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Coherent forward scattering in two-dimensional disordered systems

S. Ghosh,1,2,3 N. Cherroret,2,* B. Grémaud,3,1,4 C. Miniatura,3,1,4,5 and D. Delande2

1Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
2Laboratoire Kastler Brossel, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Collège de France;

4 Place Jussieu, 75005 Paris, France
3Merlion MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore

4Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
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We present a detailed numerical and theoretical analysis of the recently discovered phenomenon of coherent
forward scattering. This effect manifests itself as a macroscopic interference peak in the forward direction of
the momentum distribution of a matter wave launched with finite velocity in a random potential. Focusing on
the two-dimensional case, we show that coherent forward scattering generally arises due the confinement of the
wave in a finite region of space, and explain under which conditions it can be seen as a genuine signature of
Anderson localization.
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I. INTRODUCTION

In the last 50 years, the physics of disordered systems
has turned out to be tremendously rich, and the field is still
offering challenging and unexpected results. Among those, the
manifestations of weak and strong (Anderson) localization of
coherent waves are paradigmatic examples [1,2]. In practice,
Anderson localization very often manifests itself as a halt of
wave transport. This signature has been largely exploited in a
number of experiments searching for Anderson localization of
classical waves in disordered media [3–5] or of matter waves
subjected to time-periodic [6,7] and random [8–12] optical
potentials. At the same time, recent works [13–16] pointed
out that in ultracold-atom setups, the momentum distribution
of a matter wave in a random potential can exhibit a highly
nontrivial dynamics due to localization if it is initially launched
with a nonzero mean wave vector k0. The scenario is then
the following. First, over a time scale of the order of the
Boltzmann transport mean-free time τB , an isotropization
of the distribution takes place as particles’ momenta are
being randomized by the disorder [17]. During this process, a
narrow coherent backscattering (CBS) peak emerges around
the direction −k0. After a few τB , this peak gains a maximum
visibility and sits on top of a broader isotropic, ring-shaped
distribution [13]. At a later time, a second interference peak
appears in the forward direction +k0 [14]. The visibility of
this coherent forward scattering (CFS) peak increases slowly,
and finally reaches a maximum value at a time of the order
of the Heisenberg time τH , defined as the inverse of the
mean spacing between the energy levels of the system (see
following for a more precise discussion). Beyond τH , the
system no longer evolves and the asymptotic distribution has
the central symmetry (if time-reversal invariance is preserved),
with two identical CBS and CFS peaks. Experimentally, the
CBS effect of ultracold atoms has been recently observed [18],
motivating further investigations like the sensitivity of CBS to
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external dephasing [19]. An observation of the CFS effect
is, on the other hand, still missing. From a theoretical point
of view, while the physics of CBS is today well understood
(it stems from wave amplitudes traveling along the same
multiple scattering sequence but in opposite directions [20]),
the mechanism of CFS is much less obvious. In fact, the
building of the CFS peak relies on interference sequences
where particles are scattered back and forth several times
between the directions −k0 and +k0 [14–16]. While this
mechanism is inefficient in a purely diffusive system, it
becomes strongly enhanced when the wave gets confined in a
limited region of space: wave interference can then accumulate
and make the CFS peak macroscopic. The situation typically
occurs in an infinite system if Anderson localization comes into
play (this was the scenario originally considered in [14]), but
also, as discussed in this paper, when the wave is trapped within
a limited region of space of size smaller than the localization
length. In this respect, a full characterization of the CFS effect
is required in order to unambiguously attribute its appearance
to Anderson localization.

In this paper, we present a detailed study of the momentum
distribution of a matter wave launched in a random potential,
bringing special attention to the CFS effect to which we
propose a systematic numerical analysis combined with
theoretical predictions. We consider a random potential of
speckle type, routinely used in current experiments with
ultracold atoms [21], and focus on the two-dimensional (2D)
geometry for which the CFS peak clearly distinguishes itself
from the isotropic part of the momentum distribution [14]
(we refer the reader to [15,16] for the one-dimensional and
quasi-one-dimensional cases). The main concepts discussed in
the paper as well as the theoretical framework are introduced
in Sec. II. In Sec. III, we analyze the building up of the
CFS peak for a matter wave scattered diffusively in a limited
volume of size much smaller than the localization length of
the problem L � ξ . Then, in Sec. IV, we address the more
difficult but more interesting case ξ � L where the CFS peak
is triggered by the confinement of the matter wave stemming
from Anderson localization. This configuration is typically the
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one of experiments, where an atomic wave packet is initially
prepared and evolves in the presence of the disorder, without
any confining box. This experimental scenario, studied in
Sec. V, has however two additional ingredients: (i) the matter
wave has a broad energy distribution for which both localized
and diffusive atoms coexist and (ii) the initial state has a finite
spatial width, affecting the shape and height of the CFS peak.
Despite these complications, we show that, in the absence of
an artificial confining box, the diffusive components studied in
Sec. III do not contribute to the CFS signal, and that the latter
can be observed and used as evidence of Anderson localization.
In Sec. VI, we finally summarize our results and discuss some
open questions.

II. MOMENTUM DISTRIBUTION OF A MATTER WAVE
IN A 2D RANDOM POTENTIAL

A. Numerical experiment

In order to introduce the physics discussed in the paper,
let us first consider a simple numerical experiment. We start
from a plane matter wave |k0〉 and propagate it with the
evolution operator exp(−iĤ t), where Ĥ = p2/(2m) + V (r)
with V (r) a 2D random potential (from here on we set � = 1).
Following recent experiments on ultracold atoms, we choose
V (r) to be a blue-detuned speckle potential with mean value
V (r) = 0 and correlation function V (r)V (r′) = [2V0J1(|r −
r′|/ζ )/(|r − r′|/ζ )]2, with ζ the correlation length. This poten-
tial is numerically generated in a standard way, by convoluting
a circular Gaussian random field with a cutoff function that
simulates the diffusive plate used in experiments [22,23].
As soon as the random potential is turned on, k0 is no
longer a good quantum number and the system starts to
evolve. The time propagation is achieved on a 2D grid of
size L × L with periodic boundary conditions along x and
y, by using an iterative method based on the expansion of the
evolution operator in combinations of Chebyshev polynomials
of the Hamiltonian [24,25]. In the simulations, a cell of
surface (πζ )2 is discretized in typically 8–10 steps along
both x and y. After the evolution, the momentum distribution
is calculated by applying a discrete Fourier transformation
on the final wave function. This procedure is repeated for
many disorder realizations, which finally gives access to the
disorder-averaged momentum distribution. Throughout the
paper, lengths, momenta, energies, and times will be given
in units of ζ , ζ−1, 1/(mζ 2), and mζ 2, respectively.

A typical distribution obtained at long times (here t = 103)
is shown in Fig. 1, for V0 = 5, k0 ≡ |k0| = 1.5, and for a
system size L = 20π . The distribution of Fig. 1, n(k) =
nD + nCBS + nCFS, exhibits three components: an isotropic,
diffusive ring-shaped “background” nD and two interference
peaks nCFS and nCBS centered at ±k0. The ring describes the
quasielastic isotropization of atomic momenta in the course of
the propagation in the random potential. The peak centered at
−k0 is the coherent backscattering peak, and the peak centered
at +k0 is the coherent forward scattering peak [13,14].

The stationary distribution of Fig. 1 is obtained after a
long time of propagation in the random potential. Before this
final state establishes, however, the system explores a number
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FIG. 1. (Color online) Density plot of the long-time momentum
distribution obtained after numerical propagation of a plane wave |k0〉
in a 2D speckle potential. Parameters are k0 = 1.5, V0 = 5, L = 20π ,
and t = 103, where lengths, momenta, energies, and times are given
in units of ζ , ζ−1, 1/(mζ 2), and mζ 2, respectively. The left peak is
due to coherent backscattering and the right peak to coherent forward
scattering. Data are averaged over 7200 disorder realizations.

of regimes summarized in Fig. 3, and that we discuss in the
following.

B. Diagrammatic theory in the diffusive regime

At short times, a diagrammatic description of the mo-
mentum distribution can be developed. We briefly summarize
below the essential steps of this approach. In momentum space,
the wave function |ψ(t)〉 at time t reads as

〈k|ψ(t)〉 =
∫

d2k′dE1

(2π )3
e−iE1t 〈k|ĜR(E1)|k′〉〈k′|φ〉, (1)

where |φ〉 is the wave function at time t = 0 and ĜR(E1) =
(E1 − Ĥ + i0+)−1 is the retarded Green’s operator at energy
E1. The disorder-averaged momentum distribution at time t ,
n(k,t) = |〈k|ψ(t)〉|2, then involves the disorder-averaged

intensity propagation kernel 〈k|ĜR(E1)|k′〉〈k′′|ĜA(E2)|k′〉,
integrated over the momenta k′ and k′′ and over the energies E1

and E2 [ĜA(E1) = (E1 − Ĥ − i0+)−1 is the advanced Green’s
operator]. Since the disorder average restores translation
invariance and thus momentum conservation, this kernel
takes the simpler form (2π )2δ(k′ − k′′)	k′kE(ω), where E =
(E1 + E2)/2, ω = E1 − E2, and where 	k′kE remains to be
determined. The disorder-averaged momentum distribution at
time t thus reads as [26]

n(k,t) =
∫

dω

2π
e−iωt

∫
d2k′dE

(2π )3
	k′kE(ω)n0(k′), (2)

where n0(k′) = |〈k′|φ〉|2. In the numerical simulation, we
consider for simplicity an initial plane wave |φ〉 = |k0〉,
leading to n0(k′) = (2π )2δ(k′ − k0) and to

n(k,t) =
∫

dω

2π
e−iωt

∫
dE

2π
	k0 kE(ω). (3)

In this section and the next one, we discuss the dynamics at
a given energy E. To lighten the notations we therefore drop
the E dependence of all time and length scales, keeping in
mind that the full momentum distribution is a superposition
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FIG. 2. Leading-order diagrams contributing to the momentum
distribution. (a) Series of ladder diagrams giving rise to the isotropic
part of the distribution [Eq. (5)]. (b) Series of crossed diagrams giving
rise to the CBS peak [Eq. (6)]. The two series of diagrams (c) and (d)
give the main contribution to the CFS peak in the diffusive regime
τB � t � min(L,ξ )2/DB [Eq. (7)]. They equally contribute for a
time-reversal-invariant system.

of many energy components [see Eq. (3)], each of which
behaving a priori differently in the disorder. We also assume
that disorder is weak, namely k0�B � 1, where �B is the
Boltzmann transport mean-free path [27]. In this limit, the
various time scales of the system are well separated, and
several regimes of transport can be clearly identified, as we
now discuss.

At lowest order in (k0�B)−1 � 1, only pairs of trajectories
following exactly the same multiple scattering sequence, i.e.,
with no net phase difference, survive the disorder average.
The corresponding contribution to the kernel 	k0 kE(ω), the
so-called series of ladder diagrams, is shown in Fig. 2(a).
It describes a diffusion mechanism and leads to a fast
isotropization process of atomic momenta at very short times
t ∼ τB where τB is the Boltzmann transport time. This is
the regime 1 in Fig. 3 and it has been analyzed in [17] by
means of a kinetic approach. In the following, we will not
consider this regime, focusing only on times t � τB where
the isotropization process is completed and diffusion is fully
established (regime 2 in Fig. 3). For t � τB , the ω dependence
of the diagram in Fig. 2(a) is purely controlled by its central
(ladder) part, given by the diffusion propagator PE(q,ω) =
1/(−iω + DBq2) (with DB the Boltzmann diffusion constant)
at zero momentum [13]:

	k0 kE(ω) = 2〈k0|ImĜR(E)|k0〉 × 2〈k|ImĜR(E)|k〉
×PE(0,ω)/[2πν(E)], (4)

where the two average Green’s operators come from the “legs”
of the diagram and where ν(E) is the average density of states
per unit volume at energy E. Inserting this expression into
Eq. (3) and performing the Fourier integral over ω, we obtain
the time-independent, isotropic, and ring-shaped contribution
to the disorder-averaged momentum distribution, well visible
in Fig. 1:

nD(k) = nD(k) =
∫

dE

2π

A(k,E)A(k0,E)

2πν(E)
, (5)

where we have introduced the spectral function A(k,E) =
2π〈k|δ(E − Ĥ )|k〉 = −2〈k|ImĜR(E)|k〉 [28]. Note that

diffusive

ergodic

quantum
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FIG. 3. (Color online) Schematic dynamical phase diagram of a
2D, weakly disordered system. τB is the transport mean-free time
and �B the transport mean-free path. For t � τB , atoms undergo a
few scattering events and the distribution gets isotropized (regime 1).
For τB � t � τD,τloc, the randomization process is completed and
transport is diffusive (regime 2). Beyond the Thouless time τD ≡
L2/DB (for L < ξ ) or the localization time τloc ≡ ξ 2/DB (for L > ξ ),
a particle passes through regions already visited (“ergodic limit”,
regime 3). Finally, for times much larger than the Heisenberg time
τH ≡ 2πν min(L,ξ )2 the particle has resolved the discreteness of
energy levels and the system no longer evolves (“quantum limit,”
regime 4).

nD(k) is indeed isotropic because the spectral function only
depends on k ≡ |k| [28]. The physical interpretation of Eq. (5)
is rather clear: the spectral function A(k0,E) describes the
probability density that the initial state with momentum k0

has an energy E, while A(k,E)/[2πν(E)] in turn describes
the probability density that a state with energy E has a
momentum k. Note that one could imagine a slightly different
situation where the initial state is not a plane wave, for
example, a wave packet with finite size (see Sec. V) or a
more complicated state obtained after the disordered potential
is progressively switched on. The analysis developed in this
paper can be used to describe such a variant, simply by
replacing A(k0,E) by the energy distribution of the initial
state.

The series of crossed diagrams (b) in Fig. 2 gives a
correction to Eq. (5) that describes the CBS peak growing
around the backscattering direction k = −k0. Its calculation
follows the same lines as that of diagram (a) [13]. Exactly at
backscattering k = −k0, the CBS contribution reaches rapidly
a stationary value given by

nCBS(−k0) =
∫

dE

2π

A2(k0,E)

2πν(E)
. (6)

According to Eqs. (5) and (6), at backscattering the momentum
distribution is exactly twice the value of the isotropic back-
ground, n(−k0) = nD(k0) + nCBS(−k0) = 2nD(k0), which is
an emblematic signature of the CBS effect resulting from a
plane-wave source [20]. Finally, it was shown in [14,15] that
at short enough times, the leading contribution to the CFS peak
is given by Figs. 2(c) and 2(d), which combine two successive
crossed and ladder sequences. These diagrams are peaked
in the forward direction, unlike other diagrams of the same

063602-3



S. GHOSH et al. PHYSICAL REVIEW A 90, 063602 (2014)

order of magnitude in perturbation theory, which provide flat
contributions to the momentum distribution [14]. Figure 2(d)
is obtained from Fig. 2(c) by time reversing one of the complex
amplitudes. Since the system we consider has the time-reversal
symmetry, both diagrams equally contribute, giving

nCFS(k0) 	 2
∫

dE

2π

∫
dω

2π
e−iωt A2(k0,E)

[2πν(E)]2τs

×
∫

d2q
(2π )2

A(q,E)PE(q + k0,ω)2. (7)

In two dimensions, Eq. (7) yields nCFS(k0,t)/nD(k0) ∼
1/(k0�B), which is a constant, small contribution for weak
disorder [14] [note that this result is different from the case
of a one-dimensional or quasi-one-dimensional geometry, for
which the corresponding Eq. (7) gives nCFS(k0,t) ∼ √

t [15]].
This means that the CFS peak is hardly visible in the diffusive
regime. As shown in [14], Eq. (7) is only valid at short enough
times, when higher-order corrections to the CFS peak remain
small. The question of the description of CFS at longer times,
where such corrections cannot be neglected anymore, is the
object of the next section.

C. Theoretical description of the momentum distribution
in the ergodic and quantum regimes

For a 2D disordered system of size L and characterized
by a localization length ξ , Eqs. (5), (6), and (7) strictly
speaking hold only in the diffusive regime where τB � t �
min(L,ξ )2/DB (regime 2 in Fig. 3). When L < ξ , L2/DB ≡
τD is the so-called Thouless time, i.e., the typical time needed
by an atom to reach the boundary of the system [29]. In the
opposite limit ξ < L, ξ 2/DB ≡ τloc can be interpreted as the
localization time, i.e., the time scale at which atoms become
sensitive to Anderson localization. In both cases, as soon
as t > τD or τloc, atoms start to feel that they are confined
in a finite region of space: this is the ergodic regime (see
Fig. 3). In the ergodic regime, the system still evolves, until
it eventually resolves its spectrum (“quantum limit,” regime
4 in Fig. 3). This happens at a time scale known as the
Heisenberg time τH ≡ 2πν min(L,ξ )2, which is the inverse of
the mean level spacing in a volume of size L2 (when L < ξ )
or ξ 2 (when L > ξ ). Note that in two dimensions, the ratios
τH/τD, τH /τloc ∼ k0�B are very large in the weak-disorder
limit assumed here, such that the ergodic regime is typically
very broad.

In the ergodic regime, atoms pass again and again through
spatial regions they have already explored. This phenomenon
produces a highly nonperturbative accumulation of interfer-
ence, and many corrections to the CFS diagrams in Figs. 2(c)
and 2(d) become relevant and come into play. At first sight, one
might think of summing up all these corrections by directly
“chaining” an arbitrary number of series of crossed and ladder
diagrams. This approach seems, however, hopeless because
of the rapid proliferation of the number of such corrections
at longer and longer times (the Hikami boxes connecting
the series can be dressed in many possible ways [14]).
Nevertheless, a description of the transport dynamics in the
ergodic regime can be obtained from the supersymmetric

nonlinear σ model developed by Efetov [30]. Within this
approach, the intensity propagator has the general form

	k0 kE(ω) = A(k0,E)A(k,E)

4L2

∫
DQ[Q15(0)Q51(0)

+Q11(k − k0)Q55(k0 − k)

+Q35(k + k0)Q53(−k − k0)]e−F [Q]. (8)

In Eq. (8),
∫

(. . .)DQ is a functional integral over an
8 × 8 supermatrix Q that fulfills the constraint Q2 = 1,
and � = diag(14,−14). The elements of Q are complex
and Grassmann fields (the Hamiltonian here belongs to the
orthogonal symmetry class). The action of the σ model
is F [Q] = [πν(E)/4]Str

∫
d2r[−D(∇Q)2 − 2iω�Q], where

Str denotes the supertrace. The elements of Q are arranged
in two retarded and advanced sectors describing the product
of the two Green’s functions involved in 	k0 kE . These
sectors are split in two sectors containing variables and their
complex conjugate (pertaining to the time-reversal symmetry),
themselves being split in two bosonic and fermionic sectors
required to perform the disorder average [30,31].

At this stage, Eq. (8) is general, with the only restriction that
time should be larger than τB and disorder should be weak.
After integration over Q, the three terms in the right-hand
side give rise to functions of k which are, respectively (from
left to right), constant, peaked around k = k0, and peaked
around k = −k0, and can thus a posteriori be identified as the
isotropic background of the distribution, the CFS and the CBS
peaks. Due to the complicated manifold spanned by the matrix
Q, however [30,31], these functions can only be calculated in
a few specific cases. In the next section, we focus on the limit
L � ξ where an exact result can be obtained for the CFS
contrast in the ergodic regime t > τD , and even in the
long-time, quantum regime t � τH , where the momentum
distribution is expected to reach its final, stationary form.

Finally, it is worthwhile to note that whatever the ratio
L/ξ but at times τB � t � min(L,ξ )2/DB (diffusive regime),
the field integrals over Q can also be performed, using a
perturbation theory around the high-frequency saddle point
Q = � [15]. The calculation of the three terms in Eq. (8) in
this limit then reproduces Eq. (5) for the background, Eq. (6)
for the CBS peak at k = −k0, and Eq. (7) for the CFS peak at
k = k0. This in particular confirms the conjecture that at short
times the series of diagrams in Figs. 2(c) and 2(d) are indeed
those responsible for the CFS effect [14].

III. CFS IN A LIMITED VOLUME (L � ξ )

A. CFS in the ergodic and quantum regimes

In this section, we assume L � ξ and focus on times t �
τD (regions 2 and 3 in Fig. 3). Since L � ξ , the confinement
effect leading to the CFS peak stems from the finite volume
of the system. Its dynamics can be accessed from Eq. (8) by
replacing the functional integral by a definite one and using
the parametrization of the matrix Q proposed by Efetov [30]
(“zero-dimensional” approximation). With this strategy, the
CFS contribution to Eq. (8) yields, at k = +k0,

nCFS(k0,t) =
∫

dE

2π

A2(k0,E)

2πν(E)
2πν(E)L2KE(t), (9)
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where

2πν(E)L2KE(t) =
{

(t/τH )[2 − ln(1 + 2t/τH )], τD � t � τH

2 − (t/τH ) ln[(1 + 2t/τH )/(2t/τH − 1)], t � τH
(10)

with τH ≡ 2πν(E)L2 the Heisenberg time associated with
the system of size L. This result shows that starting from
t = τD , the CFS peak slowly increases until a few Heisenberg
times as atoms keep exploring the volume of the system. For
t � τH , 2πν(E)KE(t) 	 1 and the CFS peak has reached its
maximum. In this limit, the momentum distribution no longer
evolves in time because atoms have resolved the discreteness
of energy levels. It is interesting to note that the function
KE(t), as given by Eq. (10), is nothing but the so-called form
factor (the Fourier transform of the correlation of density-
of-states fluctuations) of the Gaussian orthogonal ensemble
of random matrices [31] (see also Sec. IV). This shows in
particular that the CFS peak is intrinsically connected with the
spectral properties of the disordered system [16]. In real space,
the form factor also governs the dynamics of the “mesoscopic
echo effect,” i.e., the enhancement of the probability for a
spatially narrow wave packet to return to the origin in the
presence of disorder [32].

Finally, we mention for completeness that the CBS peak at
k = −k0 as well as the isotropic component of the distribution
[the third and first terms in Eq. (8), respectively] can also be
derived from Eq. (8) for t > τD , using the zero-dimensional
approximation. This calculation eventually leads to the same
expressions given in Eqs. (5) and (6), signaling that these
formulas in fact hold very generally, not only in the diffusive
regime, but also in the long-time limit t > τD .

B. Numerical simulations

For L � ξ , we now have a complete physical picture
of the dynamics, with Eqs. (5), (6), and (9) describing,
respectively, the isotropic background and the CBS and the
CFS peaks. In order to test the validity of these formulas,
we perform extensive numerical simulations of the time-
resolved momentum distribution of a matter wave in a 2D
speckle potential, using the approach outlined in Sec. II A. To
achieve the condition L � ξ , we set k0 = 2 and consider a
relatively weak value of the disorder amplitude, V0 = 1. For
these parameters, we compute numerically the spectral func-

tion A(k0,E) = −2 Im〈k0|Ĝ(E)|k0〉, where 〈k0|Ĝ(E)|k0〉 =
−i

∫ ∞
0 dt〈k0|exp[i(E − Ĥ )t]|k0〉 is obtained by propagation

of the plane-wave state |k0〉. The spectral function is shown in
the main panel of Fig. 4, giving an estimation of the energy
distribution of the matter wave. Its shape is reminiscent of
the Lorentzian expected in the limit of weak disorder [27].
The inset of Fig. 4 also shows the energy dependence of the
localization length, which we compute numerically using the
transfer-matrix technique in two dimensions [33–36]. At a
given L corresponds a certain energy EL, below which atoms
are typically localized [ξ (E < EL) < L] and above which
atoms are typically diffusive [ξ (E > EL) > L]. For the largest
value of L considered in this section (L = 25π , see below) we
find EL 	 0.05. This value falls in the left tail of the spectral
function, where the latter is almost zero. This means that for

V0 = 1 and k0 = 2 essentially all atoms fulfill the condition
L < ξ .

We show in Fig. 5 a radial cut along kx = 0 of the momen-
tum distribution obtained numerically after a propagation time
t = 7200, i.e., well beyond the Boltzmann transport mean-free
time which is τB 	 7 at E = E0 ≡ k2

0/(2m). This plot is
expected to describe the radial shape of the isotropic part of
the distribution, given by Eq. (5). In Fig. 5, we also show
this theoretical prediction, in which we used the numerically
computed spectral functions A(k0,E), A(k,E), and density
of states ν(E) ≡ ∫

dk/(2π )3A(k,E). We see that the theory
perfectly matches the numerical results without any adjustable
parameter.

Let us now focus on the contrast of the CBS and CFS
peaks with respect to the isotropic background, defined,
respectively, as CCBS ≡ nCBS(−k0,t)/nD(k0,t) and CCFS ≡
nCFS(k0,t)/nD(k0,t). According to Eqs. (5) and (6), we have
evidently

CCBS = 1, t � τB. (11)

Furthermore, by comparing Eqs. (5) and (9) and assuming that
the energy dependence of τH is smooth as compared to that
of the spectral function (which is a very good approximation
for the relatively low value of V0 considered in this section),
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FIG. 4. Spectral function A(k0,E) as a function of energy,
obtained from numerical simulations of plane-wave propagation in
a 2D speckle potential, for V0 = 1 and k0 = 2 [lengths, momenta,
and energies are, respectively, given in units of ζ , ζ−1, and 1/(mζ 2),
where ζ is the correlation length of the random potential]. The inset
shows the localization length given by the transfer-matrix approach
as a function of energy, for the same value of V0. Data are averaged
over 16 disorder realizations. The energy EL corresponding to a
localization length ξ (EL) = L for L = 25π is indicated: energies
below EL are typically localized [ξ (E) < L], while energies above
EL are typically diffusive [ξ (E) > L]. From the main plot, it is seen
that below E = EL the spectral function is almost zero, which means
that for these parameters essentially all atoms are diffusive.
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FIG. 5. (Color online) Cut along kx = 0 of the momentum dis-
tribution, describing the radial shape of its isotropic, ring-shaped
part. Points were obtained from numerical simulations of plane-wave
propagation in a 2D speckle potential in the limit L � ξ (V0 = 1 and
k0 = 2), after averaging over 6000 disorder realizations. L is set to
25π . The red curve is the theoretical prediction (5), in which spectral
functions and density of states are computed numerically. There is no
adjustable parameter.

we have

CCFS 	 2πν(E0)L2KE0 (t), t � τD (12)

where the expression of KE(t) is given by Eq. (10). Equa-
tions (11) and (12) are shown in the main panel of Fig. 6
as a function of time (dashed and solid curves, respectively),
together with the CBS and CFS contrasts obtained from our
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FIG. 6. (Color online) Main panel: contrast of the CBS (upper
green symbols) and CFS (lower red symbols) peaks as a function
of t/τH [here τH = τH (E0) = 2πν(E0)L2], obtained from numerical
simulations of plane-wave propagation in the limit L � ξ (V0 = 1
and k0 = 2). Circles were obtained for L = 15π , squares for L =
20π , and crosses for L = 25π . Data are averaged over 6000 disorder
realizations and over a time window �t = 250. The dashed and solid
curves are the theoretical predictions (11) and (12), respectively.
Inset: contrasts at short times t � τH . For comparison, the scaled
background nD(k0,t)/nD(k0,∞) is also shown (blue crosses). Both
the background and the CBS contrast become time independent after
a few τB , while the CFS contrast increases slowly, linearly in time.

numerical simulations of plane-wave propagation (green and
red symbols, respectively). Circles were obtained for a system
size L = 15π , squares for L = 20π , and crosses for L = 25π .
The agreement between analytical formulas and the numerics
is excellent. Note in particular that all the numerical points
fall on the same master curve when plotted as a function
of t/τH , which confirms the universal scaling in t/L2 of
the function KE0 (t). The inset additionally shows the CBS
and CFS contrasts together with the isotropic, background
contribution to the momentum distribution at short times
t � τH : both the background and the CBS contrast become
time independent after a few τB [see Eqs. (5) and (6)], while the
CFS contrast increases slowly, linearly in time, in agreement
with the small-time limit 2πν(E0)L2KE0 (t � τH ) 	 2t/τH .

IV. CFS IN A LOCALIZED SYSTEM (ξ � L)

A. CFS peak at long times

We now consider the case ξ � L, where the confinement is
due to Anderson localization. This was the scenario originally
studied in [14], and also the one pertaining to Fig. 1. With
respect to Sec. III, the localization time τloc ≡ ξ 2/DB now
plays the role of the Thouless time τD ≡ L2/DB , and the
Heisenberg time τH = 2πνξ 2 now refers to a volume of
size ξ . The case ξ � L is extremely interesting since now
the emergence of the CFS peak is a hallmark of localization.
When ξ � L, no exact solution of the nonlinear σ model (8) is
unfortunately available in two dimensions, and consequently
there is no exact expression for the CFS contrast for t > τloc.
Nevertheless, the time evolution of CFS can be estimated
in some limiting cases. First, for τloc < t � τH (i.e., at the
onset of the ergodic regime, see Fig. 3), it was suggested
by a qualitative argument of renormalization of the diffusion
coefficient in the diagrams in Fig. 2 that the CFS peak should
increase as t/τH [14]. The isotropic background and the
maximum of the CBS peak were on the other hand predicted to
remain unchanged at any time t � τB , namely, to be still given
by Eqs. (5) and (6), respectively [14]. As we now show, the
CFS contrast for ξ � L can also be evaluated in the long-time
limit t � τH (quantum regime, see Fig. 3). For this pur-
pose, we first recognize that the function KE(t) in Eq. (9)
that we derived for L � ξ is nothing but the so-called form
factor

KE(t) =
∫

dω

2π
e−iωtKE(ω), (13)

where KE(ω) = δν(E + ω/2)δν(E − ω/2)/ν(E)2 is the
Fourier transform of the correlation function of density-of-
states fluctuations, which can be rewritten as [31]

KE(ω) = −1 + 1

ν(E)2L4

×
∑
i,j

δ
(
E + ω

2
− Ei

)
δ
(
E − ω

2
− Ej

)
,

(14)

where the Ei are the energy levels of the disordered system. In
fact, the relation (9) between the CFS peak and the form factor
defined by (14) turns out to hold very generally, for any ratio
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of L and ξ . This can be explicitly shown by a modal decompo-
sition of the wave function written in momentum space, a task
that was accomplished in [16]. With the help of this relation, the
problem of calculating the CFS contrast as a function of time
boils down to the analysis of the frequency dependence of the
correlation function KE(ω). In the localization regime ξ � L

and in the limit of small frequencies, this dependence can be
accessed within a simple model of “correlated localization
volumes,” originally introduced by Mott [37]. Let us briefly
recall the main lines of this model. We here essentially follow
the point of view of [38,39]: we conceptually divide our 2D
disordered system in small patches of volume ξ 2, such that in
each patch the mean level spacing is � ≡ (νξ 2)−1 = 2π/τH .
Within one patch, two eigenstates experience the usual level
repulsion of disordered systems [40] and are therefore far apart
in the spectrum. Conversely, let us consider two close levels Ei

and Ej such that |Ei − Ej | ≡ |ω| � �. The corresponding
eigenstates then belong to two distant localization patches.
We model the subsystem formed by these two levels by the
coupling Hamiltonian

Hc =
(

ε1 �e−|r1−r2|/ξ

�e−|r1−r2|/ξ ε2

)
. (15)

Here, ε1 and ε2 are the energy levels in the absence of
coupling, and �e−|r1−r2|/ξ is the overlap integral between the
two uncoupled states, whose wave functions are exponentially
localized around r1 and r2, respectively. Due to the coupling,
the levels become ε̄ ±

√
δε2/4 + �2e−2r/ξ , where ε̄ ≡ (ε1 +

ε2)/2, δε ≡ ε1 − ε2, and r ≡ |r| ≡ |r1 − r2|. As in [38], we
assume that ε̄, δε, and r are independent, uniformly distributed
random variables, respectively over an interval of size � (for
ε̄ and δε) and over the volume L2 (for r). Performing the
integral over ε̄ allows us to get rid of one of the delta functions
in Eq. (14), which yields

KE(ω) ∼
∫ �/2

−�/2
dδ ε

∫
d2r
L2

δ(ω −
√

δε2 + 4�e−2r/ξ ). (16)

In Eq. (16), the integral over the difference of localization
centers ranges over the full volume of the system L2. The
bounds in the integral over δε account for the fact that the
absolute difference between ε1 and ε2 should not be greater
than � because we only consider the coupling between states
belonging to different localization patches. The two integrals
are readily performed, using the inequality |ω| � � and taking
the limit ξ � L. We obtain

KE(ω) ∼
(

ξ

L

)2

ln2

( |ω|
2�

)
, |ω| � �. (17)

Note that in deriving Eq. (17), we implicitly assumed ω �= 0.
In order to describe long times, we must also include the
contribution ω = 0, which comes from the diagonal terms
i = j in the sum in Eq. (14). These terms yield the contribution
δ(ω)/[ν(E)L2], which describes the self-correlation of one
energy level. Adding it to Eq. (17) and performing the Fourier
transform with respect to ω, we obtain the final form of KE(t)
and of the CFS contribution to the momentum distribution at
k = +k0, at long times t � τH :

nCFS(k0,t) 	
∫

dE

2π

A2(k0,E)

2πν(E)

[
1 − α

ln(βt/τH )

t/τH

]
. (18)

In writing Eq. (18), we have introduced two phenomenological
parameters, α and β, whose precise determination is not
accessible from the present approach. α accounts for the fact
that in a real system, the distributions of ε̄, δε, and r may
not be exactly uniform, while β accounts for the fact that
the strength of the coupling terms in the Hamiltonian (15)
may slightly differ from �. The appearance of a logarithm in
Eq. (18) is, however, typical of 2D disordered systems [39].
This has to be contrasted with one-dimensional or quasi-one-
dimensional geometries for which KE(ω) ∝ ln[|ω|/(2�)],
leading eventually to a purely algebraic decay ∝(t/τH )−1 of
the second term in the right-hand side of Eq. (18) [15,16].

B. Numerical simulations for ξ � L

Let us now confront the predictions (5), (6), and (18) with
numerical simulations. To describe the localization regime,
it is necessary to make the localization length smaller than
the system size, and it is thus mandatory to use a stronger
value of the disorder amplitude V0. The main panel of Fig. 7
displays the numerically computed spectral function A(k0,E)
for V0 = 5 and k0 = 1.5. In sharp contrast with Sec. III B
where disorder was relatively weak, the spectral function has
now a maximum at negative energy and a long tail toward
high energies. This raises two new problems. First, for a given
system size L it is hard to fulfill the inequality ξ (E) � L for
all energies. For instance, when L = 100π , the energy EL

such that ξ (EL) = L is slightly above zero, thus distinctly
above the maximum of the spectral function (see the main
panel of Fig. 7). Therefore, many particles have E > EL and
thus have a localization length ξ (E) > L. Second, unlike in
Sec. III B, the Heisenberg time (which is proportional to the
square of the localization length) now varies much faster with
E than the spectral function. As a consequence, it is not even
possible to identify a single Heisenberg time for localized
atoms. In order to nevertheless consider a “clean” situation

energy
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FIG. 7. (Color online) Spectral function A(k0,E) as a function
of energy, for V0 = 5 and k0 = 1.5 [lengths, momenta, and energies
are, respectively, given in units of ζ , ζ−1, and 1/(mζ 2), where ζ

is the correlation length of the random potential]. For the time
evolution, only energies in the narrow band [ε0 − �ε/2,ε0 + �ε/2]
are selected, where ε0 = −2.5 and �ε = 0.4. The inset shows the
localization length given by the transfer-matrix approach as a function
of energy, for the same value of V0. Data are averaged over 16 disorder
realizations.
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FIG. 8. (Color online) Cut along kx = 0 of the momentum dis-
tribution, describing the radial shape of its isotropic, ring-shaped
part. Points were obtained from numerical simulations of plane-wave
propagation in a 2D speckle potential in the limit ξ � L (V0 = 5,
k0 = 1.5, ε0 = −2.5, �ε = 0.4), after averaging over 240 disorder
realizations. L is set to 100π . The red curve is the prediction (5),
in which spectral functions and density of states are computed
numerically. There is no adjustable parameter.

where all atoms are localized with approximately the same
Heisenberg time, we introduce a filtering in energy in the
time-propagation algorithm: at t = 0 we apply the operator
exp[−(Ĥ − ε0)2/(2�ε2)] to the initial state |k0〉, and only
then propagate it with the evolution operator exp(−iĤ t).
With this procedure, the energies E involved in transport
roughly lie in the interval [ε0 − �ε/2,ε0 + �ε/2], which is
chosen so that ξ (E) � L for all E within that interval. In
the rest of this section, we choose ε0 = −2.5 and �ε = 0.4
for V0 = 5 and k0 = 1.5 (see Fig. 7). With these parameters,
the localization length given by the transfer-matrix approach
at E = ε0 is ξ 	 3.9. From a theoretical point of view, the
filtering in energy amounts to performing the replacement
A(k,E) → A(k,E) exp[−(E − ε0)2/(2�ε2)] (for both k and
k0) in all formulas.

We first show in Fig. 8 a radial cut along kx = 0 of the
numerically computed momentum distribution (black points).
These points are expected to describe the radial shape of the
isotropic background. The chosen time is t = 1500, i.e., well
beyond the transport mean-free time which is τB 	 2.6. In the
same plot we show the theoretical prediction (5) fed with the
numerically computed spectral functions A(k0,E), A(k,E),
and density of states ν(E). The agreement is very good and
may come as a surprise if we remember that Eq. (5) has been
actually derived in the weak-disorder limit. It demonstrates
the general validity of Eq. (5) for the isotropic background,
even in the deep localization regime ξ � L and for rather
strong disorder, provided the exact A(k,E) and ν(E) are used
in the computation. This suggests that at strong disorder, all
interference corrections to the isotropic background boil down
to a renormalization of the scattering mean-free path while
the global topology of the diagram in Fig. 2(a) remains valid.
Note in passing that the dip around ky = 0 is less pronounced
in Fig. 8 than in Fig. 5. This is a direct consequence of the long
energy tail of the spectral function at stronger disorder.
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FIG. 9. (Color online) Main panel: contrast of the CBS (upper
green symbols) and CFS (lower red symbols) peaks as a function
of t/τH , obtained from numerical simulations of plane-wave prop-
agation in the localization regime ξ � L, for the same parameters
as in Fig. 8 (here τH 	 40 [41]). Circles were obtained for L =
50π , squares for L = 80π , and crosses for L = 100π . Data are
averaged over 240−1600 disorder realizations (depending on the
value of L) and over a time window �t = 40. The dashed and solid
curves are the theoretical predictions (19) and (20), respectively.
Inset: contrasts at short times t � τH . For comparison, the scaled
background nD(k0,t)/nD(k0,∞) is also shown (blue crosses). Both
the background and the CBS contrast become time independent after
a few τB , while the CFS contrast increases slowly, linearly in time,
as highlighted by the dotted line.

The CBS contrast for ξ � L is still given by the ratio of
Eqs. (5) and (6), and has thus the same expression as in Sec. III:

CCBS = 1, t � τB. (19)

On the other hand, the CFS contrast at times t � τH now
follows from Eq. (18):

CCFS = 1 − α
ln(βt/τH )

t/τH

, t � τH . (20)

These two relations are shown in the main panel of Fig. 9
(dashed and solid curves, respectively) together with the CBS
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FIG. 10. (Color online) Red crosses: numerical values of (1 −
CCFS)t/τH plotted as a function of t/τH , for the same parameters
as in Fig. 9, with L set to 100π . The dashed curve is the function
α ln(βx), where α = 0.5 and β = 2.3. Data are averaged over 240
disorder realizations and over a time window �t = 40.
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FIG. 11. (Color online) Width of the CBS and CFS peaks in
momentum space as a function of t/τH , in the localization regime
ξ � L, for the same parameters as in Fig. 9. L is set to 100π . At
long times, both widths converge to the same constant value, which
is of the order of a few ξ−1. Data are averaged over 240 disorder
realizations and over a time window �t = 40.

and CFS contrasts obtained from our numerical simulations
(green and red symbols, respectively), for τH 	 40 [41].
Circles were obtained for a system size L = 50π , squares
for L = 80π , and crosses for L = 100π . We find that Eq. (20)
well reproduces the numerical results for α = 0.5 ± 0.1 and
β = 2.3 ± 0.1 [for the fit we only consider times larger than
τH , which is the limit of validity of Eq. (18)]. Note that
as opposed to the case L � ξ (see Fig. 6), the contrast
of the CFS no longer depends on L, as expected in the
localization regime. The inset additionally shows the CBS and
CFS contrasts together with the background contribution to the
momentum distribution at short times t � τH . The observed
behavior is qualitatively the same as in the case L � ξ : both
the background and CBS contrast become time independent
after a few τB , while the CFS contrast increases slowly in
time. This increase is compatible with the linear law estimated
in [14], although the latter is seen in a rather small time
interval. In order to have a better estimation of the validity
of the theoretical expression for the CFS contrast at long times
[Eq. (20)], we replot in Fig. 10 the quantity (1 − CCFS)t/τH

as a function of t/τH . In this representation, the numerical
points increase logarithmically in time, in full agreement with
Eq. (20).

For the sake of completeness, we finally show in Fig. 11 a
plot of the width at half maximum in momentum space of both
the numerical CBS and CFS peaks as a function of time. As
for the contrast, we see that the evolutions of the two peaks are
different. Over a time scale of the order of the mean-free time,
the CBS width quickly converges to a value of the order of a
few ξ−1. The CFS width, on the other hand, slowly decreases,
until it reaches the same value as the CBS width after a few
Heisenberg times, suggesting identical CBS and CFS profiles
at very long times.

V. EXPERIMENTAL SCENARIO

In Sec. IV, we showed that when ξ � L the CFS peak is
a signature of Anderson localization, which confines atoms in
a region of size ξ . However, we considered an ideal scenario

where (i) the dynamics is supported by a single energy E = ε0

and (ii) the initial state is a plane wave. In current state-of-
the-art experiments on ultracold atoms, however, these two
conditions are not fulfilled. Indeed, all the energy components
authorized by the spectral function shown in Fig. 7 contribute
to transport, which means in particular that both diffusive and
localized atoms are present. In addition, the initial state is
never a plane wave but rather a wave packet of finite size
(�k)−1 �= ∞ in configuration space. It thus remains important
to clarify whether, within this nonideal scenario, the CFS peak
due to localized atoms is visible or not. This is the object of
the present section.

A. Effect of a broad energy distribution

Let us first address the effect of a broad energy distribution
on the CFS dynamics. For this purpose, as in Sec. IV B, we
numerically carry out the time evolution of a plane wave
[(�k)−1 = ∞] for V0 = 5 and k0 = 1.5, but this time without
applying the filtering in energy, such that now both localized
and diffusive atoms coexist. The contrast of the CFS peak
obtained in this way is shown in Fig. 12 as a function of time,
for four values of the system size L. Several observations
can be made. First, when L is small, the CFS contrast
decreases with L. This effect is due to diffusive atoms, which
fulfill L < ξ (E) and thus produce a CFS peak because of
their confinement in the volume L2 (mechanism discussed in
Sec. III). Second, for the parameters used in Fig. 12, the CFS
contrast no longer visually changes with L when L � 50π .
This means that in this limit, which effectively corresponds to
the experimental scenario L = ∞, the observed CFS peak is
entirely due to localized atoms (at smaller L this is also the case
at short enough times). Overall, the CFS contrast is, however,
smaller than the ideal situation of Sec. IV where the dynamics
was supported by a single, localized energy [Eq. (20), dashed
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FIG. 12. (Color online) Colored symbols: contrast of the CFS
peak as a function of time, obtained from numerical simulations
of plane-wave propagation [(�k)−1 = ∞] for V0 = 5 and k0 = 1.5,
without using any filtering in energy [lengths, momenta, energies,
and times are, respectively, given in units of ζ , ζ−1, 1/(mζ 2), and
mζ 2, where ζ is the correlation length of the random potential]. The
four curves correspond to different values of L. Data are averaged
over 400 disorder realizations and over a time window �t = 40. For
comparison, the dashed curve shows the theoretical prediction (20),
corresponding to the ideal case of a single-energy component E =
ε0 = −2.5, for which τH 	 40.
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FIG. 13. (Color online) Colored symbols: contrast of the CFS
peak as a function of time, obtained from numerical simulations
starting from a Gaussian wave packet of finite width (�k)−1, for V0 =
5, k0 = 1.5, and L = 100π , without using any filtering in energy. The
three curves correspond to different values of (�k)−1, increasing from
bottom to top. Data are averaged over 400 disorder realizations and
over a time window �t = 40. For comparison, the dashed curve
shows the theoretical prediction (20), corresponding to the ideal case
of a single-energy component E = ε0 = −2.5, for which τH 	 40.

curve in Fig. 12], because at a given time t many localized
atoms have a Heisenberg time τH (E) > t and thus have not
yet contributed to the CFS peak.

B. Effect of the size of the wave packet

Having discussed the effect of a broad energy distribution,
we now additionally consider the effect of the finite size of
the initial wave packet. We show in Fig. 13 the contrast of the
CFS peak as a function of time for L = 100π , obtained from
numerical simulations starting from a Gaussian wave packet
of width (�k)−1 �= ∞ rather than from a plane wave (as before
V0 = 5 and k0 = 1.5 and no filtering in energy is applied). The
finite value of (�k)−1 leads to a decay of the CFS contrast,
well visible in the figure. This phenomenon can be traced
back to Eq. (3): using a Gaussian wave packet amounts to
taking n0(k′) = (4π/�k2) exp[−(k′ − k0)2/(�k2)] instead of
(2π )2δ(k′ − k0), and thus to convolving the CFS peak obtained
for a plane wave with a Gaussian function. From a physical
point of view, the finite size of the wave packet cuts multiple
scattering trajectories whose start and end points are separated
by more than (�k)−1, as for the CBS effect [13].

VI. SUMMARY AND CONCLUDING REMARKS

This paper was devoted to a systematic study of the momen-
tum distribution of a matter wave launched with finite velocity
in a 2D random, speckle potential. In particular, we analyzed
in detail the slowly evolving coherent forward scattering peak
arising in the momentum distribution at long enough times.
We showed that the emergence of this peak is conditional on
the presence of a mechanism of confinement which allows
us to enhance the interference mechanism scattering particles
in the forward direction. This confinement can arise in the
situation where particles propagate diffusively in a bounded
volume, or because of Anderson localization, which prevents
transport beyond scales of the order of the localization length

TABLE I. Summary of asymptotic expressions for the CFS
contrast CCFS in a 2D disordered system. α = 0.5 ± 0.1 and β =
2.3 ± 0.1.

Time L � ξ ξ � L

τH ≡ 2πνL2 τH ≡ 2πνξ 2

Diffusive regime
τB � t � min(L,ξ )2/DB ∝ 1

k0�B
∝ 1

k0�B

Ergodic regime
min(L,ξ )2/DB � t � τH 2 t

τH
∝ t

τH

Quantum regime
t � τH 1 − 1

12(t/τH )2 1 − α
ln(βt/τH )

t/τH

ξ . We studied both numerically and theoretically the two limits
L � ξ and ξ � L, for which we summarize the asymptotic
expressions for the CFS contrast in Table I, for the ideal case
where transport is supported by a single-energy component.
From our results, it thus turns out that CFS of a matter
wave could be experimentally observed by either artificially
confining atoms in some finite regime of space, for instance
with an optical potential with steep enough edges, or, more
interestingly, by achieving Anderson localization. In current
experimental setups, for instance that in [18], atomic motion is
not limited by any artificial boundary in the relevant directions
of propagation, which corresponds to L = ∞. Consequently,
any observation of the CFS effect using those setups would be a
genuine signature of Anderson localization. In an experiment,
the visibility of CFS can be reduced because the matter wave
supports many energy components and has initially a finite
spatial width, but we showed that this reduction of visibility is
rather small.

From a theoretical point of view, we saw that, except for
short times, the dynamics of the CFS peak is not accessible
from perturbation theory and requires the help of the nonlinear
σ model or of another nonperturbative approach. Still, in two
dimensions there is presently no exact solution of the σ model
for ξ � L, such that no exact expression of the CFS peak is
available at all times in this limit. This conclusion also applies
to the three-dimensional case where the Anderson transition
is present, which offers an interesting theoretical challenge
for future works.

In the search for the CFS peak, ultracold atoms have many
advantages, including the possibility for in situ measurements
of the velocity distribution. In principle, however, the CFS
peak could be also observed with other types of waves and
in particular with classical waves propagating in disordered
media. In this context, experiments often involve a “scattering
setup” in which the wave is sent from outside the disordered
system and transport properties are probed in transmission
or reflection. While the reflection is well known to exhibit
a prominent CBS peak [43–46], the possibility of observing
a CFS peak in the transmitted profile is more speculative.
Indeed, in this setup both a high signal-to-noise ratio and
a good angular resolution would be required to detect the
CFS peak, the latter being very narrow and sitting on top
of an exponentially small transmission signal. Closer to the
situation described in this work on the other hand, the scenario
of transverse localization of light in paraxial geometries seems
more promising [4,47].
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Coming back to the atomic context, it would finally be
interesting to see how the CBS and CFS dynamics are
perturbed by the presence of weak interactions between atoms,
typically described by the nonlinear Gross-Pitaevskii equation
for bosons. For a wave packet expanding in disorder, a weak
nonlinearity is known to partially destroy Anderson localiza-
tion and to restore a transport slower than diffusion [48–51].
Nonlinearity-driven subdiffusion could manifest as well in
momentum space and alter the CBS and CFS peaks, as what
is known to happen to CBS in stationary setups [52].
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