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Quantum bright solitons in the Bose-Hubbard model with site-dependent repulsive interactions
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We introduce a one-dimensional spatially inhomogeneous Bose-Hubbard model (BHM) with the strength of
the onsite repulsive interactions growing, with the discrete coordinate zj , as |zj |α with α > 0. Recently, the
analysis of the mean-field (MF) counterpart of this system has demonstrated self-trapping of robust unstaggered
discrete solitons, under the condition α > 1. By using the numerically implemented method of the density
matrix renormalization group, we demonstrate that, in a certain range of the interaction, the BHM also features
self-trapping of the ground state into a soliton-like configuration, at α > 1, and remains weakly localized at
α < 1. An essential quantum feature found in the BHM is a residual quasi-constant density of the background
surrounding the soliton-like peak in the ground state, while in the MF limit the finite-density background is absent.
Very strong onsite repulsion eventually destroys soliton-like states, driving the system, at integer densities, into
the Mott phase with a spatially uniform density.
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I. INTRODUCTION

The Bose-Hubbard Model (BHM), introduced in 1989
[1] as an example of a system exhibiting a quantum phase
transition, has drawn a great deal of interest—in particular,
due to its experimentally realizability in ultracold Bose gases
[2], admitting precise control of interaction terms [3], and
the availability of probing techniques which can be applied
to this system [4,5]. At the same time, the BHM is the
ideal platform to study exotic phenomena in reduced dimen-
sions, where quantum fluctuations can give rise to nontrivial
effects [6,7].

Discrete systems with repulsive interactions, which are de-
scribed by the BHM or, in the mean-field (MF) approximation,
by the discrete nonlinear Schrödinger equation (DNLSE), give
rise, respectively, to quantum [8] or semiclassical [9] dark
solitons. In the case of weak on-site attractive interactions, the
kinetic energy prevents the collapse, and the system self-traps
into bright solitons [10,11]. The existence of bright solitons in
an attractive Bose gas was experimentally proved in several
experiments [12–16]. Furthermore, it was also demonstrated
that repulsive interactions between atoms trapped in an optical-
lattice (OL) potential give rise to gap solitons [17,18], which
is another variety of bright modes.

At the mean-field (MF) level, it has been recently shown
that, in both continuum [19,20] and discrete [21] settings,
repulsive interactions with the strength growing from the
center to the periphery faster than rD , where r is the distance
from the center and D is the spatial dimension, give rise to
robust bright soliton-like states. Because, as is well known
[11,22–28], the MF approximation does not provide for a full
description of physical systems, in this paper we introduce the
quantum BHM with the onsite repulsive interaction growing
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from the center to the periphery. By means of the density-
matrix-renormalization group (DMRG) technique [29], we
obtain quasi-exact results for quantum multiboson bound states
and compare them to the MF prediction [21] for self-trapped
bright discrete solitons in the zero-temperature model for
bosons loaded in a one-dimensional (1D) OL in the presence
of the spatially modulated repulsive interactions.

The rest of the paper is organized as follows: The model is
formulated in Sec. II. Numerical results for quantum bound
states and their comparison with the MF counterparts are
presented in Sec. III. It is found that quantum effects, which
the MF approximation cannot grasp, are responsible for a
discrepancy between soliton-like modes in the MF and BHM
settings. At the end of Sec. III, we study the system in the
regime of very strong self-repulsive interactions. We find that
the strong repulsion destroys self-localized modes, which are
replaced by states with a spatially uniform density. Those
states are actually equivalent to the well-known Mott insulating
phase in the homogeneous BHM.

II. THE MODEL

A. The general approach

We consider a dilute ultracold gas of bosonic atoms
confined in the (x,y) plane by the strong transverse harmonic
potential,

U (x,y) = (mω2
⊥/2)(x2 + y2), (1)

under the simultaneous action of the OL axial potential [18,30],

V (z) = V0 cos2 (2k0z). (2)

As usual, we focus on the case of the tight transverse
confinement, V0 � �ω⊥, which implies a nearly 1D config-
uration. We choose the characteristic length of the transverse
confinement, a⊥ = √

�/(mω⊥), and �ω⊥ as length and energy
units, respectively, using the accordingly scaled variables
below. The system is described by the quantum-field-theory
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Hamiltonian,

H =
∫

d3rψ+(r)

[
−1

2
∇2 + U (x,y) + V (z)

+πg(z)ψ+(r)ψ(r)

]
ψ(r), (3)

where ψ(r) is the bosonic field operator, and g = 2as(z)/a⊥,
with as being the s-wave scattering length of the interatomic
interactions [31].

Unlike numerous previous studies of similar quantum
models, here, as said above, we aim to consider the setting with
a z-dependent scattering length, as = as(z), which implies
g = g(z), as suggested by the recent analysis of the MF
model based on the DNLSE [21]. The special inhomogeneity
of the nonlinearity strength induces an effective nonlinear
potential [32], alias a pseudopotential [33]. Experimentally,
the tunability of the magnetic Feshbach resonance (FR)
[34,35] allows the creation of such a spatially inhomogeneous
nonlinearity landscape by means of properly shaped magnetic
fields [36]. Furthermore, an optically controlled FR [37], as
well as combined magneto-optical control mechanisms [38],
make it possible to create a diverse set of spatial profiles
of the self-repulsive nonlinearity. In particular, the required
pattern of the laser-field intensity controlling the optically
induced FR can be “painted” in space, as demonstrated in
Ref. [39].

B. Discretization and dimensional reduction

The presence of the deep OL potential suggests the
discretization of Hamiltonian (3) along the z axis. To
this end, we use the decomposition in the general form
of [30]

ψ(r) =
L∑

j=1

φj (x,y)wj (z), (4)

where wj (z) is the Wannier function maximally localized at
the j th local minimum of the axial periodic potential, and
φj (x,y) are proportional to the ground state of the transverse
potential (1),

φj (x,y) = 1√
π

exp

[
−

(
x2 + y2

2

)]
bj , (5)

with bj representing the bosonic-field operator acting at site
j , with b0 = bL+1 ≡ 0. In this work, we consider the case of
an even number L of the lattice sites; see Eq. (4).

Next, inserting ansatz (4) into Eq. (3), one can readily derive
the effective 1D BHM Hamiltonian,

H =
L∑

j=1

[
−Jb

†
j (bj+1 + bj−1) + 1

2
Ujnj (nj − 1)

]
, (6)

where nj = b
†
j bj is the on-site operator of the number of

bosons, while J and Uj are the adimensional hopping (tunnel-
ing) amplitude and on-site energy, which are experimentally

tunable via V0 and as [3] and are given by

J = −
∫ +∞

−∞
w∗

j+1(z)

[
− 1

2

∂2

∂z2
+ V (z)

]
wj (z)dz, (7)

Uj =
∫ +∞

−∞
g(z)|wj (z)|4dz. (8)

In the present model, the hopping energy does not depend on
the site number j , therefore we normalize it to be J = 1, while,
on the contrary to the standard BHM, the on-site energy Uj

depends on j through the inhomogeneous interaction strength,
g(z). In particular, choosing

g(z) = g0|z|α (9)

with spatial growth rate α > 0 (cf. Ref. [19]), one has

Uj = U |zj |α, (10)

where zj ≡ j − (L + 1)/2 is the discrete axial coordinate, and
Uj attains minimum values

Umin ≡ UL/2+1 = UL/2 = 2−αU (11)

at two central sites of the lattice. Thus, in our model, the
inhomogeneous on-site energy depends on two parameters:
amplitude U and spatial growth rate α.

C. Mean field vs density-matrix renormalization group

It is well known that, in 1D configurations, quantum
fluctuations, which are omitted in the mean-field (MF) theory,
play a significant role. Thus, in our 1D problem it is relevant to
compare MF predictions with those produced by the DMRG, to
conclude in what regimes the MF may give reliable results [40],
and to reveal essential quantum features of the ground state
beyond the bounds of the validity of the MF approximation.

We follow the MF approach based on the Glauber coherent
state, |GCS〉 = |β1〉 ⊗ · · · ⊗ |βL〉, where |βj 〉 is defined so
that bj |βj 〉 = βj |βj 〉, with (complex) eigenvalues βj [41]. By
minimizing energy 〈GCS|H |GCS〉 with respect to βj , one
finds that complex numbers βi satisfy the stationary form of
the 1D DNLSE,

μβi = εiβi − J (βi+1 + βi−1) + Ui |βi |2βi, (12)

where μ is the chemical potential, determined by the total
number of atoms: N = ∑

j |βj |2 = ∑
j 〈GCS|nj |GCS〉. One

can solve Eq. (12) numerically—in particular, with the help
of the imaginary-time Crank-Nicolson predictor-corrector
algorithm [42].

The DMRG accounts for the full quantum behavior of 1D
lattice systems. As concerns the search for localized states,
in previous works the DMRG has given strong evidence of
bright-soliton states in the homogeneous BHM [11], spin
chains [43], and in bosonic models with nearest-neighbor
interactions [44], including disorder [27]. To produce accurate
results by our DMRG-based computations, taking care of both
the interaction with external sites in Hamiltonian (6) and the
very large size needed of the underlying Hilbert space, we
utilize open boundary conditions. We use a number of DMRG
states m up to m = 768, performing 6 finite-size sweeps [29].
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FIG. 1. (Color online) DNLSE (mean field) and DMRG density
profiles, nj , for α = 0.5, J = 1.0, and several values of U in the
system with L = 40 sites and two different values of the numbers of
bosons, N .

III. NUMERICAL RESULTS

A. Comparison of mean-field and density-matrix
renormalization group results

1. The non-self-trapping case (α < 1)

As mentioned above [21], the MF predicts the existence
of self-localized states (bright solitons) supported by the
spatial modulation (9) with α > D [19]. Here, using a range
of parameters similar to Ref. [45], we aim to check these
predictions in the BHM for D = 1 by means of the DMRG
technique and to look for new effects generated by quantum
fluctuations. First, we do this for α < 1, when the self-trapping
is not produced by the MF.

In Fig. 1 we can see that, as predicted by the MF method,
at α = 0.5, the density profile is not self-trapped (i.e., it is
not a soliton) for weak interaction U and average density
n ≡ N/L = 1 (the first two panels in the left column), the
MF and DMRG methods being in very good agreement. This
agreement is explained by the fact that, in certain regimes,
quantum fluctuations are weak and their effect is practically
negligible, thus allowing semiclassical methods, such as the
MF approximation, to predict the correct behavior. Non-self-
trapped states are also found in the case of the weak interaction
for a larger number of bosons.

On the other hand, the DMRG calculations produce sort
of a bright soliton for stronger interaction (higher U ), at
average densities n = 1 and n = 2 alike. More precisely,
the DMRG results show that a well-defined peak appears
at the center of the system, surrounded by a nearly flat
distribution of the bosons. Furthermore, while the shape of the
density profiles produced by the MF is actually unchanged,
i.e., the shape of the peak depends solely on the density,
but not on the interaction strength U ; the DMRG-produced
results do not share this feature. Indeed, for average density
n = 1, we observe that, in the DMRG states, the fraction
of particles located at the center of the lattice decreases
for higher U and, at the same time, the number of bosons

composing the background around the soliton increases. The
latter feature is still more salient for higher average density,
i.e., n = 2. This effect can be explained as the possible
approach of the system towards an insulating phase (the Mott
phase), in a region where the interaction strength in Eq. (10)
exceeds a critical value of U . Further details regarding this
point are given below in the section addressing the Mott
phase.

2. The self-trapping case (α > 1)

The MF theory predicts that spatial inhomogeneity (10)
with α > D gives rise to self-trapping into localized states
[19,21]. To delve deep enough in this regime, we now set
α = 2.

In Fig. 2 it is clearly seen that the MF solutions, produced
by the DNLSE, indeed yield well-self-trapped states, with van-
ishing density around the central peak. Of course, in this case
the peak is higher than at α = 0.5, because the corresponding
effective interaction is much stronger in Eq. (10).

In the present case, the DMRG results also exhibit, in
agreement with their MF counterparts, self-localized states.
Nevertheless, a finite constant background, which is higher
for larger U , is again observed around the quasi-soliton states.
Furthermore, due to the stronger interaction, in comparison to
the case of α = 0.5, the full quantum approach demonstrates
a larger disagreement with MF, even at U = 0.1.

B. Transition from weakly localized to self-trapped states

Figures 1 and 2 clearly demonstrate that the transition
from a weakly localized state to a self-trapped state is driven
by the interaction strength U . In particular, the soliton-like
state always comes with a constant finite background, while
both the height and the width of the central peak depend
on the interaction strength. In order to clearly define weakly
and strongly localized states, in Fig. 3 we plot the standard
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FIG. 2. (Color online) DNLSE and DMRG density profiles, nj .
For α = 2.0, J = 1.0, and several different values of U in the system
with L = 40 sites and two different values of the numbers of particles,
N . Th inset shows the density profile nj at the first 10 sites of the
chain, for α = 2, J = 1.0, N = 40, and L = 40.
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FIG. 3. (Color online) DMRG results for the standard deviation
σ computed for L̃ = 10 [see Eq. (13)], in a system with L = 40,
N = 40, J = 1.0, and different values of U and α.

deviation relative to the external sites of the lattice,

σ =
√∑

j (〈nj 〉 − n̄)2

L̃
, (13)

where n̄ is the average value 〈nj 〉 over L̃, which is the number
of external lattice sites. In Fig. 3 it is possible to clearly identify,
for all the values of α that we considered, two distinct regimes:
one where the value of σ changes for different U , meaning that
there is no constant background, and another one where σ is
insensitive to the interaction strength, signaling the appearance
of a practically constant background-density profile and thus
revealing the presence of a soliton-like solution existing on
top of the background. Note that, for the strong interaction, a
self-trapped solution is possible even for α < 1.

C. Quantum effects

The purely quantum part in the interaction density, nj (nj −
1), in the BHM Hamiltonian (6) is represented by term −1
[30]. To understand if it is responsible for the appearance of
the above-mentioned nonvanishing background surrounding
the soliton peak in the DMRG density profiles, i.e., if this
quantum term is the source of discrepancies between the MF
and DMRG solutions, we have additionally performed the
quasi-exact DMRG-based calculations, but in the “truncated”
form, with (nj − 1) replaced by nj in Eq. (6).

In Fig. 4 we compare the MF and the truncated-DMRG
profiles, for two different values of α, with average density
n = 1 and U = 3.0. As shown above in Figs. 1 and 2, the MF
and normal DMRG methods are strongly discordant at these
values of the parameters. Here we see that, without the above-
mentioned −1 term, the finite background around the peak
disappears in the truncated-DMRG state, making it perfectly
similar to the MF counterpart at α = 2. At α = 0.5, when non-
self-trapped states are produced by the DNLSE, it also matches
well to the truncated-DMRG counterpart, but in this case small
discrepancies are still visible. Interestingly, the comparison
between the lower panel in the left column of Fig. 1 and the
lower panel in Fig. 4 shows that the truncated-DMRG results
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FIG. 4. (Color online) The DNLSE and “truncated-DMRG” den-
sity profiles, nj (without the quantum term −1 in the latter case; see
text). Upper panel is for α = 2, J = 1.0, and U = 3.0 in the system
with L = 40 sites and N = 40 particles. Lower panel is for α = 0.5,
J = 1.0, and U = 3.0 in the system with L = 40 sites and N = 40
particles.

still produce a conspicuous self-trapped peak, whereas in the
case of the full quantum description the peak is very weak.
This comparison demonstrates that truly quantum ingredients
of the system (as a matter of fact, quantum fluctuations) may
account for the peculiar effects which are not captured by the
MF or nearly MF descriptions.

IV. TRANSITION FROM SELF-TRAPPED
STATES TO MOTT PHASE

To check if self-trapped states can be always found in the
true quantum system, in Fig. 5 we plot the density at the
central sites, 〈nL/2+1〉 = 〈nL/2〉 [46], for several values of the
interaction strength U and spatial growth rate α in Eq. (9).
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FIG. 5. (Color online) DMRG results for the density at the center,
〈nL/2〉, for L = 40, N = 40, J = 1.0, and different values of U and α.
Vertical lines correspond to the respective critical values for the Mott-
superfluid transition in the finite-size homogeneous system, estimated
as per Eq. (14).
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More precisely, we aim to find out how the variation of U

modifies the shape of the bosonic cloud which, as shown
before, may be characterized by the density at the two central
sites, where the repulsive interaction is weakest.

Figure 5 clearly demonstrates that, at fixed α, the height
of the soliton peak in the BHM depends by U , contrary to
the MF prediction. In particular for weak interactions we
find a maximum in 〈nL/2〉 at a certain value of U , which is
nearly the same for all α. Then, with the further increase
of U , the double occupation becomes more energetically
expensive and the number of bosons forming the soliton peak
decreases, while the boson number increases in the background
surrounding the peak, making the background density closer
to 1. As seen in Fig. 5, this behavior persists, at all values of
α, up to a critical point, U = Uc(α) (the critical values are
represented by vertical lines in Fig. 5). At U > Uc(α), the
behavior is different, featuring 〈nL/2〉 = 〈nj 〉 ≡ 1. The latter
regime means that the inhomogeneous BHM, resembling its
homogeneous counterpart [1], has entered a state with the
spatially uniform boson density, which is the insulating Mott
phase, where the superfluid density vanishes. It is well known
that the Mott-superfluid transition in 1D is of the Kosterlitz-
Thouless type [47], which means that the respective gap opens
up exponentially, hence precise determination of the transition
point requires an accurate finite-size scaling to extract the
information pertaining to the thermodynamic limit (the infinite
system) [48–50]. As Hamiltonian (6) is extensive, we cannot
extrapolate to this limit; nevertheless, a crude finite-size
estimate of the transition point can be worked out. In particular,
as the repulsive interaction is weakest at the two central sites,
see Eq. (11), one may conjecture that, once Umin exceeds the
critical value Uc(α = 0), corresponding to the Mott-superfluid
transition in the homogeneous BHM, the transition to the
insulating Mott phase has occurred in the inhomogeneous
system. From this argument, the following value for the
transition point can be extrapolated, making use of Eq. (11):

Uc(α) = 2αUc(α = 0). (14)

Here we take the value of Uc(α = 0) from Ref. [50], where
it was extrapolated to the thermodynamic limit. In Fig. 5 the
vertical lines given by Eq. (14) are in qualitative agreement
with the numerical results. Moreover, as expected, the
transition to the Mott phase happens at smaller U for lower α.

V. CONCLUSION

In this work, we introduced the 1D spatially inhomogeneous
BHM (Bose-Hubbard model) with the strength of the onsite
self-repulsive interaction growing from the center to the
periphery ∼|j |α , where j is the discrete coordinate. This model
manifests both bright-soliton states and the insulating phase
for purely repulsive interactions. The model’s Hamiltonian (6)
is a quantum counterpart of the semiclassical MF (mean-field)
system, in the form of the DNLSE with the strength of the
onsite self-repulsion growing faster than |j |, which gives
rise to self-trapping of unstaggered localized modes [21].
Here we have used the DMRG technique to construct the
ground states of the inhomogeneous BHM. In particular,
in contrast with the previous results produced by the MF
system, we have shown that the quantum BHM gives rise
to a weakly localized ground state at α < 1 just by tuning
the strength of the on-site interaction. Soliton-like self-trapped
states have been found at α > 1 for a broad range of interaction
strength, in agreement with the MF limit. However, the
essential difference with the MF counterpart is that the soliton
peak in the BHM is always surrounded by the background
with nonvanishing residual density. Eventually, still stronger
repulsive interactions destroy the soliton-like state, replacing
it by the spatially uniform Mott phase. An estimate for the
critical interaction strength at the transition point has been
obtained.

To extend the present work, it may be interesting to
construct higher-order states (in particular, spatially odd
modes), in the framework of both the BHM and MF systems.
A challenging issue is to extend the present analysis to a
two-dimensional inhomogeneous BHM.
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