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Superfluidity and solid order in a two-component Bose gas with
dipolar interactions in an optical lattice
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In this paper, we study an extended bosonic t-J model in an optical lattice, which describes two-component
hard-core bosons with nearest-neighbor pseudospin interactions and, also, inter- and intraspecies dipole-dipole
interactions. In particular, we focus on the case in which two-component hard-core bosons have antiparallel
polarized dipoles with each other. The global phase diagram is studied by means of the Gutzwiller variational
method and also quantum Monte Carlo (QMC) simulations. Both calculations show that a striped solid order,
besides a checkerboard one, appears as a result of the dipole-dipole interactions. By QMC, we find that two kinds
of supersolids (SSs) form, i.e., checkerboard SS and striped SS, and we also verify the existence of an exotic
phase between the striped solid and the checkerboard SS. Finally, by QMC, we study the t-J-like model, which
was recently realized experimentally by A. de Paz et al. [Phys. Rev. Lett. 111, 185305 (2013)].
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I. INTRODUCTION

In recent years, cold-atomic systems have played a very
important role in the study of condensed matter physics. In
particular, the cold-atomic system in an optical lattice (OL) [1]
is sometimes regarded as a feasible simulator to search for new
types of quantum states. Cold-atomic systems in an OL are
versatile and the effects of defect and impurity are negligibly
small. With the use of quantum simulators, some important
subjects have been studied, including strongly correlated
systems [2], lattice gauge theory [3], and cosmology [4].

From the above point of view, we are interested in the
exotic quantum state in cold-atomic gases called a supersolid
(SS) [5], which has both a crystalline and a superfluid (SF)
order. While many interesting works on this subject [6,7] have
been reported for single-component cold atomic gases, the
study on two-component boson systems is still inadequate. In
the present paper, we study the bosonic t-J (B-t-J) model [8–
11] with dipole-dipole interactions (DDIs) [12], as the long-
range nature of the DDIs possibly generates interesting phases
including the SS.

To study the phase diagram in detail, we employ both the
Gutzwiller variational method and numerical quantum Monte
Carlo (QMC) simulations. To perform the QMC, we use the
effective field-theory model of the B-t-J model derived in
the previous paper [13]. All relevant quantum fluctuations
are included in the QMC stimulations of the effective model.
The phase diagrams obtained by the above two methods
are compared with each other and effects of the quantum
fluctuations are discussed.

This paper is organized as follows. In Sec. II A, we
introduce the B-t-J model and briefly explain the derivation
of the effective-field theory. In the derivation, the hard-core
constraint of the B-t-J model is faithfully treated by using the
slave-particle representation. In Sec. II B, we consider the DDI
and introduce its effects into the B-t-J model. In the present
paper, we consider the case in which dipoles of two-component
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bosons are antiparallel to each other. In this case, the DDIs are
nothing but z-component pseudospin interactions. Thus we
call the resultant mode the extended B-t-J model. In Sec. III,
we study the phase diagram using the Gutzwiller method,
which is a kind of mean-field approximation. In Sec. IV, the
results obtained by means of QMC are shown and discussed.
A detailed investigation of the global phase diagram is given,
in particular, states in the region of the competing orders of the
solid and SF are discussed in detail. In Sec. V, we introduce and
study an anisotropic B-t-J model (called the B-t-J-like model),
which was recently realized experimentally [2]. By QMC, we
show that the experimental observation is reproduced in the
model. Section VI is devoted to the conclusion.

II. BOSONIC t-J MODEL WITH DDIS AND DERIVATION
OF THE EFFECTIVE MODEL

A. Bosonic t-J model and the slave-particle representation

The system of a two-species Bose gas in an OL with strong
on-site repulsions is often described by the B-t-J model. Its
relationship to the Bose-Hubbard model has been discussed
in previous papers. In the present paper, we regard the B-t-J
model as a canonical model for a strong on-site repulsive
Bose-gas system. The Hamiltonian of the B-t-J model is given
as [8–11,14],

HtJ = −
∑
〈i,j〉

t(a†
i aj + b

†
i bj + H.c.) + Jz

∑
〈i,j〉

Sz
i S

z
j

− JXY

∑
〈i,j〉

(
Sx

i Sx
j + S

y

i S
y

j

)
, (2.1)

where a
†
i and b

†
i are boson creation operators [15] at site i,

the pseudospin operator is given as �Si = 1
2B

†
i �σBi with Bi =

(ai,bi)t and the Pauli spin matrices �σ , and 〈i,j 〉 stands for
nearest-neighbor (NN) sites on the lattice. We consider a two-
dimensional (2D) square lattice in this study. The first, t term
in Hamiltonian (2.1) is the hopping term of the a and b atoms,
the second, Jz term represents the interaction between atoms at
the NN sites, and the third, JXY term enhances the coherence
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of the relative phases of the a and b atomic fields. From the
definition of the Pauli matrix σz, it is obvious that the Jz

term corresponds to a repulsive intraspecies interaction and an
attractive interspecies interaction for Jz > 0.

The physical Hilbert space of the B-t-J model consists
of states in which the total particle number at each site is
strictly restricted to be less than unity. In order to incorporate
this local constraint faithfully, we use the slave-particle
representation [9,10],

ai = φ
†
i ϕi1, bi = φ

†
i ϕi2, (2.2)

(φ†
i φi + ϕ

†
i1ϕi1 + ϕ

†
i2ϕi2 − 1)|phys〉 = 0, (2.3)

where φi is a boson operator that annihilates the hole at site i,
whereas ϕ1i and ϕ2i are bosons that represent the pseudospin
degrees of freedom. |phys〉 is the physical state of the slave-
particle Hilbert space.

The previous numerical study of the B-t-J model [9,10,16]
showed that there appear various phases, including an SF
with Bose-Einstein condensation and a state with pseudospin
long-range order. For most of the parameter regions, QMC
simulations show that the density fluctuation of particles at
each lattice site is stable even in spatially inhomogeneous
states like a phase-separated state. From this observation, we
expect that the following term effectively appears,

HV = V0

4

∑
i

((ϕ†
1iϕ1i − ρ1i)

2 + (ϕ†
2iϕ2i − ρ2i)

2

+ (φ†
i φi − ρ3i)

2), (2.4)

where ρ1i , etc., are the parameters that control the densities of
a and b atoms at site i, and V0 (>0) controls their fluctuations
around the mean values. It should be remarked here that the
expectation values of the particle numbers in the physical
state |phys〉 are 〈a†

i ai〉 ≡ Trphys(a
†
i ai) = Trphys(ϕ

†
1iϕ1i) and,

similarly, 〈b†i bi〉 = Trphys(ϕ
†
2iϕ2i), where Trphys denotes the

trace over states satisfying the local constraint, (2.3). Therefore
constraint (2.3) requires that

∑3
σ=1 ρσi = 1 at each site i.

The values of V0 and ρσi(σ = 1,2,3) are to be determined,
in principle, by t, Jz, JXY , and the filling factor, but here
we add HV to HtJ by hand and regard the parameter V0

in HV as a free parameter, whereas ρσi(σ = 1,2,3) are to
be determined accurately by HtJ . In other words, we take
the extended B-t-J model HtJ + HV as a canonical model
and regard HV as a residual one-site repulsion that cannot be
incorporated by the hard-core constraint. However, we expect
that the original B-t-J model has a phase diagram similar to
that of the extended B-t-J model. See later remarks on this
point.

By means of the path-integral method, the partition function
Z is expressed as follows by introducing the imaginary
time τ ,

Z =
∫

[DφDϕ1Dϕ2] exp

[
−

∫
dτ (ϕ̄1i(τ )∂τϕ1i(τ )

+ ϕ̄2i(τ )∂τϕ2i(τ ) + φ̄i(τ )∂τφi(τ ) + HtJ + HV )

]
, (2.5)

where HtJ and HV are expressed by slave particles, (2.2), and
the above path integral is evaluated under constraint (2.3). The
direct QMC is not applicable to system (2.5) due to the Berry
phases (ϕ̄∂τϕ), etc., and therefore we separate the path-integral
variables ϕ and φ as

ϕ1i =
√

ρ1i + �1i exp(iω1i),

ϕ2i =
√

ρ2i + �2i exp(iω2i), (2.6)

φi =
√

ρ3i + �3i exp(iω3i)

and then integrate out the (fluctuation of the) radial degrees of
freedom, �σi (σ = 1,2,3). By the existence of the term HV , the
integration can be performed straightforwardly. There exists
a constraint like �1i + �2i + �3i = 0 on performing the path
integral over the radial degrees of freedom. But this constraint
can be readily incorporated using a Lagrange multiplier,
λi(τ ),

∏
τ

δ(�1i + �2i + �3i) =
∫

dλie
i
∫

dτ (�1i+�2i+�3i )λi .

The variables �σi (σ = 1,2,3) also appear in HtJ , but we ignore
them by simply replacing ϕσi → √

ρσi exp(iωσi), and then we
have ∫

dλid�ie
∫

dτ
∑3

σ=1 (−V0(�σ,i )2+i�σ,i (∂τ ωσ,i+λi ))

=
∫

dλie
− 1

4V0

∫
dτ

∑
σ (∂τ ωσ,i+λi )2

, (2.7)

where we have ignored terms like
∫

dτ∂τωσ,i by the periodic
boundary condition for the imaginary time. The resultant
quantity on the right-hand side of (2.7) is positive definite,
and therefore a numerical study by QMC can be performed
without any difficulty. It should be remarked that the Lagrange
multiplier λi in Eq. (2.7) behaves as a gauge field, i.e.,
the right-hand side of (2.7) is invariant under the “gauge
transformation” ωσ,i → ωσ,i + αi, λi → λi − ∂ταi . In the
practical calculation, we show that all physical quantities are
invariant under the above gauge transformation.

Here, remarks are in order.
(1) The direct QMC of system Z in Eq. (2.5) is impossible,

as the Berry phases ϕ̄∂τϕ are pure imaginary. However,
by integrating over the density fluctuations �σi , the action
becomes positive definite as Eq. (2.7) shows, and thus the
QMC can be applied without any difficulty.

(2) In order to integrate over �σi , we have introduced the
density-fluctuation term HV . Terms effectively similar to HV

are generated from the terms in the Hamiltonian of the original
B-t-J model, (2.1). For example, a rough estimation of the
density fluctuation of the a atom δρai gives(

t
P
ρai

+ JXY

√
ρai

Q
(
√

ρbi)3

)
(δρai)

2, (2.8)

where ρai (ρbi) is the mean value of the a-atom (b-atom)
density, and the positive parameters P and Q are determined
by the NN correlations of the phase degrees of freedom of
the atomic fields like P = 〈cos(θai − θaj )〉, where θai is the
phase of the a-atom field. In the QMC in Sec. IV, we fix
the values of t and JXY , and the values of ρai and ρbi are
determined by the B-t-J model, (2.1), quite accurately. It
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FIG. 1. (Color online) Experimental setup for two-component
dipolar bosons in an OL. Dipole-dipole interactions generate long-
range repulsive and attractive interactions between the two kinds of
bosons.

is difficult to obtain the coefficient in Eq. (2.8) accurately,
but it is expected that the coefficient in Eq. (2.8) is fairly
stable against the variations of ρai and ρbi , as we require
the constraint ρai + ρbi = 1−(constant hole density) in the
calculation and also by the behavior of the correlators P and
Q. Furthermore, for the system HtJ + HV , we have verified
by practical calculation that a change in the value of V0 in HV

does not substantially influence the global phase diagram of the
system, although the SF region increases slightly for smaller
V0 as greater density fluctuation stabilizes the phase degrees
of freedom by the density-phase uncertainty principle. See
Ref. [13], in particular, the left panels in Fig. 1 there. Thus it is
naturally expected that the phase diagram of the constant-V0

system obtained with the QMC faithfully describes the phase
structure of the original B-t-J model as well as the extended
B-t-J model with the HV term.

(3) The partition function obtained by performing the inte-
gral in Eq. (2.7) depends on the local density of the bosons ρσi .
We treat the density difference �ρi ≡ ρ1i − ρ2i = ρai − ρbi as
a variational parameter while keeping the one-site hole density
fixed; i.e., ρ1i + ρ2i = ρai + ρbi = constant. This treatment
obviously precludes the possibility of a phase-separated state.
The previous study, by means of a Gross-Pitaevskii equation
and QMC [17], showed that such a phase-separated state does
not appear in the B-t-J model, (2.1). Therefore this treatment
is justified.

(4) The last remark concerns Hamiltonian (2.1) itself.
Originally, the B-t-J model was derived as an effective model
of the Bose-Hubbard model in the large on-site-repulsion limit.
By integrating out the multiple-particle states at each site, the
NN terms of the pseudospin interactions appear. At present,
however, the interactions between atoms located at NN sites
can be generated and their strength is controlled by using the
DDIs. Thus Hamiltonian (2.1) can be regarded as the original
Hamiltonian, and it is quite natural to add the Hubbard term
HV in Eq. (2.4) to HtJ . In this case, the a and b atoms are not
hard-core boson and their density can take arbitrary values. The
effective model of the system is derived by a method similar

to the one above, but use of the slave-particle representation is
not needed.

As explained in Sec. I, we study Bose gases with DDIs in
this paper. In Sec. II B, we briefly explain the DDI, which
gives a long-range interaction between the z components of
the pseudospin Sz.

B. Realization of long-range spin interactions via the DDI

When the atoms have a magnetic or electric dipole, terms
describing the DDI [12] should be added to the B-t-J model
Hamiltonian. We first consider a specific case in which the
a atom has the upward dipole, whereas the b atom has the
downward one, perpendicular to the OL. See Fig. 1. We regard
this system as a canonical system and clarify its phase diagram
in the subsequent sections. The system of a strongly correlated
dipolar gas, which was recently realized in experiments, is
considered in Sec. VI, because it has rather strong anisotropy
in couplings.

The DDI is generally given as

Ĥd = d2 Ŝ1 · Ŝ2 − 3(Ŝ1 · r̂)(Ŝ2 · r̂)

4πr3
, (2.9)

where d2 = μ0(gμB)2 (μ0 being the magnetic permeability of
the vacuum, g the Lande factor, and μB the Bohr magneton),
Ŝj (j = 1,2) is the dipole-moment vector of the j th atom,
and r̂ = r

r
with the relative position vector r of the atoms.

In the present canonical system, Ŝ1//Ŝ2 and Ŝ1,Ŝ2 ⊥ r, and
therefore only the first term on the right-hand side of Eq. (2.9)
contributes. In Fig. 1, an experimental manipulation for
realizing the canonical system is shown schematically. First,
we prepare independently the a boson with an up-polarized
state and the b boson with a down-polarized state in two
magnetic traps. Second, an OL is created in each trap.
Finally, we combine these two systems quasistatically and
lower the temperature. As a result of the strong repulsions
between atoms and the finite hopping amplitude, the total
particle number at each site of the OL is less than unity.
Furthermore, due to the angular-momentum conservation, the
direction of the dipole does not change under the hopping of
atoms.

Though the DDI has a long-range nature, we consider
only the NN coupling and the next-nearest-neighbor (NNN)
coupling in the OL. In the present dipole configuration,
the DDI reduces the interspecies attraction and intraspecies
repulsion. Thus Ĥd in Eq. (2.9) effectively generates the
terms

VDDI =
∑
〈i,j〉

VNN(nainaj + nbinbj − nainbj − nbinaj )

+
∑
〈〈i,j〉〉

VNNN(nainaj + nbinbj − nainbj − nbinaj )

=
∑
〈i,j〉

VNNSz
i S

z
j +

∑
〈〈i,j〉〉

VNNNSz
i S

z
j , (2.10)

where nai = a
†
i ai , etc., we have used Sz

i = 1
2 (nai − nbi), and

〈〈i,j 〉〉 stands for NNN sites. The parameters VNN and VNNN

are given by the overlap integral of the lowest level Wannier
functions (s wave) on the OL sites. The VDDI term in Eq. (2.10)
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is to be added to the Hamiltonian of the B-t-J model. In the
following studies, we consider the system described by HT ≡
HtJ + VDDI.

III. GUTZWILLER VARIATIONAL METHOD

Mean-field theory (MFT) is widely used to study phase
diagrams of condensed matter systems. In this section, we
employ the Gutzwiller variational method, which is a kind
of MFT, to investigate the phase diagram of the system HT
at vanishing temperature (T ). From the results of previous
studies [7], we expect the appearance of two kinds of solid
order, i.e., checkerboard solid (CBSo) and striped solid (SSo)
order, in certain parameter regions. The solid order is the
spatial pattern of the atomic densities and is nothing but
the pseudospin order in the B-t-J model, as Sz

i is given by
Sz

i = 1
2 (nai − nbi).

As the present model describes the strong on-site repulsion
limit, the physical state at each site consists of the following
three states: |a〉 (single a boson), |b〉 (single b boson), and
|0〉 (empty = hole). By using the above three basis vectors,
we construct a variational wave function corresponding to the
state with the double SF (2SF) and/or the CBSo,

|�2SF−CB〉

= �i∈A

[
sin

θi

2

(
sin

χi

2
a
†
i + cos

χi

2
b
†
i

)
+ cos

θi

2

]
|0〉

×�i∈B

[
sin

θi

2

(
cos

χi

2
a
†
i + sin

χi

2
b
†
i

)
+ cos

θi

2

]
|0〉,

(3.1)

where the label A (B) stands for the even (odd) sublattice, and
the parameters (θi,χi) are to be determined by the variational
method. At the MFT level, we reduce the local variables θi

and χi to global ones, (θA,θB) and (χA,χB). It should be
noted that the state of the wave function, (3.1), has the discrete
translational symmetries of double-lattice spacing in both the
x and the y directions.

Another possible solid order is the SSo. The variational
wave function that describes the SSo and 2SF is given as

|�2SF-SSo〉

= �i∈xo

[
sin

θi

2

(
sin

χi

2
a
†
i + cos

χi

2
b
†
i

)
+ cos

θi

2

]
|0〉

×�i∈xe

[
sin

θi

2

(
cos

χi

2
a
†
i + sin

χi

2
b
†
i

)
+ cos

θi

2

]
|0〉,

(3.2)

where the site label xo (xe) denotes an odd (even) line sublattice
in the x direction corresponding to the stripe pattern. The above
wave function, (3.3), has the discrete translational symmetry
of double-lattice spacing in the x direction and the ordinary
one of single-lattice spacing in the y direction.

From the wave functions, (3.1) and (3.3), we calcu-
late the expectation value of the Hamiltonian Hμ ≡ HT −
μ

∑
(a†

i ai + b
†
i bi), where μ is the chemical potential, and

obtain

ECS

JXY Ns

≡ 〈�2SF-CB|Hμ|�2SF-CS〉/(JXY Ns)

= −t̃ sin2 θ sin χ + 2(−J̃zNN + J̃zNNN) sin4 θ

2
cos2 χ

− 1

8
sin4 θ sin2 χ − μ sin2 θ

2
, (3.3)

ESS

JXY Ns

≡ 〈�2SF-SSo|Hμ|�2SF-SSo〉/(JXY Ns)

= −1

2
t̃ sin2 θ (1 + sin χ ) − 2J̃zNNN sin4 θ

2
cos2 χ

− 1

8
sin4 θ sin2 χ − μ sin2 θ

2
. (3.4)

In Eqs. (3.3) and (3.4), the variational energies are normalized
by JXY Ns , where Ns is the total number of sites, and
thus, t̃ ≡ t/JXY , J̃zNN ≡ JzNN/JXY , and J̃zNNN ≡ JzNNN/JXY ,
where JzNN ≡ Jz + VNN and JzNNN ≡ VNNN.

From Eqs. (3.3) and (3.4), it is rather straightforward to
obtain the lowest energy states by varying the values of
θ and χ , and then the global phase diagram is obtained.
The obtained phase diagram is shown in the top panel in
Fig. 2, where v2 = JzNNN/JzNN. The bottom panel in Fig. 2
is the phase diagram in the (μ-J̃zNN) plane. It is obvious that
at the MFT level, the SS does not form and the solid phases,
the CBSo and SSo, exist only at the vanishing hole density.
On the other hand, the 2SF phase has a finite hole density; in
particular, the minimal density is 30%. The above results are
in agreement with the previous MFT results for the one and
two-component Bose-Hubbard models in Refs. [6] and [11],
which showed that the SS does not form and a direct phase
transition from the CBSo to SSo takes place.

IV. QUANTUM MONTE CARLO SIMULATION

In this section, we study the extended B-t-J model, HT +
HV , by QMC. In particular, we are interested in the global
phase diagram and the region in which the SS forms. As
explained in Sec. I, we expect that SSs with different solid
orders appear as a result of DDIs.

For the practical QMC, we put the lattice spacing of the OL,
aL, to the unit of length. We also introduce a discretized lattice
for the imaginary-time τ with the lattice spacing �τ . Thus,
the model is defined on a three-dimensional (3D) space-time
lattice, and hereafter we denote the site of the 3D lattice i,j ,
etc.

The previous study [17] on the B-t-J model HtJ shows that
holes are distributed quite homogeneously except for a very
specific parameter region in which a phase-separated state
forms. Therefore, we assume a homogeneous distribution of
holes also in the present system and put the hole density at
each site to 30%, i.e., ρ3,i = ρ3 = 0.3. On the other hand,
the density difference of the a and b atoms at site i, �ρi =
ρ1i − ρ2i , is a variational variable and is determined by the
maximal free-energy condition. See later discussion.

The effective lattice model of the extended B-t-J model
HT + HV is derived from Eqs. (2.5) and (2.7). The partition
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FIG. 2. (Color online) Phase diagrams at T = 0 in the grand-
canonical ensemble obtained by the MFT. μ = 0 phase diagram
in the (J̃zNN − v2) plane (top) and in the (μ-J̃zNN) plane for v2 ≡
JzNNN/JzNN = 0.3. In the MFT phase diagrams, the SS does not exist.

function and action of the effective model are given as [13,17]

ZqXY ≡
∫

�α=1,2,3[dωα,i][dλi]e
AqXY ,

(4.1)
AqXY = Aτ + AL(ei�σ ,e−i�σ ) + AzNN,

where

Aτ = −cτ

∑
i

3∑
σ=1

cos(ωσ,i+τ̂ − ωσ,i + λi), (4.2)

AL =
∑
〈i,j〉

(C1 cos(�1,i − �1,j ) + C2 cos(�2,i − �2,j )

+C3 cos(�3,i − �3,j )), (4.3)

and

AzNN = −JzNN�τ
∑
〈i,j〉

�ρi�ρj − JzNNN�τ
∑
〈〈i,l〉〉

�ρi�ρl,

(4.4)

where 〈· · · 〉 stands for NN sites in the 2D spatial lattice, and
〈〈· · · 〉〉, NNN sites. The dynamical variables �α,i (α = 1,2,3)

are related to the phases ωα,i as

�1,i = ω1,i − ω2,i ,

�2,i = ω1,i − ω3,i ,

�3,i = ω2,i − ω3,i .

As explained in Sec. II, the partition function in Eq. (4.1)
has been derived by integrating out the amplitude modes of
slave-particle fields. As a result, the coefficients in the action
AqXY depend on the local variational parameter {�ρi} and they
are explicitly given as

cτ = 1

V0�τ
,

C1 = JXY ρ3�τ

√
((1 − ρ3)2 − (�ρi)2)((1 − ρ3)2 − (�ρj )2),

C2 = tρ3�τ
√

(1 − ρ3 + �ρi)(1 − ρ3 + �ρj ),

C3 = tρ3�τ
√

(1 − ρ3 − �ρi)(1 − ρ3 − �ρj ).

By the relation 1/(kBT ) = L�τ , where L is the linear system
size, �τ has dimension 1/(energy) and the low-temperature
limit is realized for L → ∞. We put cτ = 2 in the practi-
cal calculation, and thus kBT = (cτV0)/L = 2V0/L. Here it
should be noted that a change in the value of V0 results in a
change in cτ . A previous study [13] showed that the global
phase structure of the system HtJ is stable against change
in the value of cτ with fixed �τ . In general, for a smaller
value of V0, i.e., a larger cτ , the parameter region of the SF is
enlarged [13].

The partition function ZqXY in Eq. (4.1) is a functional
of �ρi ; i.e., ZqXY = ZqXY ({�ρi}). We expect that �ρi be-
have as variational variables and determine them under the
optimal free-energy condition. In the practical calculation, we
performed the local update of �ρi by QMC simulation and
obtained

[ZqXY ] ≡
∫

[d�ρi]ZqXY ({�ρi}). (4.5)

However, in the updates of the QMC, {�ρi} are quite
stable [17] for given values of parameters in the action AqXY .
This fact indicates that {�ρi} should be regarded as variational
parameters rather than dynamical variables. For the QMC, we
employed the ground-canonical ensemble, and therefore the
numbers of a and b bosons, Na and Nb, are not conserved
independently in QMC updates, although the total atomic
number Na + Nb is conserved.

In the practical calculation, we employed the standard
Metropolis algorithm with the local update [18]. The typ-
ical sweep for the measurement is (50 000–100 000) ×
(10 samples), and the acceptance ratio is 40–50%. Errors are
estimated from 10 samples by the jackknife method.

To obtain the phase diagram, we calculated the internal
energy E and specific heat C, which are defined as

E = 〈(AL + AzNN)〉/L3,
(4.6)

C = 〈((AL + AzNN) − L3E)2〉/L3.

To identify various phases, we also calculated the following
pseudospin correlation function, boson correlation function,
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FIG. 3. (Color online) Phase diagram at T = 0 obtained with
the QMC, which includes the effects of quantum fluctuations.
We consider the case with a homogeneous hole density ρ3 = 0.3,
cτ = 2.0, C1 = 2, and t = 20. We introduce the amplitude ratio,
v2 = JzNNN/JzNN. There exist five phases including two SS phases,
i.e., the CBSS and SSS. In the hatched (blue) region, coexistence of
the CBSS and SSo is verified. Hereafter, for the unit of energy, we
put 2V0 = 1, i.e., �τ = 1.

and, also, density-difference correlation function,

GS(r) = 1

L3

∑
i0

〈ei�1,i0 e−i�1,i0+r 〉,

Ga(r) = 1

L3

∑
i0

〈ei�2,i0 e−i�2,i0+r 〉,
(4.7)

Gb(r) = 1

L3

∑
i0

〈ei�3,i0 e−i�3,i0+r 〉,

Gdd(r) = 1

L3

∑
i0

〈
�ρi0�ρi0+r

〉
,

where sites i0 and i0 + r are located in the same spatial 2D
lattice. The order of the phase transition was identified by
calculating the density of state N (E), which is defined by

[ZqXYZ] =
∫

dEN(E)e−E. (4.8)

If N (E) has a single peak at the transition point, the phase
transition is of second order. On the other hand, a double-peak
shape of N (E) indicates the existence of a first-order phase
transition.

In Fig. 3, we show the global phase diagram obtained by
the QMC for cτ = 2.0, C1 = 2, and t = 20. By calculating
the density of states N (E), the order of the phase transitions
has been determined as indicated in Fig. 3. Typical behaviors
of the specific heat C and the internal energy E are shown
in Fig. 4 in the (v2 − JzNN) plane, where v2 = JzNNN/JzNN.
The density of states, N (E), on typical critical points is
shown in Fig. 5. Furthermore, some correlation functions and
density-difference {�ρi} snapshots, which were used for the
identification of each phase, are exhibited in Fig. 6.

As the phase diagram in Fig. 3 shows, there exist five
phases: 2SF, checkerboard supersolid (CBSS), striped super-

FIG. 4. (Color online) Specific heat C and internal energy E for
v2 = 0.2 and 0.6. For both cases, there exist two phase transitions.
See the phase diagram in Fig. 3. System size L = 16.

solid (SSS), CBSo, and SSo. In particular, the two kinds of
SSs form in the intermediate parameter regime between the
genuine SF and the solids. The correlation functions indicating
the existence of SSs are shown in Fig. 6.

In contrast to the MFT phase diagram in Fig. 2, the SSs
form in a rather large parameter region of the phase diagram
in Fig. 3. This means that quantum fluctuations play an

FIG. 5. (Color online) Density of state N (E) used to determine
the order of the phase transitions. A single peak of N (E) at the phase
transition point indicates a second-order phase transition; a double-
peak, a first-order phase transition. v2 = JzNNN/JzNN, and system size
L = 16.
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FIG. 6. (Color online) Various correlation functions and snap-
shots used to identify physical properties of each phase. Density
difference �ρi ≡ na,i − nb,i .

FIG. 7. (Color online) Specific heat as a function of v2 for JzNN =
18. Besides the large peak at v2 � 0.47, which indicates the existence
of a first-order phase transition, there are several small peaks from
v2 = 0.48 to v2 = 0.54. The snapshot for v2 = 0.50 indicates a phase
of CBSS and SSo coexistence.

essentially important role for the coexistence of the SF and
solid order. In other words, in SS states, both the density of
particles and the SF order parameter (i.e., the phase of the
boson fields) fluctuate as required by the quantum uncertainty
principle, but their fluctuations are rather moderate and thus
both orders are preserved intact. It is interesting to note that
the parameter region of the SSS is larger than that of the
CBSS. This means that the 1D structure of the stripe is more
compatible with the SF rather than the CB as is physically
expected.

As far as the phase diagram in Fig. 3 shows, there is no
direct phase transition from the CBSo and SSo. In Ref. [19], a
similar phase diagram was reported for the single-component
Bose-Hubbard model. There the CBSo and SSo are separated
by a simple SF phase. In the present system, however, the
CBSS exists between the CBSo and the SSo.

By practical calculation, we have found that an interesting
“phase” exists between the CBSS and the SSo, which is
indicated by the hatched (blue) region in the phase diagram
in Fig. 3. The specific heat C for JzNN = 18 has the behavior
shown in Fig. 7. It is obvious that there exists a first-order
phase transition at v2 = JzNN

JzNNN
� 0.47, and the CBSo terminates

there. As the value of v2 is increased from 0.47, several small
peaks appear in C till v2 � 0.54. Snapshots are quite useful
to understand what happens in this region. See Fig. 7; in
particular, the snapshot of v2 = 0.50. Small regions of the
CBSo and SSo coexist there in a phase-separated form, and
we verified that the spatial pattern of these small regions is
rather stable under the MC updates. Our observation indicates
that there exist several (meta)stable “mixed crystals” of the
CBSo and SSo between the CBSS and the SSo, and this
mixing of the solid order destroys the SF. For the 2D J1-J2
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FIG. 8. (Color online) Specific heat as a function of the magnetic
flux f . As f is increased, SF is lost. However, the solid orders are
stable against the magnetic field.

Heisenberg model, it was expected that a quantum spin liquid
exists between the Néel state and the stripe antiferromagnetic
state [20]. The DDI in Eq. (2.10) has a similar structure to
the above J1-J2 Heisenberg model, but we think the present
mixed crystals are different from the quantum liquid, as the
spatial pattern is stable. This is a result of the Ising-type spin
coupling of VDDI, in contrast to the O(3) symmetric one in the
J1-J2 Heisenberg model.

Nowadays, it is possible to apply an artificial external
magnetic field to an atomic system in an OL by rotating the
system or using lasers [21]. Atomic systems in an artificial
magnetic field mimic superconducting systems, systems of the
quantum Hall effect, etc., and therefore they are one of the most
interesting subjects in cold-atomic physics. In this section, we
study the (in)stability of SSs in an external magnetic field. We
expect that the stability depends on the type of solid order of
the SSs.

In the practical calculation, we used the symmetric gauge
for the vector potential. The magnetic flux per plaquette of the
OL is denoted 2πf . In Fig. 8, we show the specific heat as a
function of the strength of the magnetic field f . For the CBSS,
the SF is lost at f � 0.025, and for the SSS f � 0.055. This
result means that the SSS is more robust than the CBSS as
expected from the phase diagram in Fig. 3.

V. MC SIMULATION OF A t- J-LIKE MODEL REALIZED
BY COLD ATOMS IN AN OPTICAL LATTICE

In this section we focus on the experiment by de Paz
et al. [2]. They succeeded in creating NNN pseudospin
interactions by using the DDI of 52Cr with total spin s = 3. In
the experiment, doubly occupied states were excluded by the
strong on-site repulsion. Furthermore, by applying an external
magnetic field, the two states with spin component ms = −3
and ms = −2 in the direction of the magnetic field dominate
the system. Thus the reduced DDI is regarded as a pseudospin
interaction similar to that in the t-J model. The resultant atomic
system of 52Cr is a strongly correlated system and is well
described by the B-t-J model.

However, as shown by the calculation in Ref. [2], the
resultant B-t-J model has anisotropy in both the hopping
amplitudes and the pseudospin interactions. Thus we call this
the t-J-like model hereafter. We carried out a detailed study of
the t-J-like model by QMC and obtained the phase structure
of the t-J-like model in the parameter regime realized in the
experiment.

The effective action, Eq. (4.1), changes to the following one
by the anisotropy,

At-J -like = −
∑
τ,i

cτ cos(θa,i − θa,i+τ ) + cτ cos(θb,i − θb,i+τ )

+
∑

i,j∈NNN

Cxy,j cos ((θa,i − θb,i) − (θa,j − θb,j ))

−
∑

i,j∈NN

C2,j ( cos(θa,i − θa,j ) + cos(θb,i − θb,j ))

+
∑

i,j∈NNN

Cz,j�ρi�ρj , (5.1)

where

Cxy,j = − 1
2Vij

1
4�τ

√(
ρ2

0 − �ρ2
i

)(
ρ2

0 − �ρ2
j

)
,

C2,j = tj
1
2�τ

√
(ρ0 − �ρi)(ρ0 − �ρj ), (5.2)

Cz,j = Vij�τ,

and the anisotropic couplings tj and Vi,j are given as

Vi,j =
⎧⎨
⎩

0.8W0 (j = i + x̂,i − x̂),
−1.8W0 (j = i + ŷ,i − ŷ),
−0.11W0 (j ∈ NNN),

(5.3)

tj =
{

3.66t (j = i + x̂,i − x̂),
t (j = i + ŷ,i − ŷ), (5.4)

with

W0 = μ0μ
2
B

π (aL/2)3
, (5.5)

where μB is the Bohr magneton and μ0 is the magnetic
permeability of the vacuum as before. The proposed t-J-like
model in Ref. [2] has an additional effective Zeeman coupling
along Sz, but we ignore it in the present study because we are
interested in the genuine effect of the DDI.

For the practical calculation, we regard W0 as a free
parameter and put the hole density ρ0 = 0.3. The strength
of the dipole-induced pseudospin interaction relative to the
hopping amplitude t determines the equilibrium state.

In the experiment, it was observed that there exists a density
difference between the ms = −3 and the ms = −2 states at
equilibrium, and this phenomenon was considered to be a
result of the DDI.

In Fig. 9, we show the behaviors of the specific heat
C for the t-J-like model with the energy unit t = 2. The
obtained specific heat exhibits the existence of a second-order
phase transition at W0c � 1.1. We also calculated the density-
difference correlation function Gdd(r) defined by Eq. (4.7).
From the density-difference correlation function shown in
Fig. 9, it is obvious that Gdd(r) → finite (0) as r → large
for W0 > W0c (W0 < W0c); i.e., the density of one atom is
globally larger than that of the other for W0 > W0c, whereas
an equal density distribution is realized for W0 < W0c. This
is the direct result of the dipolar intersite spin interaction and
is in agreement with the experimental observation. Density
snapshots for W0 > W0c and W0 < W0c are shown in Fig. 9.
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FIG. 9. (Color online) Top left: Specific heat with t = 2, cτ = 2.
System size L = 16. Top right: Two typical behaviors of the density-
difference correlation. Each of the two states is at equilibrium. Bottom
left: Snapshot of the solid order (density difference) for W0 = 1.0.
Bottom right: Snapshot of the solid order for W0 = 1.3. It seems that
neither case has a clear solid order, but we verified that the density
pattern is quite stable for the MC update.

No specific spatial pattern is observed, in contrast to the case
studied in Sec. IV.

VI. CONCLUSION

In this paper, we have studied the extended B-t-J model of
two-component bosons with the long-range DDI. We show that
the DDI can generate additional pseudospin interactions by
controlling the directions of the dipoles of the a and b atoms.
We have studied the global phase diagram of the extended
B-t-model by means of the Gutzwiller variational method and
the QMC. The phase diagrams obtained indicate that quantum
fluctuation is an essential ingredient for the realization of SSs.
The QMC predicts two kinds of SS states, one of which is
the CBSS and the other the SSS, and the latter stems from the
long-range nature of the DDI. A detailed study of the phase
boundary of the CBSS and SSo has also been reported.

Finally, we have investigated the t-J-like model, which is
expected to describe the strongly correlated system recently
realized in experiments [2]. By QMC, we confirmed the
existence of a phase transition as the strength of the DDI
is increased. In a state with the DDI stronger than the critical
one, an imbalance of the density of atoms, which is nothing
but a finite pseudospin order in the z direction, appears. The
results obtained are consistent with the experimental findings.
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