins i and j. The reduced
density matrix is given by

pr; =4 Z

a,be{0,x,y,z}

RN (26)

with the convention that ZS;) is the 2 x 2 identity matrix at
lattice site i. From this expression it becomes obvious that
the results for the one- and two-spin correlation functions
in Sec. IV allow us to also obtain exact results for the
entanglement entropy of subregions R;;.

Figures 2(b) and 2(e) show Sg ;, where we have chosen
‘Rij as consisting of the sites adjacent (one to the left and
one to the right) to the center spin of a chain with 41 sites.
Entanglement monotonically decreases for tipping angles
away from ¢ = /2. This may be understood by considering
that if we increase the tipping angle away from the fully
x-polarized state, we increase the z component of the spin.
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FIG. 2. (Color online) Time evolution of three entanglement measures for Ising chains with L = 41 lattice sites. (Top row) dB spin
squeezing (left), entanglement entropy Sg,; (middle), and concurrence (right) in the («,7) plane, starting from a fully x-polarized ¢ = 7/2
initial state. (Bottom row) As above, but in the (¢,#) plane for an interaction exponent o = 3/4. The region R;; is chosen to consist of
next-nearest-neighbor spins at the center of the system. The same qualitative features are seen for alternative lattice geometries and for values
of i and j that are not necessarily adjacent and at the center of the system. Vertical dashed red lines indicate « = d and o = d/2, values where

the character of the dynamics changes as discussed in the text.

Since components pointing along the z axis are conserved
under the Ising time evolution, they will not contribute to the
formation of entanglement. Hence, as we move the tipping
angle away from the fully x-polarized state at ¢ = /2, we
expect the entanglement entropy to saturate at a lower value.
Figure 2(b) shows a contour plot of the entanglement
entropy in the (¢, #) plane. The entanglement entropy evolution
shows differences depending on whether « is less or greater
than d /2. For « substantially less than d /2 two well-separated
time scales are apparent. On the shorter time scale (e.g.,
around J%t ~ 0.5 for « = 0.1) a quasistationary state [93] of
intermediate entanglement strength is formed, while larger
entanglement is built up on the longer time scale (around

ab
el

ab
C; j(t)

Jt J1
0.01 0.1 1 10 100 0.01 0.1 1 10 100
G0 - ¢l — G — G = G

FIG. 3. (Color online) Time evolution of the two-spin correlation
functions C5*(1), 7' (1), C;j' (1), Cif’ (1), and C};(¢) for a power-law
interacting Ising chain consisting of 41 lattice sites. The interaction
exponent is o = 3/4, with initial tipping angles ¢ = /2 (left) and
¢ = /4 (right). Lattice sites i and j are chosen one lattice spacing
to either side of the center of the chain.

J*t = 3). The separation of scales is enhanced when in-
creasing the number of lattice sites or by further reducing
«. For @ > d/2 no such separation of time scales is visible;
i.e., the aforementioned plateau is not apparent. When « > d
the single- and two-spin correlation functions begin to show
oscillatory behavior [see Fig. 4(a)]. These oscillations become
more pronounced for greater values of o and can also be
observed in the («,t) plane for « 2 1.5. Linear and Renyi
entanglement entropies can also be computed from Sec. IV’s
correlation functions. The results obtained are qualitatively
similar to those for the von Neumann entanglement entropy
and are not shown here.

Concurrence. Concurrence was introduced in Ref. [114] as
an entanglement measure for two-qubit systems that is valid
for mixed states. It is defined as

C(p) = max {0,)\1 — )\.2 — )\.3 — )»4} s (27)

where Aj,...,As are the square roots of eigenval-
ues (in decreasing order) of the non-Hermitian matrix
PR,;0; 0} Pk,,0; 0; . Concurrence is an entanglement measure
valid for mixed states (whereas, for example, entanglement
entropy is an entanglement measure only for pure states),
and its dynamics has recently been measured in trapped ion
experiments [115].

While Sg,; measures the amount of entanglement between
Rij and the rest of the system (in the present case of a pure
quantum state) [116], the concurrence measures the amount
of entanglement between sites i and j. Figure 2(c) shows a
contour plot of the concurrence in the («,¢) plane for a fully
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FIG. 4. (Color online) The dynamics of (S*(¢)) and correlation functions for the Ising and X X Z models in one dimension with positive
(antiferromagnetic) couplings. Panel (a) shows (S*(¢)) versus ¢ for ¢ = /2 and o = 3 for the Ising model (top) and X XZ model with
J. = 2J, (bottom). For ¢ = /2, (§¥) = (§°) = 0 due to symmetry considerations. The XX Z case is overdamped for this J, = 2J, case
(and, in general, for large J, > J.), while the Ising dynamics damps only when many different values of J;; contribute to the dynamics. Other
initial spin angles ¢ are similar, but while (S*) # 0 remains constant there is an additional precession or diffusion of the Bloch vector in the x-y
plane. (b) Density plot of the two-point correlation function (S7S;) — (S7)(S}) versus i — j (averaging over possible j’s to reduce finite-size
effects) and time for the nearest-neighbor Ising model (top) and X XZ model with J, = 2J, (bottom). (c) Same as panel (b), but showing
(5787) = (87)(S}). (d) Same as panel (c), but for & = 3 interactions rather than nearest neighbor. The ground-state correlations are shown

above the dynamics for the J* = 2J¢ case.

x-polarized, ¢ = /2 initial state. The concurrence reaches
its maximum value for d/2 < « < d and also persists for the
longest time in this region. Similar to the entanglement entropy
in Fig. 2(b), the effect of oscillations that emerge in the single-
and two-spin correlation functions for @ > d (here d = 1) can
be seen for o 2 1.8. Figure 2(f) shows the concurrence in
the (¢,t) plane for o = 3/4. Similar to other entanglement
measures, the concurrence reaches its maximum value at ¢ =
/2. Away from this value, the growth of the concurrence is
weaker and slower.

Summary of Sec. IVB. For each of the entanglement
measures studied here, we find a qualitative crossover in
behavior as the exponent « is varied. The concurrence reaches
a local maximum in « € (d/2,d), while the spin squeezing
goes from evolving at a rate essentially independent of « for
a > d to a rate increasing with « for @ < d. The choice of
the entanglement measure also determines the time scales
at which the maximum entanglement is reached. For all
of the entanglement measures, an initial state in the x-y
plane (¢ = m/2) is optimal for the creation of maximum
entanglement under time evolution.

V. ONE-DIMENSIONAL CORRELATIONS
AND ENTANGLEMENT

In this section we investigate more general couplings with
Jl.jr # 0, and we consider time scales much longer than the ones
in which our perturbative short-time expressions of Sec. III
are valid. To accomplish this we focus on one-dimensional
systems with open boundary conditions, which are amenable
to the adaptive t-DMRG [33-36]; we use a Krylov-space

implementation to treat the long-range interactions [117]. In
addition to allowing us to investigate the J; # 0 dynamics at
relatively long times, the t-DMRG also allows us to compute
entanglement entropies associated with arbitrary bipartitions
of the system. We show that some features of the Ising limit,
such as the types of correlations and the time scales on
which they develop, are preserved in this model, while other
features are modified, such as the range and propagation of
the correlations. These results give insight into when one can
extrapolate the behavior of the Ising solution to more general
cases and help to elucidate the structure responsible for the
solvability of the Ising limit.

Figure 4 compares and contrasts the dynamics of (S*(¢))
and some representative two-point correlation functions in
the Ising limit and in the more general XXZ model with
positive (antiferromagnetic) couplings. Figure 4(a) shows
the time-evolution of (S*(¢)) for J, =0 (Ising, top) and
J1 =2J, XXZ (bottom) models with 1/ r3 interactions, for
an initial tipping angle of ¢ = 7 /2. (Similar results for (S*(¢))
were presented in Ref. [95].) The key difference between
(§*(1))’s evolution for the Ising and XX Z cases is that the
former oscillates substantially, while the latter is overdamped
(although we note that for @ < d/2 the Ising dynamics can be-
come overdamped). The frequency spectrum of the dynamics
provides a simple way to understand this behavior. In the Ising
case, the frequency spectrum consists of all possible sums and
differences of the coupling constants J;;, as can be seen from
Eq.(11).For 1/r3(i.e.,a = 3) interactions in one-dimensional
only a few frequencies are relevant over the time scale of
interest, resulting in the pronounced oscillations. The same
remains true for any interaction that decays sufficiently fast in
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real space. In contrast, for the X XZ model, numerous other
frequencies enter the spectrum (a continuous band of them
emerges in the large-system limit), leading to an overdamped
decay even for short-range interactions.

Figure 4(b) compares the Ising and XXZ dynamics of
the spin correlation function gfj"(t) for nearest-neighbor
interactions as a function of the site separation i — j and
time (horizontal and vertical axes, respectively). We show
the results for nearest-neighbor interactions because they
highlight a crucial distinction between Ising and general
X X Z dynamics. Whereas these correlations in the Ising case
propagate only to a distance determined by the range of the
interaction, for the XXZ case, they can propagate further.
This propagation in the XX Z case is evident in the “light
cone” [118-121] structure [122] in the bottom panels of
Fig. 4(b). The restriction of the Ising limit correlations to
a finite range can be seen from the results in Eq. (22) and
has a simple physical explanation: In the Ising model, these
correlations only build up due to direct interaction between
two sites and not due to propagation of excitations through
repeated interactions. This distinction between Ising and X X Z
dynamics is expected to hold in higher dimensions as well,
where the Ising correlations still fail to propagate while the
X XZ correlation will continue to do so, although the XXZ
propagation likely will not remain ballistic. Figure 4(c) shows
the same phenomenon for ggy ; the only distinction is that the
maximum distance between correlated sites in the Ising limit
is twice as large as the range of the interaction.

In fact, this feature is quite general: All two-point cor-
relations (namely, G* with a,b € {x,y}) for interactions
with range R are nonzero only within a radius of 2R. The
correlations can build up to twice the interaction range because
a spin at site i can correlate two spins atsites i + Randi — R
with each other, even though these two spins are a distance
2R apart. Sites that are further apart remain uncorrelated. We
note that the extra structure for the G** and G>Y correlators
in the top panels of Figs. 4(b) and 4(c)—namely, that G**
correlations extend to only half that distance and that G
correlations occur only at a separation of 2 and not at shorter
ranges—is a peculiarity of these specific correlation functions
for nearest-neighbor interactions.

The correlations built up during the dynamics are, after very
short times, larger than those in the ground state: Figure 4(d)
shows the ground-state correlations above the bottom panel.
Although we do not expect the ground-state correlations
to be quantitatively similar to the transient dynamics we
observe (nor to the steady state that this dynamics presumably
approaches), this comparison provides a useful reference point
to compare to the out-of-equilibrium correlations.

Turning from correlations to entanglement, we quantify
two types of entanglement generated during the dynamics:
spin squeezing £ and the von Neumann entanglement entropy
S¢ defined for a bipartitioning between sites £ and £ + 1. Spin
squeezing characterizes the temporal growth of metrologically
useful entanglement, but since it is a spatially averaged
quantity it yields no information about the spatial structure of
the entanglement. On the other hand, the entanglement entropy
S¢ reveals both the temporal and the spatial dependence of
the entanglement and is closely related to the numerical
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FIG. 5. (Color online) Adaptive t-DMRG results for the time
evolution of the entanglement entropy for N = 20 site X X Z chains
with nearest-neighbor interactions (lines) and dipolar interactions
(symbols). (a) J*+/J* = 0 (Ising); (b) J+/J* = 2 (XX Z). The plots
display the entropy S, for a bipartition of size £ = 2 at the edge of
the systems (red) and S, /, at the center of the systems (blue). Note
that in the Ising case the size of the bipartition does not play a role
(nearest-neighbor case) or is of minor relevance (dipolar case) so that
the results are identical, up to boundary effects coming into play in
the dipolar case.

difficulty of simulating the dynamics with tensor-network-
based algorithms.

The spin-squeezing dynamics for this model was calculated
in Ref. [95], where it was found to grow and reach a maximum
on a time scale on the order of 1/J+ or 1/J% and then to shrink
and disappear; Fig. 5 shows, in contrast, typical behavior for
the time dependence of entanglement entropy. At the beginning
of the time evolution, the entropy S, grows independently of
£. After a time that depends on the distance to the edge ¢, the
entropy stops growing. This happens first at the edges, then
the time for this saturation increases with distance to the edge.
This gives rise to an entropy that increases with £, shown in
Fig. 6. This should be contrasted to the ground states of both
gapped and gapless systems: In gapped systems there will be no
dependence on £ for distances larger than a correlation length,
and in gapless systems there will be a logarithmic increase
with distance to the edge [126,127]. As can be seen in Fig. 6,
the entanglement in the nonequilibrium setup can be much
larger than in equilibrium, even showing a linear dependence
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FIG. 6. (Color online) Adaptive t-DMRG results for the entan-
glement entropy of an N = 20 site XX Z chain with J1/J* =2
and nearest-neighbor interactions as function of bipartition size at
different instants of time. We compare to the ground-state result for
the same system with open boundary conditions in the red curve
(“GS result”). Note the linear increase at the flanks (a fit is shown by
the solid blue line), which appears to reach a maximum slope in the
course of the evolution. This is compared to the slope obtained for a
maximally entangled state (labeled by “max. entangl.”).

on the distance to the edge. At very long times, the entropy in
the center of the chain can oscillate in time, possibly due to
finite-size/boundary effects, as seen in Fig. 5 (these oscillations
are similar to those found in Ref. [128], which indeed damp at
long times for large system sizes).

The entanglement entropy in the Ising limit is quite
different. Rather than increasing linearly with distance ¢, the
entanglement entropy is essentially independent of £ except
near the edge. This is due to the lack of propagation of
entanglement beyond a finite distance in short-ranged Ising
models. The 1/r3 interaction in one dimension is sufficiently
short-ranged that the main features of its dynamics can be
understood from the behavior of the short-range dynamics.
Thus, although there will be a weak dependence on £, S, will
be nearly zero for £ > ¢/, where ¢’ = (Jt)!/* grows rather
slowly with time.

The strong quantum fluctuations away from the Ising and
the Heisenberg limits can induce strong entanglement, and it
is natural to ask how close we can come to the maximum
possible value. We do this by considering the entanglement
growth as a function of bipartition size at the edge of the system
for sufficiently long times. As shown in Fig. 6, typically the
entropy at the edge grows linearly, i.e.,

Se = s, (28)

where the slope s is the entanglement entropy density near the
system edge. For spin-% systems, a maximally entangled state
is characterized by S, = log(2) = £1og 2 and thus s = log 2.
Hence, a maximally entangled state is characterized by a
volume law rather than an area law [126,127]. Although our
finding of a linearly increasing entropy indeed indicates a
volume law at sufficiently long times, the value of s obtained
is always substantially lower than the maximally entangled
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FIG. 7. (Color online) Maximal slope s of the entanglement
entropy’s dependence on the distance to the system edge, defined
by S, = s€ near the edges of the system, obtained during the time
evolution as a function of J+/J? for ¢ = /2. Red line (squares),
nearest-neighbor interactions; blue line (circles), dipolar interactions.
Note that the slope (and hence the entanglement at the edges of the
systems) appears to be larger for the nearest-neighbor interaction than
for the dipolar interactions when J+ > J=.

log2. Figure 7 shows s as a function of J*/J% for the
quenches considered and for the cases where we could identify
this volume law behavior [129]. As can be seen, a maximal
value of s ~ (2/3)log?2 is obtained for J*/J* ~ 0.5; it also
increases to ~1/3 as J+/J? — oo, and it approaches zero
at the Heisenberg point J+ & J%. The behavior is similar
for both nearest-neighbor and dipolar interactions. Note that,
surprisingly, for J, > J,, s is actually larger for nearest-
neighbor interactions than for long-range interactions.

VI. UNIVERSALITY OUT OF EQUILIBRIUM

In this section we demonstrate how the considered dynamic
protocol can reveal nonequilibrium universality, dynamics
having characteristic features that are insensitive to changes of
the microscopic model. The existence of a universal behavior
in nonequilibrium systems is especially interesting for two
reasons. First, it is nonperturbative; any perturbation theory in
the Hamiltonian or time will depend on the microscopic details
of the perturbation. Second, while universality in equilibrium
systems is explained by one of the most fundamental tools
in physics, the renormalization group (RG), the required
concepts and tools generalizing it to address many questions
regarding far-from-equilibrium quantum systems have yet
to be developed. (Though progress has been made in this
direction, see, for example, Refs. [130-141]. Refs. [37-42]
also provide useful examples of universal nonequilibrium
behavior.)

The existence of universal behavior has been previously
studied in related quenches, including quenches of quantum
spin-% chains. The main new insight provided here is not the
existence of this behavior, but rather finding a quench proce-
dure in which the universal behavior can be experimentally
observed in a more feasible way than prior protocols proposed
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for spin systems. The experimental feasibility is a consequence
of two features of our quench protocol. First, the initial state
we consider is trivial to prepare, in contrast to prior studies,
which often required thermal equilibrium with temperatures
much smaller than the spin-spin interactions, and thus hard
to reach with current technology. Second, we need only to
measure the global (S*), a simple experimental task, while
many previous proposals require measuring the long-distance
asymptotic correlation functions, which is a much more
difficult experimental task. Also, the results highlight a second
sense of universality that emerges in these systems.

We consider the dynamics of an initial state with tipping
angle ¢ = /2, evolving under a one-dimensional XXZ
Hamiltonian that deviates only slightly from the SU(2)
symmetric point, i.e., |J L /J* — 1] <« 1. However, although
the explicit formulas will change, the existence of the universal
singularity persists for arbitrary ¢. Since the initial state
is a ground state when J+ = J? <0, the dynamics can
be understood as a small quench starting from the ground
state at the SU(2) symmetric point, as in Fig. 1(b). We
consider the case J+/J% > 1 so that the ground state of the
X XZ Hamiltonian governing the time-evolution has gapless
excitations. For the observable (S*(¢)), the overall sign of
the Hamiltonian is irrelevant for the dynamics, although it
is necessary that J* and J? have the same sign. However,
throughout this section we assume a ferromagnetic coupling
J+ < 0, where the arguments are clearest. For simplicity, we
restrict our attention in the exact numerics to nearest-neighbor
interactions, Ji{jl’Z} = JHA(S; i1+ 85.i-1).

Given that we are in the “small” quench regime, it is
plausible that a low-energy description of the final Hamiltonian
is appropriate to account for the dynamics. We first determine
the low-energy theory near the SU(2) symmetric point, J* =
J* = —J. We do this by writing the Hamiltonian as H =
Hy + 6 H with Hy the SU(2) symmetric point Hamiltonian
and § H the deviation from it. At the SU(2) symmetric point
the low-energy excitations are spin waves (delocalized single
spin flips) that have a quadratic dispersion. By symmetry, the
corresponding Hamiltonian is

Ho = J / kK> (aTT? + b?). (29)

where ¢ is the bosonized field [142], IT is its canonical
conjugate, a and b are model-dependent constants whose
values are unimportant here, and higher-order RG-irrelevant
terms have been dropped. This form is expected since at
the SU(2) Heisenberg point, the elementary excitations are
noninteracting spin waves, behaving as free bosons with a k?
dispersion. To utilize this low-energy theory, we need to relate
physical observables to the field ¢. For initial states in the x-y
plane (¢ = m/2), the field ¢ measures the in-plane direction
of the (coarse-grained) local magnetization,

S* = N/2cos(¢), (30)

where N is the number of spins and the field IT satisfies
S = I1/2. We note that these definitions satisfy the commu-
tation relation [S*,S*] = (—i/2)SY since [N/2cos ¢,I1/2] =
—(i/2)(N/2)sin ¢.

Adding a finite §J = J* — J+ induces interactions be-
tween the freely dispersing bosons. In particular, the perturba-
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tion to the Hamiltonian from the SU(2) point when 0 < §J <
lis 8J ) ; S7S7, |, which in the low-energy theory becomes

SH = y8]/dk|1'[k|2, (31)

where y is an unimportant model-dependent proportionality
constant, and we have again neglected RG-irrelevant terms.
Therefore, the total Hamiltonian H to leading order in §J, k is

v 2 K
H=— | dk | =|T|> + —K2|oe)? ), 32
2/ <K|k|+2n |¢k|) (32)

the Luttinger liquid Hamiltonian with Luttinger parameter
K =2n./bJ/yéJ and velocity v =2/ybJéJ, again
neglecting RG-irrelevant terms. Both K and v have a singular
V/8J dependence. (This equation can also be obtained by
a Bogoliubov expansion for small §J.) We return to the
universality of these predictions later.

Now we compute the dynamics for the initial state evolving
under Eq. (32), assuming this low-energy theory suffices
for this computation. Using the relation Eq. (30) and the
fact that Eq. (32) is Gaussian in ¢, we have (S*(¢)) =
N/2exp(—1/2(¢?)). Following Ref. [143], we find three
qualitatively different types of behavior depending on the time,

[1—(@8J1)?] fort <« 1/8J,
(§*(1)) x {e7t/" for1/8J <t < NJv, (33)
e~ t/w) fort > N/v.

Here T = 4aK?/(%v), a is the lattice spacing, rfzs =1L/Q2v),
and L is the chain length (assumed to be large). The crucial
observation is that near the SU(2) point these parameters
follow a universal power law. In particular,

T = AJJI/8J3 (34)

(with some nonuniversal numerical prefactor A). This leads to
auniversal spin coherence decay time in the intermediate-time
regime 1/8J <t < N/v ~ N/+/8JJ (thus, the appropriate
separation of scales for this regime to exist is N > /J/6J).
Physically, the spin dynamics in this regime results from
dephasing of the initially populated Luttinger liquid excita-
tions [144].

The intermediate-time result demonstrates the nonpertur-
bative nature of the dynamics, since e~/ with T o< /J/8J3
is nonanalytic in J%t and J'¢. Consequently, no order of
perturbation theory in the bare Hamiltonian Eq. (1) would
reproduce these results. This nonanalyticity requires the
short-time expansion [1 — (§J¢)?] and the intermediate-time
expansion (e~"/7) to have different functional forms and no
time regime where they agree. We note that if (S¥(¢)) is
smooth, as it appears to be, this nonanalyticity is signaled
as a divergence somewhere in the complex J*¢ or J¢ plane.
In this regard, our results resemble the dynamic singularities
found on the real-time axis in Ref. [145].

The derivation of our intermediate-time dynamics also
suggests that the results are universal, in two senses. The
first sense of universality is that the dynamics depends only
on the Luttinger parameter K and velocity v. Contrast this
with the short-time behavior in Egs. (4), which depends on
the detailed couplings of the model. Irrelevant perturbations
to the model (such as a second-nearest-neighbor coupling)
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affect the short-time dynamics but not the intermediate-time
dynamics, once written in terms of the Luttinger parameter.
Physically, at these times, any high-energy degrees of freedom
have had time to dephase and stop contributing to (S*(¢)) so
that only the low-energy excitations governed by Luttinger
liquid theory contribute. The second sense of universality is a
further insensitivity to microscopic perturbations and is related
to the fact that we are quenching from the SU(2) point. Here
the Luttinger parameters and thus T o« K?/v is a universal
power law proportional to v/ J /8 J3.

Although the preceding analysis argued for universality
based on Luttinger liquid theory, it does not determine
the range of J, — J, and system sizes N for which its
conclusions are valid. To evaluate these parameter regimes,
we use t-DMRG on chains with open boundary conditions,
implemented with time-evolving block decimation (TEBD)
in the ALPS package [146,147]. Figures 8(a) and 8(d) show
the dynamics of (§*(¢)) for ¢ = 7 /2 and several quenches of
chains with lengths up to N = 90 sites, differing in the final
value of § /. Exponential decay is evident at intermediate times
when this regime is accessible to the numerics, in accord with
the Luttinger liquid prediction in Eq. (33). (As an aside we note
that for the specific model studied here, it may be possible to
employ recently developed exact analytic methods [148] to
study much of the time dynamics.)

Figure 8(e) shows the dependence of the exponential decay
exponent T on §J. We determine t by fitting the intermediate-
time behavior of (S¥(7)) to an exponential decay for each
8J. Figures 8(a)-8(d) show these fits as dashed red lines.
Specifically, we fitto times 0 < ¢ < fg,, where g is defined by
(§*(t50)) = (S*(0))/4. In addition to long times, short times
should also, in principle, be excluded from the fit, but for all
of the t5; presented here, the contribution from short times is
negligible. We note therefore that the fit is accurate only over
an intermediate window, which gets larger for smaller 6/ and
larger system sizes N. In this time window, (S*) changes by
about a factor of three, for our largest N and smallest §J.
Although confidently extracting a power law to high accuracy
from such a narrow window is potentially problematic, we
soon see that this window suffices to show consistency with
the predicted power law with an error less than about 10%.
Furthermore, it is important to investigate moderate system
sizes and time scales, as these are comparable to the ones that
may be currently accessible in cold-atom experiments.

Indeed, the results in Fig. 8(e) are consistent with the
prediction of Eq. (34): that T o v/J/8J3 for small §J. This
is further quantified by Fig. 8(f), which shows the numerical
derivative of the log-log plot in Fig. 8(e). By construction, this
slope extracts the exponent of a power-law dependence of T
on §J, and we find that it approaches —3/2 quite accurately
for large systems and small § J; even for large § J &~ 0.3/, the
slope is around —1.6.

In order to reach this universal regime, one must go to
times long compared to the microscopic cutoff time, which
is O(8J~"). However, in small systems, finite-size effects
begin to play a role before reaching this universal regime.
Thus, the characteristic scale is set by § /¢, coinciding with the
mean-field time scale T ~ 8§J~!, which indeed appears to be
approached for small systems, as shown in Fig. 8 (solid line).
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FIG. 8. (Color online) Universal scaling in far-from-equilibrium
dynamics. (a)—(d) Dynamics of (S*(¢)) for two different values of the
quench parameter §J = J, — J; and of the system size L. Solid
lines are t-DMRG results, and dashed lines are exponential fits
Ape™"/" over the appropriate intermediate-time region (see main text).
(e) Decay time 7 as a function of the quench parameter §.J/. Open
circles, universal result, Eq. (34), with Luttinger liquid parameters
determined by Bethe ansatz (BA); dashed line, universal scaling
Jt o (J/8J)3?, valid for |8J/J,| < 1; joined symbols, t-DMRG
results for various system sizes from L = 10 to L = 90. Large
systems converge to the universal Luttinger liquid prediction, while
small systems follow a mean-field (MF) behavior T o< §J . (f) The
slope of the log-log plot in (e) for N = 70 and 90, obtained by
numerical differentiation

Going beyond the limit of universal power-law scaling
of t (i.e., small §J), we can compute the expected T =
4K?%a/(m*v) by using Luttinger liquid parameters K and v
that can be determined by the Bethe ansatz [149]. We see that
even for some 8.J large enough that the §.J~3/? scaling breaks
down, t is still related to the Luttinger liquid K and v in the
appropriate regime, confirming universality in the first sense
described above.
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We note that we have concentrated on {J,J;} < 0, but for
J. > 0 (or equivalently |§J/J~+| > 1) the universal behavior
breaks down even in this first sense: The numerical calculations
show a significant deviation from the Luttinger liquid theory
predictions. In this J* > 0 regime, the initial state is far away
from the actual ground state of the system. (For J* > |J*],
the ground state is qualitatively different, becoming antifer-
romagnetic rather than ferromagnetic.) As a consequence the
dynamics is probably not well described by the Luttinger liquid
theory. Further analytic and numerical calculations are needed
in order to elucidate the long-time behavior in this regime and
determine the possible emergence of a new universal behavior.
Some calculations exploring this were presented in Ref. [150].

We conclude this section with an outlook based on our
findings. Although we focused on one-dimensional systems,
our results suggest that a universal behavior could be observed
in higher-dimensional systems as well, where low-energy
effective theories may continue to describe the dynamics after
a small quench. However, even if this holds in higher dimen-
sions, a suitable framework is still lacking for two reasons:
(1) it is harder to identify the low-energy theories and (2) the
dynamics of these low-energy theories is significantly harder
to calculate; it is frequently intractable to present techniques.
Ideas suitable for a more general quench that are based on
real-time RG have been proposed and developed in Refs. [135—
137,151,152], and for some quench scenarios conformal field
theory [118], truncated Wigner approximation [134], and
semiclassical approaches have been employed [141].

An interesting aspect of our results is that they provide
a route to observing Luttinger liquid physics in ultracold
lattice spin systems that does not require temperatures below
the reach of ongoing cold-atom experiments (as opposed to
more easily accessible Luttinger liquid physics associated
with the density degree of freedom). In contrast to the current
dynamic proposal, the observation of Luttinger liquid physics
in spin systems in equilibrium requires cooling to (currently
unfeasible) temperature scales much smaller than the magnetic
interaction scale, which can be ~1 nK for superexchange-
based implementations in ultracold atoms [153]. This is true
even for proposals that rely on nonequilibrium probes of equi-
librium states, such as Ref. [154]. In our procedure, the initial
state is easily prepared, and the dynamics is used to probe the
Luttinger liquid physics. Observing the dynamics governed
by the Luttinger liquid physics requires reaching time scales
that are long compared to those determined by the magnetic
interaction. However, even for a superexchange scale typical
in cold-atom experiments (~1 nK), the corresponding time
scale is ~50 ms and ought to be experimentally accessible.

VII. PHYSICAL REALIZATIONS

Specific instances of the XXZ Hamiltonian in Eq. (1)
and the dynamical protocol discussed in this paper can
be implemented in a variety of atomic, molecular, optical,
and solid-state systems, including but not limited to polar
molecules [8,9], trapped ions [17,18,63,64,155], Rydberg
atom ensembles [12,156,157], magnetic quantum gases [69],
neutral atoms in optical lattices [67,158], alkaline-earth-atom
optical lattice clocks [22,24], tilted Bose-Hubbard models
in optical lattices [159], magnetic defects in solids (e.g.,
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nitrogen-vacancy centers in diamond) [160], and quantum
magnetic materials in solid-state physics. For these solid-
state systems, Refs. [28-31] give theoretical overviews, and
Ref. [161] is just one example of recent experiments probing
quench dynamics similar to that considered here. The models
are also important for molecular aggregates [162-164] and
energy transport in large organic and biomolecules [165-170].
Experiments in many of these systems have measured the same
or closely related quench dynamics to that considered herein.
The diversity and scope of these various implementations
is enormous, but here we attempt to give a brief review of
some of the most promising implementations, including their
unique benefits and limitations. Table I of Sec. II summarizes
the relevant properties (e.g., spin-coupling structure, energy
scales, coherence times, etc.) of several of the systems
described below.

A. Quantum magnetism in polar molecules

Polar molecules pinned in optical lattices have numerous
desirable qualities for the realization of spin Hamiltonians.
They have a variety of internal degrees of freedom—hyperfine,
rotational, vibrational, and electronic—spanning many orders
of magnitude in energy, all of which, in principle, can be
used to encode a spin degree of freedom [49,50,55,56,171].
Moreover, since long-range dipole-dipole interactions do not
require wave-function overlap, they persist in the deep-
lattice limit (where tunneling is negligible) and are typically
quite strong: J/h ~ 10> Hz at ~500 nm lattice spacings for
KRb, a relatively weakly interacting molecule; for LiCs the
interactions can be a hundred times larger. When rotational
levels encode the spin degree of freedom, an Ising term can
be induced by permanently polarizing the molecules with
modest electric fields, while spin-exchange terms (c<J,) of
comparable strength can arise from resonant microwave pho-
ton exchange. The recent experiments reported in Refs. [8,9]
have demonstrated the existence of J, = 0 exchange dynamics
in KRb molecules first prepared in the ro-vibrational ground
state, pinned in a three-dimensional optical lattice, and excited
using the quench protocol described in this paper. Those
experiments have additionally demonstrated the capability
to control the interaction strength by choosing different
rotational levels to represent the spin degree of freedom. In
the future, the addition of dc electric fields and microwave
or Raman dressing is expected to enable the simulation of
the more general X XZ spin models that we consider here,
and more [56,58,172,173]. Current challenges in quantum
simulation with polar molecules include the production of the
molecules themselves (so far only KRb has been successfully
produced in its rotational, vibrational, and hyperfine ground
state at motional temperatures near quantum degeneracy),
achieving sufficiently high phase-space density (i.e., approach-
ing unit filling in a lattice) [174,175], and understanding any
relevant decoherence mechanisms.

B. Quantum magnetism in trapped ions

In existing implementations of trapped-ion quantum simu-
lators, the ions are laser cooled to form either one-dimensional
(rf-Paul trap) [17] or two-dimensional (Penning trap) [18]
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crystals. Many of the same properties that have made trapped
ions a leading platform for quantum computation make
them especially promising and versatile as simulators of
models of quantum magnetism. First, they possess long-lived
hyperfine states, which form the spin degree of freedom in
all quantum simulations using trapped ions to date. While
the spin degrees of freedom of two 2>um separated ions do
not interact directly on experimentally relevant time scales,
the spin of an individual ion can be coupled to its motion
via a spin-dependent force. Experimentally, this is induced
by off-resonant stimulated Raman transitions. By modulating
this force at a frequency u, virtual phonons which mediate
relatively large (J < 10 kHz) spin-spin couplings are excited.
These spin-spin couplings inherit the nonlocal structure of
the phonon modes, and hence are generically long-ranged;
depending on how far u is detuned from the various phonon
modes of the ion crystal, the coupling between two ions falls
off in space as an approximate power law of the distance
between them, with exponent 0 < « < 3. To date, experiments
have successfully implemented Ising (J, = 0) [17,18,63] and
XX (J, = 0) [64,115] models both in and out of equilibrium,
but, in principle, these systems can be used to realize generic
anisotropic spin models (J, # J, # J;) [65]. Current chal-
lenges in trapped ion quantum simulation are mainly related
to scalability; pushing to larger system sizes adversely affects
the ratio of the spin-spin interaction time scales to the system
lifetime and may eventually require working in cryogenic
environments. We note that there are a variety of possible
complications due to the production of real phonon excitation
during nonequilibrium dynamics in these systems [176]; the
importance of these effects is only partially understood.

C. Quantum magnetism in Rydberg atoms

Very similar to polar molecules, Rydberg atoms possess
a strong dipole-dipole interaction. As the dipole moment is
limited only by the size of the Rydberg atoms, their mutual
interaction can be many orders of magnitude stronger than
all other interactions between neutral atoms or molecules. If
a pair of two excitations in Rydberg atoms is resonant with
dipole-allowed transitions to other two-excitation states, then
the dipolar coupling between them results in an anisotropic
long-range 1/r° interaction. If this so-called Forster process
is off resonant, this gives rise to the well-known attractive or
repulsive 1/r® van der Waals interaction. The Forster reso-
nance can be tuned and experimentally controlled in fast pulse
sequences by electric fields that act differently on the involved
Rydberg states, thus enabling one to control the detuning
between the two-excitation states. Another experimental tool
is microwave pulses, which can be used to induce oscillating
dipole moments. This is an ideal tool in Ramsey-like pulse
sequences. It is important to note that the lifetime of Rydberg
atoms is limited typically to ~10 us. However, coherent
driving, as well as interaction time scales, have been shown
to reach even the GHz level [177,178], which is ultimately
limited only by the Kepler frequency, i.e., the energy splitting
between adjacent Rydberg states. On these time scales it is not
even necessarily required to work with a degenerate ultracold
gas, as even at elevated temperatures the system behaves as a
frozen gas on the microsecond time scale.
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Strongly interacting frozen Rydberg gases have been
shown to be able to quantum simulate the ground states of
spin Hamiltonians. Following the theoretical prediction of a
quantum phase transition from a paramagnetic to crystalline
phase [66], the universal scaling behavior in the quantum crit-
ical regime was experimentally investigated and compared to
ab initio and mean-field calculations [179]. Spatially ordered
ground states have been observed by various methods [10,11],
including in Ref. [12], which employed an underlying optical
lattice. Ramsey sequences have been used to monitor the
nonequilibrium dynamics and interaction [13-15]. Quenches
to Forster resonant interaction were investigated as early as
1998 [180,181], and they have recently been used to investigate
spatial diffusion processes [182].

D. Quantum magnetism of neutral atoms in optical
lattices via dipolar interactions

Strong magnetic interactions between atoms with unpaired
electrons give rise to mechanical effects in a trapped quantum
gas that were observed in Ref. [183]. They also result in strong
dipolar relaxation processes [68], which have been used for
demagnetization cooling [184]. Reference [68] noted that the
dipolar interaction can lead to an exchange term, but in free
space this is always accompanied by a magnetization relax-
ation term. It was then demonstrated that in a dipolar lattice gas
the relaxation of the magnetization can be suppressed [21], in
which case the remaining terms of the dipolar interaction are of
the form Eq. (1) with J+/J* fixed by the nature of the dipolar
interaction. Recently, an experiment in the many-body limit
with singly and doubly occupied lattices sites was performed
and showed evidence for coherent intersite spin exchange
dynamics [69]. So far these experiments have been performed
with chromium atoms, which have a magnetic moment of
6 wp, where pp is the Bohr magneton, and a ground-state
manifold with a spin § =3 degree of freedom. Upcoming
experiments with erbium (7 wp) and dysprosium (10 wp)
promise even stronger couplings [19,20].

E. Quantum magnetism of neutral atoms in optical
lattices via superexchange

Neutral atoms in optical lattices furnish natural realizations
of Bose- or Fermi-Hubbard models [185]. Much like the
electrons in real materials, at unit filling and in the strongly
interacting limit these atoms form Mott insulators with one
particle per lattice site [186—188]. If each atom can be in
one of two hyperfine (spin) states, virtual excitations into
states away from unit filling, i.e., with holes and double
occupancies, mediate spin-spin interactions between neigh-
boring atoms that are ferromagnetic (antiferromagnetic) for
bosons (fermions). By choosing internal states that have
different scattering properties, or by using hyperfine-state-
dependent lattices, or both, it is possible to tune the relative
strength of J, and J, [189]. These superexchange interactions
have been probed in bosonic Rb atoms via nonequilibrium
dynamics in double-well arrays [67] and recently in equilib-
rium in anisotropic lattice geometries using low-temperature
fermionic Mott insulators [158]. However, due to the very
small superexchange energy scales (J < 100 Hz, often much
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less), studying equilibrium properties of fermionic systems in
the temperature regime where long-range antiferromagnetic
order exists remains elusive. In alkaline-earth atoms, the
independence of the scattering properties on the nuclear spin
I allows for superexchange models with SU(N =21 + 1)
[rather than SU(2)] symmetry [190-193]. Recently, direct
and indirect signatures of SU(N) symmetry in s- and p-wave
collisions have been reported in Refs. [194—197]. Signatures
of a superexchange processes respecting this enhanced SU(N)
symmetry have not been demonstrated experimentally; how-
ever, the required low-entropy SU(N) Mott insulators with
N = 6 have been recently created [195,197,198].

F. Quantum magnetism of alkaline-earth atoms
in optical lattice clocks

Alkaline-earth atoms trapped in one- and two-dimensional
optical lattices can realize spin models in appropriate limits.
Here the role of lattice sites is played by single-particle
quantized motional eigenstates (e.g., harmonic oscillator levels
along the “tubes” or “pancakes” of this lattice), and the
spin degrees of freedom are encoded in two electronic states
(clock states) [25,84,196]. The spin-spin couplings arise from
the direct overlap of single-particle wave functions, and
because these systems must be dilute to avoid rapid two-body
losses [199,200] typical spin-spin interaction energies are
fairly small. However, the long-lived nature of the optically
excited state, together with excellent coherence properties of
state-of-the-art clock lasers [70,71,201], both make coherent
spin-dynamics accessible in these systems [22-25]. If p-wave
interactions are ignored, the spin-spin Hamiltonian is SU(2)
symmetric (J; = J,), and no dynamics results from the col-
lective initial states considered in this paper (inhomogeneous
states do, however, have nontrivial dynamics [83-85,202]).
The p-wave interactions induce an anisotropy J = J, — J,,
which, while small, can still induce nontrivial dynamics (i.e.,
dynamics not described by short-time perturbation theory) for
the collective initial states considered here, during time scales
longer than hundreds of ms.

G. Quantum magnetism in tilted lattices

The method, proposed in Ref. [203] and realized in
Refs. [159,204], leaves behind the typical approach of
hyperfine-encoded spin states with superexchange mediated
interactions. The key idea is that the low-energy manifold
of a unit-filled Mott insulator, in the presence of a linear
potential gradient, can be mapped onto the low-energy sector
of a nearest-neighbor antiferromagnetic Ising model (J, = 0,
J. > 0) in a transverse field. The smallest energy scale of
the spin model is ultimately constrained by the tunneling
energy in the lattice, which is about an order of magnitude
larger than the superexchange scale that usually governs
quantum magnetism of neutral atoms in optical lattices. The
nonequilibrium dynamics described in this paper is only valid
in the low tipping angle limit, because the mapping from a
Bose-Hubbard model to the antiferromagnetic Ising model
is only valid within the low-energy sectors of both models.
This does not necessarily mean, however, that the universal
aspects of the dynamics we considered cannot be explored
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for weak quenches, where the dynamics is indeed governed
by Eq. (8) plus an additional transverse field. Numerical
simulations of the time evolution [205] that compare the
quench dynamics starting from a pure spin-polarized state
in the full Bose-Hubbard model and the spin model show
agreement for various oscillations, thus confirming the validity
of this observation.

VIII. CONCLUSIONS AND OUTLOOK

In this paper we have studied the dynamics of spin
systems governed by a general X XZ Hamiltonian Eq. (1).
In particular, we studied the time-evolution of an initially
spin-polarized state, a protocol that can be viewed and
experimentally implemented either as a quantum quench or as
Ramsey spectroscopy. We found that the range and magnitude
of correlations and entanglement out of equilibrium could
become comparable to or larger than those exhibited by
strongly correlated equilibrium ground states. In particular, in
one dimension, we found that entanglement grows to satisfy a
“volume law” over time. The steady state nevertheless is not
maximally entangled. We also demonstrated an experimentally
realistic procedure for which universal singular dynamics can
manifest out of equilibrium.

To derive these results, we employed a variety of exact
analytic and numerical methods. Necessarily, the exact meth-
ods were restricted to special cases: short times, the Ising
limit (Ji]% = 0), and one-dimensional systems. Alternative
methods—even approximate ones—to study the more general
cases are highly desirable. Among those one can men-
tion: mean-field theories, the truncated Wigner approxima-
tion [206], cluster expansions [9,207-209], and linear response
theory [210]. We expect that the exact results developed here
will provide a foundation and test bed for those approximate
methods.

Many additional intriguing aspects of the physics are
opened up by slight modifications of the dynamical procedure,
several of which may be experimentally implementable.
For example, one could change the sudden quenches to
quenches with a finite, variable rate and thereby explore
Kibble-Zurek-type physics [211,212]. One could also work
with inhomogeneous initial spin states, opening the possibility
to study transport and other intriguing phenomena such as
many-body localization [213-217], especially in systems with
inhomogeneous and long-range couplings Ji{]-l’Z}.
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