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Critical exponents for an impurity in a bosonic Josephson junction:
Position measurement as a phase transition
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We use fidelity susceptibility to calculate quantum critical scaling exponents for a system consisting of N

identical bosons interacting with a single impurity atom in a double-well potential (bosonic Josephson junction).
Above a critical value of the boson-impurity interaction energy there is a spontaneous breaking of Z2 symmetry
corresponding to a second-order quantum phase transition from a balanced to an imbalanced number of particles
in either the left- or the right-hand well. We show that the exponents match those in the Lipkin-Meshkov-Glick
and Dicke models, suggesting that the impurity model is in the same universality class. The phase transition can
be interpreted as a measurement of the position of the impurity by the bosons.
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I. INTRODUCTION

The fate of a single particle tunneling in a many-body
environment is a subject of fundamental interest not least
because of its connection to the decoherence problem in
quantum mechanics [1,2]. In this paper we study a related
system consisting of a single-impurity atom tunneling between
the wells of a double-well potential in the presence of N

indistinguishable bosonic atoms as illustrated schematically
in Fig. 1. The bosons are also trapped in the double-well
potential and thus form a bosonic Josephson junction in their
own right. This setup can be considered to be an elementary
example of a Bose-Fermi mixture, although, because the
statistics of the impurity do not matter, in practice it can be
a boson of the same species but in a different internal state.
The prospects for realizing such a system in the laboratory
are reasonably promising: a large number of experiments
have studied ultracold bosons trapped in external double-well
potentials [3–11], and others have realized the same effective
system in a single trap but where two internal states of the
atoms are coupled by microwave or radio frequency fields
(internal Josephson effect) [12,13]. Adding a well-defined
number of impurities is not easy but there has been some
progress in this direction in optical lattices [14,15].

A theoretical analysis of a bosonic Josephson junction
with an impurity has been given by Rinck and Bruder [16],
who found that by applying a tilt to the double-well a
multiparticle tunneling resonance could be induced towards a
state where the impurity was expelled to the higher lying well.
Subsequently, we undertook a study comparing the mean-field
and many-body properties and described the appearance of
a pitchfork bifurcation in the ground state of the mean-field
theory above a certain critical value Wc of the boson-impurity
interaction strength [17]. The mean-field bifurcation arises
from the spontaneous localization of the impurity in one of the
wells together with the localization of a majority of bosons in
the opposite well (assuming repulsive interactions). In the fully
quantum version Wc marks the onset of a splitting of the wave
function into two coherent pieces in Fock space (the space
spanned by the Fock states |�M,�N〉, corresponding to the
number differences �M = MR − ML and �N = NR − NL

between the left and the right wells for the impurity and
bosons, respectively). As W is increased further the Fock-

space splitting increases, and for large N it can develop into
a fully blown Schrödinger cat state which is a superposition
of two macroscopically distinguishable number differences
of bosons. This state is associated with a saturation of the
entanglement entropy between the impurity and the bosons
at S = kB ln 2. The formation of a Schrödinger cat state in a
macroscopic measurement device as a result of its coupling to
a microscopic system is usually considered to be an essential
element of quantum measurement [18,19]. One may therefore
take the view that the bosons in the present system act as a
quantum measurement device or meter which indicates the
position of the microscopic impurity atom. This meter can
be tuned between being microscopic (small N ) and being
macroscopic (large N ). The formation and collapse of the
Schrödinger cat state correspond here to a symmetry-breaking
phase transition (PT) [20–24].

In another study [25], we argued that in many respects
the impurity system behaves like the celebrated Dicke model
[26–28] for N two-level atoms coupled to a single mode of the
electromagnetic field whose Hamiltonian takes the form

ĤDicke = �ωâ†â + ω0Ŝz + 2√
N

λ(â + â†)Ŝx . (1)

Here â and â† annihilate and create, respectively, a photon
of energy �ω in the electromagnetic field and Ŝx and Ŝz

are collective spin operators that arise from treating the
two-level atoms, whose levels are separated by energy �ω0,
as pseudospins. Ŝz measures half the difference between
the number of atoms in the excited state and the number
in the ground state and its eigenvalues lie in the range
−N/2 . . . N/2. Ŝx = (Ŝ+ + Ŝ−)/2 measures the coherence
between the excited and the ground states of the atoms
and â + â† is proportional to the position operator for the
harmonic oscillator associated with the electromagnetic field.
In a related pseudospin formulation the Hamiltonian for the
bosonic Josephson junction plus impurity can be written (see
Sec. II for details)

Ĥ = 2NJaŜa
z + 2J Ŝz + 2WŜa

x Ŝx, (2)

where the superscript a denotes the impurity: J and J a are
the bare hopping frequencies between the two wells for the
bosons and impurity, respectively, and W parameterizes the
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FIG. 1. (Color online) Schematic of the proposed setup. A
bosonic Josephson junction consists of N identical bosons [repre-
sented by the small filled (blue) circles] which are able to tunnel
between the two sides of a double-well potential. To this is added a
single impurity atom [large filled (red) circle] which is also able to
tunnel between the two wells.

boson-impurity coupling strength. In this form the impurity
model is reminiscent of the Mermin central-spin model,
where a distinguishable central spin is surrounded by N

spins on a lattice which interact with the central spin with
an effectively infinite-range interaction so that all pairwise
interactions have the same magnitude [29–31]. In the impurity
model Ŝz measures the coherence of the bosons between
the two wells or, equivalently, half the difference in the
number of bosons in the antisymmetric and symmetric modes
formed, respectively, from the odd and even combinations of
the modes associated with each well. Ŝx measures half the
number difference between the two wells or, equivalently, the
coherence between their symmetric and their antisymmetric
combinations. Sa

x and Sa
z are the corresponding quantities for

the impurity. In the thermodynamic limit where N → ∞, the
ground state of the Dicke model undergoes a second-order PT
due to a spontaneous breaking of Z2 symmetry at the critical
coupling strength λc = √

ωω0/2 [32,33]. This PT bears a very
close resemblance to the bifurcation that occurs in the impurity
model at [17,25]

Wc =
√

JJ a/2. (3)

In the Dicke case the ground state below the transition (λ < λc)
is known as the normal state and is characterized by 〈Ŝx〉 = 0
and 〈â + â†〉 = 0, whereas the ground state above the transi-
tion is known as the super-radiant state because it corresponds
to a spontaneous macroscopic excitation of the electromag-
netic field with both 〈Ŝx〉 �= 0 and 〈â + â†〉 �= 0. Analogous
ground states occur for the impurity model: when W < Wc

both the boson and the impurity probability distributions
are symmetric, 〈Ŝx〉 = 0 and 〈Ŝa

x 〉 = 0, and both expectation
values acquire finite values in the symmetry-broken state
occurring when W > Wc. Furthermore, the dependence of the
ground-state energy on the scaled parameters W/Wc and λ/λc

is identical in the two models in the immediate vicinity of the
transition [25]. It is also notable that the mean-field dynamics
is, in both cases, regular below the transition and chaotic above
it [25,27]. In this paper we further investigate the bifurcation
in the impurity model by calculating the critical exponents in
order to establish whether it is indeed a second-order PT in the
same universality class as that in the Dicke model.

Although both the Dicke and the impurity models share
many common features, there is one glaring difference: the

Dicke model couples N spin-1/2 particles to a harmonic
oscillator, whereas the impurity model couples N spin-1/2
particles to one other spin. In essence, the impurity model
truncates the harmonic oscillator Hilbert space to just two
states, the ground state and the first excited state. The spin-1/2
representing the impurity can never become macroscopically
excited like the simple harmonic oscillator can. It is therefore
quite remarkable that the impurity model behaves like the
Dicke model, but the critical exponents we calculate here show
that very close to the transition a two-state Hilbert space for
the harmonic oscillator in the Dicke model suffices to describe
its critical properties.

In order to investigate the critical behavior and obtain the
critical scaling exponents we calculate the fidelity susceptibil-
ity (FS) of the ground state. Over the past decade the concept
of fidelity, which originated in quantum information theory
[34], has gained wide use in analyzing critical behavior and
classifying the universality of systems. It is most commonly
used to quantify changes in the ground state of a system over a
PT. This is done by calculating the product between the ground
state and itself at different points in parameter space,

F (W,δW ) = |〈ψ0(W )|ψ0(W + δW )〉|, (4)

where W is the tunable parameter that drives the PT and
ψ0 is the ground state. It is expected that F (W,δW ) will
tend to unity away from the critical region and reach a
minimum when W = Wc − δW/2, where the scalar product
will be between the ground state below and that above the
critical point. One of the first PTs to be studied using the
fidelity was the one-dimensional (1D) XY, model where it
was shown to decrease to a minimum near the critical point
[35]. Furthermore, the excited-state fidelity has been used to
characterize quantum PTs where the ground-state fidelity has
failed [36]. Since the fidelity is a quantity depending only on
the geometry of the Hilbert space and requires no knowledge
of the order parameter, it is useful in cases where the order
parameter of a system is not obvious and has been studied in a
variety of systems [37–39]. That being said, a more sensitive
and natural quantity to study, where no a priori knowledge of
the system is needed, is the FS [40,41]. The FS measures the
response of the fidelity to infinitesimal changes in the driving
parameter of the system. It is closely related to the second
derivative of the ground-state energy with respect to the driving
parameter, ∂2E0

∂W 2 , so the FS is also similar to the magnetic
susceptibility or specific heat when the driving parameters are
the magnetic field and temperature, respectively. This means
that the FS can be used to study the critical behavior of a
system through calculations of scaling exponents.

In this paper we add to work done by others [42–44]
regarding the scaling and criticality of bosons in a double-well
potential. We follow standard steps [45,46] to show that the
FS can be used to calculate scaling exponents for a general
system. We then use the FS to focus on the critical behavior
of the two-site boson-impurity Hubbard model. The paper is
organized in the following way: In Sec. II we go into more
detail about our model for the physical system under study.
In Sec. III we show how critical scaling exponents can be
extracted from the FS. In Sec. IV we apply the methods of
Sec. III to our system as well as extrapolating data to find
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numerical values for Wc. In Sec. V we find the FS critical
exponents analytically and in Sec. VI we give a summary and
outlook for further work. Some of the details of the analytic
calculations are reported in the Appendix.

II. MODEL

We model the bosonic Josephson junction plus impurity
system using the two-site Bose Hubbard Hamiltonian [16,17],

Ĥ = −NJaÂ − J B̂ + W

2
�N̂�M̂. (5)

Here, �N̂ ≡ b̂
†
Rb̂R − b̂

†
Lb̂L is the number difference operator

between the two wells for the bosons and B̂ ≡ b̂
†
Lb̂R + b̂

†
Rb̂L

is the boson hopping operator. �M̂ ≡ â
†
RâR − â

†
LâL and Â ≡

â
†
LâR + â

†
RâL are the equivalent operators for the impurity.

The L and R subscripts denote the left and right modes
and the creation and annihilation operators follow the usual
bosonic commutation relations, i.e., [b̂α,b̂†α] = [âα,â†

α] = 1,
with α = L,R, and all other combinations of the boson
and impurity operators are 0. The scaling by N in the
first term in Eq. (5) is applied so that every term is O(N )
and therefore Wc takes a finite value in the thermodynamic
limit. The pseudospin formulation of the Hamiltonian given
in Eq. (2) is obtained from Eq. (5) by introducing the
symmetric and antisymmetric combinations of the L and R

modes, b̂L ≡ 1√
2
(b̂S + b̂AS) and b̂R ≡ 1√

2
(b̂S − b̂AS), and then

applying Schwinger’s oscillator model for angular momentum
[47], Ŝz ≡ (b̂†ASb̂AS − b̂

†
Sb̂S)/2 = −B̂/2 and Ŝx ≡ (b̂†ASb̂S +

b̂
†
Sb̂AS)/2 = −�N̂/2. An analogous set of transformations

applies to the impurity.
We do not include direct boson-boson intrawell (or inter-

well) interactions in our calculations and assume that they can
be removed (or the boson-impurity interaction enhanced) by a
Feshbach resonance if necessary. We do this both to highlight
the effect of the impurity and because it turns out not to change
the results in a qualitative way. Indeed, the nonlinearity due to
the boson-boson interactions can lead to results very similar
to those resulting from the boson-impurity interaction (the
impurity can be viewed as mediating an effective interaction
between the bosons). In the case of repulsive boson-boson
interactions, a purely bosonic system has no PT in the ground
state but does experience a symmetry-breaking bifurcation in
the excited states known as macroscopic self-trapping [48,49],
which has been seen in experiments [5]. If, on the other hand,
the boson-boson interactions are attractive, then there is a Z2

symmetry-breaking PT in the ground state above a critical
interaction strength where the bosons clump together in a
single well. This PT has been studied by Buonsante et al.
[44] and we find that the PT in our system falls in the same
universality class.

In previous work we found, through stability analysis
around the mean-field stationary points [25], that a pitchfork
bifurcation of �N occurs at a critical value of the boson-
impurity interaction Wc given in Eq. (3). For W < Wc,
�N = 0 and the bosons occupy each well equally. Above
Wc it becomes energetically favorable for the bosons to build
up in one well and the impurity to be localized in the opposite
well. This transition corresponds to the breaking of the Z2

symmetry, characterized by

(�M̂,�N̂,Â,B̂) → (−�M̂, − �N̂,Â,B̂). (6)

We consider W as the driving parameter and analyze the
system’s response to infinitesimal changes in it through the
FS.

III. FIDELITY SUSCEPTIBILITY

As mentioned in Sec. I, a more sensitive quantity than the
fidelity is the FS, which we denote χF. The two are related
through the Taylor expansion of Eq. (4) to second order:

F(W,δW ) ≈ 1 − χF(W )

2
(δW )2 + · · · . (7)

It can be viewed as the system’s response to an infinitesimal
change in the driving parameter. Equation (5) has the general
form

Ĥ = Ĥ0 + WĤI , (8)

where HI is considered to be the driving term of the system.
From perturbation theory [41] the FS is

χF(W ) =
∑
n�=0

|〈ψn(W )|ĤI |ψ0(W )〉|2
(En − E0)2

, (9)

where ψn(W ) and En are the nth eigenstate and eigenenergy
of the entire Hamiltonian, respectively. It is expected that for
finite N the FS scales as [45,46]

χF

Nd
∝ 1/|W − Wmax|α± , (10)

where α± is the scaling exponent above and below the quantum
critical point, respectively, Wmax is the value of W at which χF

is at a maximum, and χF/N
d is an intensive quantity. When

W = Wmax, χF will be limited by the size of the system, so we
have

χFmax ∝ Nμ. (11)

This quantity will diverge in the thermodynamic limit as
Wmax → Wc. In fact, when Eq. (5) is divided by N so that
each term is O(1) rather than O(N ), then the exponent μ

also gives the scaling of the energy gap between the ground
and the first excited states [50,51], as we have verified [52].
Figure 2 illustrates how χFmax, which is given by the peak of
each curve, depends on N . In order to capture the behavior of
both Eqs. (10) and (11) we use the form [45]

χF

Nd
= c

N−μ+d + g(W )|W − Wmax|α , (12)

where c is a constant and g(W ) is a nonzero function of W ,
both being intensive quantities. Since we are dealing with the
susceptibility of the ground-state wave function in the Fock
basis, N plays the role of the system size. With this in mind
we can use the finite-size scaling hypothesis [53], giving

f = N−1Y [Na(W − Wmax)], (13)

where f is the free energy density and Y is some function.
We expect Eq. (13) to vanish as W → Wmax and, at the same
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FIG. 2. (Color online) Fidelity susceptibility as a function of
W for different system sizes: N = 200 [dot-dashed (red) curve],
N = 400 [dotted (green) curve], N = 600 [dashed orange) curve],
and N = 800 (solid black curve). Here J a = 0.75J , so Wc = √

3J ,
which is shown by the vertical black line. It is clear that χF is not
symmetric about the transition, and hence the need for two indices
±α as indicated in Eq. (10).

time, the domain of the correlations to diverge. In this limit it
is natural to expect [54]

f ∼ ξ−1 ∼ (W − Wmax)ν, (14)

where ξ is the correlation length (in Fock space) and ν is
the correlation length critical exponent. Combining Eqs. (13)
and (14) gives the relation a = 1/ν. Using the fact that, in
general, the susceptibility due to W is χ = − ∂2f

∂W 2 , we can
show the reduced FS is a universal function of N and the
driving parameter

χFmax − χF

χF
= X[N1/ν(W − Wmax)], (15)

where X is some function. Finally, combining this equation
with Eq. (12) gives us the important scaling relation

α = ν(μ − d), (16)

which we use to help classify the boson-impurity system. It
should be noted that Eq. (15) has been defined by others [45,46]
with the exponent of N being ν instead of 1/ν, which we
have here. In the next section we numerically evaluate the FS
and, guided by the above scaling hypotheses, find the critical
exponents by collapsing the data onto universal curves.

IV. NUMERICAL RESULTS

Our results in this section are obtained by numerically
diagonalizing the Hamiltonian given in Eq. (5). An N -boson
system produces a (2N + 2) × (2N + 2) matrix, so a system
size of N ∼ 1000 can be easily accommodated, allowing us
to obtain exact results. We note that, due to symmetry, parity
is a conserved quantity, i.e., [Ĥ ,P̂ ] = 0, and hence all the
eigenvectors of our Hamiltonian are either even or odd in Fock
space. Since we perform FS calculations on the ground state
(which is of even parity), we can reduce the computation time
by considering only even-parity states. However, above Wc

the eigenstates typically come in even and odd pairs separated
by an exponentially small energy difference and numerical
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FIG. 3. (Color online) A log-log plot of χFmax as a function of N

for different values of J a : 0.75J [(red) squares], 1J [(blue) circles],
and 1.25J (black triangles). Inset: Slopes of the log-log plot as a
function of 1/N extrapolated in the 1/N → 0 limit. The range of
system sizes is 1000 � N � 3000.

diagonalization routines find it very hard to identify the parity
of such eigenvectors. Unless one is careful numerical errors
lead to eigenvectors with broken symmetry [17], and this
directly impacts our results since it is the critical region we
are concerned with in our calculations. We have outlined the
resolution to this problem in the Appendix of our previous
work [25], where we force the eigenstates to have definite
parity by diagonalizing the Hamiltonian in the parity basis.

Figure 2 shows the results of plugging the numerically
calculated eigenstates and energies for different system sizes
into Eq. (9). We observe a clear peak in the FS for each value
of N , which increases in height and sharpness as N increases.
This corresponds to the shrinking of the critical region and
Wmax → Wc as N → ∞. To find μ we first make a log-log
plot of χFmax as a function of N as shown in Fig. 3. We
fit the curves to a second-degree polynomial and extrapolate
their slopes in the limit 1/N → 0. In the inset we see that
the slopes converge to a value of μ � 4/3. We calculate μ

for different values of J a to show that μ does not depend
on J a and therefore is universal. Next, we use Eq. (15) to
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FIG. 4. (Color online) A plot of Eq. (15) for different system
sizes. The parameters and values of N are the same as those used
in Fig. 2. A value of ν � 3/2 results in the optimal overlay of the
curves. Inset: Magnification of the region around the origin.
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FIG. 5. (Color online) Extrapolated values of Wmax for different
values of J a : 0.75J [(red) squares], 1J [(blue) circles), and 1.25J

(black triangles). Dashed lines show quadratic fits for 1/N → 0 and
the system size range is 500 � N � 2500.

find ν by changing it in small increments until the average
overlay of data points for different values of N is maximized.
Figure 4 shows the scaled χF in the vicinity of Wmax, where
a maximum overlay is achieved for ν � 3/2. Figure 2 shows
that, below Wmax, χF is an intensive quantity, so we have d = 0
in Eq. (10). Above Wmax, χF has a linear dependence on N ,
so χF/N is an intensive quantity and d = 1. Using Eq. (16) to
calculate α± we obtain α− � 2 and α+ � 1/2. These values
of α±, μ, and ν (keeping in mind the different definitions of ν)
are the same as those obtained for the Lipkin-Meshkov-Glick
model numerically [46] and analytically [55], for the Dicke
model obtained numerically [56], as well as for the system
consisting of bosons in a double-well potential with attractive
interactions obtained analytically [44]. This suggests that the
boson-impurity system belongs in the same universality class
as these models and that the quantum PT is second order.

We now shift our focus back to the convergence of Wmax

to Wc in the thermodynamic limit. Using the same steps used
to determine μ we find the slope of a log-log plot of |Wc −
Wmax|δ as a function of N , giving the convergence scaling
exponent, δ, which we find to be the same as the inverse of the
correlation length exponent, so δ = 1/ν � 2/3. In Fig. 5 we
show the effectiveness of the FS in predicting Wc with 1/N

extrapolation. For three values of J a , using Eq. (3), we have
Wc = 1,

√
3, and

√
5, compared to the extrapolated values of

Wmax = 1.0062, 1.7387, and 2.2432 (all values are in units

TABLE I. Critical scaling exponents and analytic and extrapo-
lated values of the quantum critical point (QCP) for different values
of J a . Scaling exponents and QCP values are calculated with system
size ranges of 1000 � N � 3000 and 500 � N � 2500, respectively.
Circles, squares, and triangles refer to data in Figs. 3 and 5.

J a

0.25 (circles) 0.75 (squares) 1.25 (triangles)

μ 1.335(3) 1.334(2) 1.333(2)
ν 1.499(2) 1.504(5) 1.502(3)
Wc 1

√
3

√
5

WExtrap 1.0062(2) 1.7387(3) 2.2432(3)

of J ). With only five data points we find the two sets of values
to be in good agreement. Thus, if we were unable to find Wc

analytically, the FS would provide an excellent avenue for
determining values numerically. We summarize our numerical
results in Table I, where the uncertainties are standard errors
using a least-squares fit to our data.

V. ANALYTIC CALCULATION OF α±

In the thermodynamic limit the critical region collapses to
a point and fluctuations vanish away from this point. For large
systems away from the critical region this property allows us to
use a mean-field approximation to analyze the FS. In previous
work [17] we have shown that the mean-field Hamiltonian
corresponding to Eq. (5) is

HMF

N
= −J

√
1 − Z2 cosβ − J a

√
1 − Y 2 cosα + W

2
ZY.

(17)

In HMF we have defined β ≡ βR − βL and Z ≡ �N/N as the
boson phase and number difference between the two wells,
respectively, and α ≡ αR − αL and Y ≡ �M are similarly
defined for the impurity. The conjugate nature of the number
and phase variables means that Hamilton’s equations take the
form

α̇ = 1

�

∂H

∂Y
, Ẏ = −1

�

∂H

∂α
, (18)

β̇ = 1

�

∂H

∂Z
, Ż = −1

�

∂H

∂β
, (19)

and the stable stationary solutions (which includes the ground
state) of the system are

(α,Y,β,Z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0,0,0,0), W � Wc;(
0, ± 1

W

√
W 4−16J 2J a2

W 2+4J a2

0, ∓ 1
W

√
W 4−16J 2J a2

W 2+4J 2

)
, W > Wc.

(20)

Note that for simplicity we have only displayed the solutions
for the case when W > 0, corresponding to a repulsive boson-
impurity interaction. An intuitive understanding of the role of
the impurity can be gained if we use the solutions in Eq. (20)
to simplify Eq. (17) by adiabatically eliminating the impurity
with the relation

Y = −Z

√
W 2 + 4J 2

W 2 + 4J a2 , (21)

giving us an effective Hamiltonian for the bosons alone,

Heff

N
= −J

√
1 − Z2 − J a

√
1 − Z2γ 2 − Wγ

2
Z2, (22)

where γ =
√

W 2+4J 2

W 2+4J a2 . Setting J a = J for further simplifica-

tion and scaling Eq. (22) by 2J gives an effective Hamiltonian
dependent on a single parameter, � = W/J ,

Heff

2NJ
= −|�|

4
Z2 −

√
1 − Z2. (23)
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A mean-field Hamiltonian of the same form occurs in the
case of a purely bosonic Josephson junction where the
microscopic origin of � is direct boson-boson interactions
[48,49]. Specifically, the minus sign in front of the first
term indicates effectively attractive boson-boson interactions.
Although we have calculated Heff here assuming repulsive
boson-impurity interactions, it turns out to be unchanged for
attractive interactions. Thus, the impurity always mediates
attractive effective boson-boson interactions [57,58], and it
is for this reason that the PT in the impurity model falls into
the same universality class as the clumping PT for attractive
bosons. We can visualize how this happens by considering the
impurity localized in one well and having |W | > Wc, so the
ground state will have a larger fraction of bosons in one well
than in the other. For W > 0 the impurity expels bosons from
the well it is in, and for W < 0 bosons are attracted to the
impurity. In both cases there is a buildup of bosons in one well
compared to the other, which is what happens when there are
attractive boson-boson interactions.

An analytic calculation of the scaling exponents for the
clumping transition for attractive bosons has been given in
Ref. [44]. Their method for calculating the FS consists of
approximating the ground-state wave function as a Gaussian
in Fock space centered at Z = 0 for W � Wc and a symmetric
superposition of Gaussians for W � Wc. In our calculations
we do not use a superposition of Gaussians for W � Wc

but, instead, choose to have a single Gaussian centered at
one of the two mean-field solutions, shown in Eq. (A1), to
represent the broken-symmetry phase. The difference in these
two approaches results in terms proportional to e−N |�−�c |,
so if we are sufficiently far from the critical region, then
each approach is equivalent. Using a different form of the
FS [44,59],

χF(�) = −1

2

d2

dδ�2
〈ψ0(�)|ψ0(� + δ�)〉|δ�=0, (24)

they are able to calculate analytic expressions for the FS.
Following their steps for Eq. (23), which we briefly outline
in the Appendix, we obtain

χF(�) =
⎧⎨
⎩

1
64(�−2)2 , � � �c;

N

|�|3
√

2(�2−4)
+ (�2−2)2

4�2(�2−4)2 , � � �c.
(25)

We can see that the scaling exponents are α− = 2 and
α+ = 1/2, agreeing with the numerical values calculated in
the previous section. Equation (25) shows the leading-order
behavior of the FS. Below �c there is a single leading term
because the Gaussian wave function is fixed at Z = 0, so
changes in � can only affect its size. Above �c changes in
� affect both the size and the position of the wave function,
giving two terms, where we see that in the thermodynamic
limit the position-dependent term dominates.

VI. SUMMARY AND DISCUSSION

In this paper we have studied a symmetry-breaking bi-
furcation in a bosonic Josephson junction driven by the
interaction with an impurity atom. The fact that the maximum
value of the FS, which can be viewed as a generalized
susceptibility, diverges in the thermodynamic limit confirms

that the symmetry breaking is associated with a second-order
PT (as expected from the continuous form of the bifurcation).
By numerically calculating the critical scaling exponents of the
FS and comparing them with those already known in the Dicke
and Lipkin-Meshkov-Glick models, as well as for a system
consisting of bosons in a double-well potential with attractive
interactions, we conclude that the PT in the impurity model lies
in the same universality class as these other models. For the two
exponents α± of the scaling of FS with W on either side of the
transition, we also carried out an analytic calculation, and good
agreement was found with the numerical result. We have also
shown through extrapolation of Wmax in the thermodynamic
limit that the FS can be used to predict Wc numerically, and
we find that it agrees with the analytic result calculated from
the mean-field theory.

Interpreting the bosons as a meter measuring the position
of the impurity, we have a particularly simple toy model for a
binary quantum measurement in terms of a PT which occurs
at a critical value of the system-meter interaction strength
[20–24]. Quantum mechanically, the ground-state probability
distribution goes from having Gaussian fluctuations around
�N = 0 to a superposition of two Gaussians, each centered
at one of the two bifurcating mean-field solutions. The latter
state becomes a Schrödinger Cat state if N � 1 and W > Wc.
Cat states are notoriously sensitive to perturbations and can
be expected to rapidly collapse into one of the two wells,
thereby breaking the symmetry. This collapse is implicit
in our model but it is interesting to ask whether a third
agent beyond the impurity and the bosons is necessary to
precipitate it. If the symmetry is broken by a classical field,
then it can be simply included in the Hamiltonian as a tilt
to the double-well potential [16,17,25], and as long as the
perturbation is infinitesimal the PT is not affected. However,
if the boson-impurity system is instead put into contact with
a quantum mechanical environment, then the effects can be
more marked. PTs in open quantum systems (systems coupled
to an environment) are now the subject of intensive research
[60,61], especially for the open Dicke model [62–65]. One
conclusion of this body of work is that the critical exponents
can be modified by the coupling to the environment and this
effect has been seen experimentally [66].

Finally, we mention that the impurity localization described
in this paper is somewhat different from that found in the
classic problem of an impurity in a uniform superfluid [67]
or its modern descendant, an impurity in an extended gaseous
Bose-Einstein condensate (BEC) [68–72]. For example, the
Bose-Hubbard Hamiltonian employed here is a tight-binding
model where the single-particle wave functions (modes) are
assumed to be unchanged by interactions, whereas the tran-
sition to a self-localized polaron state in an initially uniform
BEC involves a change in the impurity wave function from
delocalized to localized and the BEC develops a corresponding
density dip. Furthermore, the type of symmetry that is broken
in going from a uniform to a localized wave function is,
in general, different from the binary choice underlying Z2

symmetry breaking (see Ref. [73] for the case of a particle
living on 1D and 2D lattices with many lattice sites). However,
in 1D extended systems the Josephson model underlying the
physics studied here appears quite naturally as the impurity
splits the BEC in two and we would expect there to be
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connections [74,75]. We also point out that there are many
aspects to the impurity model and its close relatives beyond
those discussed here, including how the coherence of the
bosons is affected by the impurity [17,76,77] and system-bath
dynamics [78–81].
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APPENDIX: STEPS IN ANALYTIC CALCULATIONS

In this Appendix we briefly outline the steps used to derive
Eq. (25) from Eq. (23). We start by expanding Eq. (23) around
the minima above and below �c,

Z0 =
⎧⎨
⎩

0, � � �c,

±
√

1 − (
2
�

)2
, � > �c,

(A1)

where �c = 2. If we are sufficiently far away from �c,
then Heff is parabolic in shape around the minima, so the

leading-order term in the expansion will be the second, giving
a Schrödinger equation[

− d2

du2
+ h(�)u2

]
��(Z) = E��(Z), (A2)

where u = Z − Z0 and

h(�) =
{

N2

4 (−� + 2) , � � �c;
N2

32 �2
(
�2 − 4

)
, � � �c.

(A3)

Equation (A2) describes a harmonic oscillator in Fock space,
which means that the ground-state wave function will be a
Gaussian of the form

��(Z) = 1√
σ�

√
2π

e
− (Z−Z0)2

4σ2
� . (A4)

The difference between the � < �c and the � > �c wave
functions is due to Z0 through Eq. (A1) and the relation
σ 2

� = 1
2
√

h(�)
. With these forms of the ground state we can

use Eq. (24), giving

χF (�) = −1

2

d2

dδ�2

∫ ∞

−∞
��(Z)��+δ�(Z)dZ|δ�=0, (A5)

and from here we obtain the expressions given in Eq. (25).
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[10] F. Baumgärtner, R. J. Sewell, S. Eriksson, I. Llorente-Garcia,
J. Dingjan, J. P. Cotter, and E. A. Hinds, Phys. Rev. Lett. 105,
243003 (2010).

[11] L. J. LeBlanc, A. B. Bardon, J. McKeever, M. H. T. Extavour,
D. Jervis, J. H. Thywissen, F. Piazza, and A. Smerzi, Phys. Rev.
Lett. 106, 025302 (2011).

[12] C. Gross, T. Zibold, E. Nicklas, J. Estève, and M. K. Oberthaler,
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