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Atom interferometer in a double-well potential
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We present a detailed study of an atom interferometer which can be realized in a double-well potential. We
assume that the interferometric phase is imprinted in the presence of coherent tunneling between the wells.
We calculate the ultimate bounds for the estimation sensitivity and show how they relate to the precision of the
Mach-Zehnder interferometer. The interferometer presented here allows for sub-shot-noise sensitivity when fed
with spin-squeezed states with either a reduced relative population imbalance or a reduced relative phase. We
also calculate the precision of the estimation from the population imbalance and show that it overcomes the
shot-noise limit when the entangled squeezed states are used at the input.
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I. INTRODUCTION

The key objective of quantum interferometry is to enhance
the estimation precision �θ of an unknown parameter θ using
nonclassical correlations as a resource. The reference value
�θSN = 1√

m

1√
h2

0N
is called the shot-noise limit (SNL). In this

expression, N is the number of particles passing through the
interferometer, m is the number of measurement repetitions,
and h0 characterizes the interferometric transformation. The
SNL is the best achievable sensitivity in the classical two-
mode interferometry. Only in the presence of useful particle
entanglement can the SNL be surpassed [1,2] to give �θ <

�θSN. Therefore, quantum interferometry can be viewed from
two perspectives. From one point of view, the stress is put on
the preparation of a usefully entangled quantum state which,
together with the estimation protocol, gives �θ < �θSN. From
the other point of view, interferometry is a tool for detecting
quantum correlations in many-body systems. In this case, the
value of �θ is treated as a probe of the particle entanglement.

The sensitivity �θ can be evaluated using the Cramér-Rao
lower bound (CRLB) [3]. This important theorem links the
sensitivity with the Fisher information:

�θ � 1√
m

1√
F

. (1)

The value of F depends on all three steps of the interferometric
sequence: the preparation of the state which enters the
device, the type of interferometric transformation, and the
measurement performed at the output to obtain θ . According
to the definition of the SNL, F > h2

0N signals the particle
entanglement [2]. However, in most experimental situations it
is difficult to directly measure the value of F . The solution
to this problem is to replace the Fisher information in Eq. (1)
with some other physical quantity which is more accessible
in the laboratory. However, this new quantity sets a weaker
constraint than the CRLB (1).

This approach is illustrated by the broad use of the spin-
squeezing parameter ξ 2

n [4,5]. It is proportional to the fluctua-
tions of the number of particles between the two modes divided
by the visibility of the one-body fringes. Spin-squeezed states
(ξ 2

n < 1), which can be prepared in interacting systems of
ultracold atoms [2,4–9], are particle entangled and potentially
useful for quantum metrology. Recently, spin squeezing has
been generated in two-mode quantum systems [7,8,10–14].

A similar technique to detect the nonclassical correlations
was used in a collection of atoms scattered from a single
Bose-Einstein condensate in spin-changing collisions [15].

A usefully entangled quantum state passes through a metro-
logical device, for example, the Mach-Zehnder interferometer
(MZI), which is realized in three steps. First, the two-mode
state goes through a beam splitter, then the phase θ is imprinted
on one of the arms, and finally another beam splitter mixes the
modes to yield an interferometric signal. The MZI can benefit
from quantum correlations present in the spin-squeezed state
to provide the sensitivity �θ below the SNL [2,16].

Another type of interferometric sequence is based on
the Bloch oscillations of a gas in a double- or many-well
trap [17–24]. In this scenario, the external force drives co-
herent oscillations between the sites of the periodic potential.
Therefore, in contrast to the MZI, the mode mixing occurs
simultaneously with the phase imprint. Such an interferometric
protocol operating on spatially separated modes should be
easier to handle in the experiment as compared to the MZI.
This is because a beam splitter—which is a standard optical
device—is difficult to implement with atoms. One approach is
to trap the gas in two wells of a double-well potential, which
represent the arms of an interferometer. The beam splitter is
then realized by letting the gas tunnel between the wells for a
given amount of time. This however requires precise control
of the trapping potential. Another method was presented
in Ref. [14], where the modes were mixed by spatially
overlapping and then separating the two wells. Although state-
of-the-art techniques were used, some motional excitations
inevitably appeared in the system. Therefore, interferometric
proposals which circumvent the direct implementation of a
beam splitter might be relevant from the practical point of
view. In this line, we study an interferometer where the phase
imprint is accompanied by the tunneling of the gas between the
two sites of the trapping potential. We demonstrate that such an
interferometer does not overperform the MZI. Nevertheless, it
might be easier to implement since no separate beam splitters
are required.

This paper is organized as follows. In Sec. II, we introduce
a simple model for the two-mode system of ultracold bosons
trapped in a double-well potential. We determine the evolution
operator and present the family of input states convenient for
our analysis. In Sec. III, using the notion of the quantum
Fisher information, we calculate the ultimate bounds for the
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precision of such a double-well interferometer. In Sec. IV,
we calculate the precision for a particular choice of estimation
protocol and compare these results to the ultimate bounds. The
conclusions are contained in Sec. V. This work is an extension
of a previous study [25] where the outline of the theory of such
an interferometer was presented.

II. THE MODEL

We consider a collection of N noninteracting bosons
trapped in the symmetric double-well potential Vdw(x). The
system is driven into the oscillations between the two wells
due to the presence of an external force with the potential V (x).
The objective of the following inquiry is to examine how and
with what precision the strength of V (x) can be determined. To
accomplish this task, we employ the two-mode approximation
where the field operator reads

�̂(x) = ψa(x)â + ψb(x)b̂. (2)

Here, â or b̂ annihilates a boson in a left or right potential well,
and ψa(x) or ψb(x)is a corresponding spatial wave packet. The
Hamiltonian of the system is

Ĥ =
∫

dx �̂†(x)

[
− �

2

2M

∂2

∂x2
+ Vdw(x) + V (x)

]
�̂(x), (3)

where M is the atomic mass. We employ the definition of the
Josephson energy EJ and the detuning δ, i.e.,

EJ = 2
∫

dx ψ∗
a (x)

[
− �

2

2M

∂2

∂x2
+ Vdw(x)

]
ψb(x), (4a)

δ =
∫

dx(|ψa(x)|2 − |ψb(x)|2)V (x), (4b)

to obtain that, up to the constant terms, the Hamiltonian (3)
can be expressed in a compact form:

Ĥ = −EJ Ĵx + δĴz. (5)

The Ĵx and Ĵz angular momentum operators which appear
above, together with the y component, read

Ĵx = 1

2
(â†b̂ + b̂†â), (6a)

Ĵy = 1

2i
(â†b̂ − b̂†â), (6b)

Ĵz = 1

2
(â†â − b̂†b̂). (6c)

These operators form the Lie algebra [Ĵk,Ĵl] = iεklmĴm.
The Hamiltonian (5) generates the unitary evolution

Û = exp[iϕ(Ĵx − εĴz)]. (7)

Here ε = δ/EJ is the ratio of the detuning to the Josephson
energy, while ϕ = EJ t/� is the phase acquired through bare
Josephson oscillations.

To simplify the further analysis, we assume that the initial
state which undergoes the evolution (7) is pure:

|ψ〉 =
N∑

n=0

Cn|n,N − n〉, with
N∑

n=0

|Cn|2 = 1. (8)

Depending on the coefficients Cn, |ψ〉 is either separable or
entangled. Since this initial state is prepared in the absence of
the perturbing potential V (x), it is reasonable to assume that
the state is path symmetric, i.e., Cn = CN−n. This symmetry
vastly simplifies the following discussion through the set of
algebraic relations

〈Ĵy〉 = 〈Ĵz〉 = 〈Ĵx Ĵy〉 = 〈Ĵx Ĵz〉 = 〈Ĵy Ĵz〉 = 0. (9)

The Hamiltonian (5) leads to various types of interferomet-
ric schemes depending on the ratio of the Josephson energy to
the detuning δ. One limiting case is when the tunneling is fully
suppressed during the action of the external force, i.e., ε → ∞.
In such a case, the interferometric transformation consists
of a bare phase imprint because the evolution operator (7)
simplifies to

Ûph = e−iθ Ĵz , (10)

where θ = δt/�. To obtain some θ -dependent signal, addi-
tional mode-mixing manipulation is necessary. Usually, two
distinct scenarios are considered to accomplish this task. In
the first one, the phase imprint (10) is preceded and followed
by a pair of beam splitters, and the full cycle is the MZI with
an effective evolution operator:

ÛMZI = e−iθ Ĵy . (11)

Note that when the two modes represent atomic internal
degrees of freedom, the beam splitters can be realized by
applying a precisely crafted rf pulse [7,8,15]. However,
when the modes are spatially separated, as in a double-
well potential [14,26–29], the beam splitter is more difficult
to implement. In an alternative scenario of obtaining the
interferometric signal from the evolution (10), the gas is simply
released from the trap. In the far-field regime, an interference
pattern is formed and θ can be inferred from the measurements
of positions of individual atoms [30], for instance, from a
least-square fit of the one-body density to the acquired data.
In such a case, the sub-shot-noise (SSN) sensitivity can be
achieved with the phase-squeezed states [30,31]. However, to
reach the Heisenberg limit, the knowledge of the full N -body
correlations is necessary [32], which for large N is practically
impossible.

As underlined in the Introduction, we analyze the interfer-
ometer performance when both the tunneling and the detuning
compete at the same time. Formally, this means that ε � 1 and
the evolution operator is given by the full expression (7), rather
than the simplified Eq. (10). This type of evolution has one
clear advantage over the above scenario. Namely, the modes
are mixed already during the interaction of the gas with the
external field, and no addition to the interferometric sequence
is necessary.

It is worth noting that the Hamiltonian (5) generates a
rotation of the composite spin-N

2 vector on the Bloch sphere.
For such a transformation, states which give high metrological
precision are those which have reduced fluctuations in a
direction orthogonal to the rotation [1]. For instance, if the
interferometer rotates the state around the y axis—as in the
MZI (11)—the useful entanglement is related to the spin
squeezing in the z direction. It might seem that finding
a usefully entangled state for the Hamiltonian (5) should
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be easy—one should just squeeze the state in a direction
orthogonal to the vector with the Cartesian coordinates
(−EJ ,0,δ). However, the knowledge of the direction of this
vector is equivalent to the knowledge of δ, which, actually,
is the parameter to be estimated. Although some adaptive
methods could be used to first roughly estimate δ and then
prepare properly entangled states, we assume that δ remains
completely unknown, and the input states are typical for the
two-mode atom interferometry.

Finally, note that during the evolution governed by the
Hamiltonian (5), the two-body interactions are absent. This can
be achieved by tuning the scattering length using the Feschbach
resonances [33,34]. Although our analysis assumes a complete
lack of interactions, some residual two-body collisions might
be present [19]. In a more realistic model, they should be
included either perturbatively in an analytical calculation or
numerically.

III. ULTIMATE PRECISION—QUANTUM
FISHER INFORMATION

In the first step, we calculate the maximal attainable
precision of the estimation of δ. With this result at hand, we will
have a possibility to judge the efficiency of a simple estimation
protocol. Note that usually an interferometer is characterized
by its phase sensitivity �θ . Here we use �δ, which is the
precision of the estimation of the sole parameter δ. The phase
sensitivity can be retrieved through a multiplication of �δ by
t/�, where t is the time span of the interferometric sequence.

The ultimate precision �δ, which is optimized over all
estimation strategies, is determined by the quantum Fisher
information (QFI) denoted by FQ. Its value depends on the
input state |ψ〉 and the Hamiltonian (5) which introduces
δ dependence into the system. For pure states, the ultimate
CRLB is [35]

�δ � 1√
m

1√
FQ

= 1√
m

1√
4〈(�ĥ)2〉

. (12)

The variance 〈(�ĥ)2〉 = 〈ĥ2〉 − 〈ĥ〉2 is calculated for the
initial state |ψ〉, and ĥ is an operator which generates the
transformation

i∂δ|ψ(δ)〉 = ĥ|ψ(δ)〉. (13)

Using |ψ(δ)〉 = Û |ψ〉, we obtain that ĥ is related to the
evolution operator (7) by the expression

ĥ = i
∂Û

∂δ
Û †. (14)

Note that it is convenient to express the sensitivity (12) in units
of δ, i.e., to replace ĥ with δ · ĥ. Calculation of the QFI using
Eqs. (7), (12), and (14) is straightforward. The commutation
relations of the angular momentum operators give the rescaled
generator equal to

ĥ = hxĴx + hyĴy + hzĴz, (15)

where the three coefficients hx , hy , and hz read

hx = ε2

ε2 + 1

(
sin(ϕ

√
ε2 + 1)√

ε2 + 1
− ϕ

)
, (16a)

hy = ε

ε2 + 1
[1 − cos(ϕ

√
ε2 + 1)], (16b)

hz = ε3

ε2 + 1

(
sin(ϕ

√
ε2 + 1)

ε2
√

ε2 + 1
+ ϕ

)
. (16c)

Substituting Eq. (15) into Eq. (12), we obtain the following
for the path-symmetric states (9):

FQ = 4
(
h2

x〈(�Ĵx)2〉 + h2
y

〈
Ĵ 2

y

〉 + h2
z

〈
Ĵ 2

z

〉)
. (17)

Clearly, the QFI is a complicated function of the independent
parameters ε and ϕ and of the input state (8) by means of the
two lowest moments of the angular momentum operators.

We perform the systematic analysis of Eq. (17) by first
fixing the input state—i.e., fixing 〈(�Ĵx)2〉, 〈Ĵ 2

y 〉, and 〈Ĵ 2
z 〉—

and then plotting the QFI as a function of the other parameters.
We begin by establishing the SNL for the interferometric

generator ĥ. The SNL is defined as the ultimate precision
achievable by particle-separable states. For the interferometric
transformation (15) the SNL can be evaluated using the spin-
coherent state

|ψ〉 = 1√
N !

(
â† + b̂†√

2

)N

|0〉, (18)

which gives 〈(�Ĵx)2〉 = 0 and 〈Ĵ 2
y 〉 = 〈Ĵ 2

z 〉 = N
4 . In such a

case, the QFI scales linearly with the number of particles, and
the SNL for our scheme is defined as

�δ

δ
� 1√

m

1√
N

1√
h2

y + h2
z

. (19)

From now on, we refer to the above expression as the
correct SNL. Note, however, that for other interferometric
transformations the value of the SNL might differ. For instance,
the MZI interferometer gives the limiting value equal to

�δMZI

δ
� 1√

m

1√
N

1

θ
. (20)

Although in both cases the shot-noise scaling with the number
of atoms is the same, Eqs. (19) and (20) have different
coefficients. This is the price one pays for simultaneous mode
mixing and phase imprint.

We now plot Eq. (19) in Fig. 1 as a function of ϕ for
three different values of ε, in units of

√
m (i.e., the normalized

sensitivity). For small ε = 0.25, when the tunneling dominates
over the detuning, oscillations are clearly visible. When ε

grows, the period of the oscillations drops according to
Eq. (16), and the sensitivity clearly improves with time. This
is the result of the increasing domination of the δĴz term in
the Hamiltonian (5). The fact that the sensitivity improves for
large ε, as can be seen in Fig. 1, means that the interferometer
performs at its best when the disturbance δ is large. On the other
hand, when ε < 1, which is of higher physical importance,
we observe that the sensitivity reaches values of the order
of 1. This means that the uncertainty of the estimation is
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ϕ

√ m
Δ

δ δ
= 1
= 0.5
= 0.25

1

0.1

0.01
0 π 2π

FIG. 1. (Color online) The normalized sensitivity �δ in units of
δ for a spin-coherent state with N = 100 plotted as a function of ϕ

for three different values: ε = 1 (solid black line), ε = 0.5 (dotted
blue line), and ε = 0.25 (dashed red line).

comparable to the value of the parameter δ. Even in such a
case, the estimation can be precise since for a large number
of experiments m, according to the central limit theorem, the
precision improves by a factor of 1/

√
m.

In the next step, we replace the spin-coherent state with
a spin-squeezed state which has reduced fluctuations of the
relative atom number between the two modes [7,8,10–14].
Such a state is characterized with the spin-squeezing
parameter [4,5]

ξ 2
n = N

〈
Ĵ 2

z

〉
〈Ĵx〉2

. (21)

We numerically generate an entangled spin-squeezed state by
finding the ground state of the Bose-Hubbard Hamiltonian

Ĥbh = −Ĵx + α

N
Ĵ 2

z , (22)

with N = 100 particles and α > 0. We take such an α to obtain
a realistic value ξ 2

n = 0.15. With this state, we calculate all
the moments of the angular momentum operators (17) which
determine the sensitivity (12). In Fig. 2, we plot the resulting
normalized sensitivity in units of δ as a function of ϕ for the
same three values of ε as in Fig. 1.

ϕ

√ m
Δ

δ δ

= 1
= 0.5
= 0.25

1

0.1

0.01
0 π 2π

FIG. 2. (Color online) The normalized sensitivity �δ in units of δ

for a spin-squeezed state of N = 100 particles with ξ 2
n = 0.15 plotted

as a function of ϕ for three different values: ε = 1 (solid black line),
ε = 0.5 (dotted blue line), and ε = 0.25 (dashed red line).

ϕ

√ m
Δ

δ δ

= 1
= 0.5
= 0.25

1

0.1

0.01
0 π 2π

FIG. 3. (Color online) The normalized sensitivity �δ in units of δ

for a spin-squeezed state of N = 100 particles with ξ 2
φ = 0.15 plotted

as a function of ϕ for three different values: ε = 1 (solid black line),
ε = 0.5 (dotted blue line), and ε = 0.25 (dashed red line).

Finally, we take a phase-squeezed state, characterized by
the following squeezing parameter [30,31],

ξ 2
φ = N

〈
Ĵ 2

y

〉
〈Ĵx〉2

, (23)

which we generate with the same Hamiltonian but with α < 0.
We take symmetrically ξ 2

φ = 0.15 for N = 100 particles and
plot the analogical normalized sensitivity in Fig. 3.

We now discuss and compare the results presented in these
three figures. First, note that, for large ε, phase-squeezed
states (ξ 2

φ < 1) give better precision than number-squeezed

states (ξ 2
n < 1). This is because in this regime the δĴz term

dominates in the Hamiltonian (5). For phase-squeezed states,
the 〈Ĵ 2

z 〉 term in the QFI dominates over the other two
parts, and the coefficient hz grows with ε. On the other
hand, for number-squeezed states, the 〈Ĵ 2

y 〉 term dominates
over the other parts of the QFI. Moreover, according to
Eqs. (16), this term becomes more important for small ε,
but we still do not observe a significant improvement of
the sensitivity between the results for the coherent state
from Fig. 1 and the number-squeezed state from Fig. 2.
To explain this behavior, we expand the coefficients (16) in
the limit of ε � 1 and short times (ϕ 	 1), and we obtain
that

hx 	 ε2(sin ϕ − ϕ), (24a)

hy 	 ε(1 − cos ϕ), (24b)

hz 	 ε sin ϕ. (24c)

Apart from the vicinity of ϕ = 2π , the hx coefficient from
Eq. (24a) can be neglected compared to hy and hz, and the
lower bound for the sensitivity reads

�δ

δ
� 1√

m

1

2ε

1√
(1 − cos ϕ)2

〈
Ĵ 2

y

〉 + sin2 ϕ
〈
Ĵ 2

z

〉 . (25)
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ϕ

√ m
Δ

δ δ
1

1

0.1

0.50.25 0.750

SNL
SNL for MZI
QFI
QFI for MZI

FIG. 4. (Color online) The QFI (solid black line) in units of SNL
from Eq. (26) for ε = 0.1 as a function of ξN . For a coherent state
(ξN = 1) the sensitivity reaches the SNL (dashed red line). When
ξN < 1, the sensitivity improves and breaks the SNL of the MZI
(blue dashed line). For comparison, the sensitivity of the MZI, given
by Eq. (27), is drawn with a green dot-dashed line.

Clearly, there is a particular point, ϕ = π , when

�δ

δ
� 1√

m

1

2ε

1√
4
〈
Ĵ 2

y

〉 . (26)

This sensitivity closely resembles the ultimate bound for the
MZI interferometer (11), which for pure states reads

�δMZI

δ
� 1√

m

1

θ

1√
4
〈
Ĵ 2

y

〉 . (27)

However, since θ = ε × ϕ, the MZI bound for the sensitivity
is ϕ/2 times better than that of Eq. (26), as shown in Fig. 4.

This means that the precision (27), in contrast to Eq. (26),
improves over time. Nevertheless, since the expansion (24) is
valid for short times, the gain from the time scaling of Eq. (27)
over Eq. (26) is of the order of π . Note also that Eq. (26)
improves for the spin-squeezed states with ξ 2

n < 1 because for
such states 4〈Ĵ 2

y 〉 > N , but, on the other hand, it deteriorates
when ε drops. These two effects more or less cancel each
other for the parameters used in Fig. 2. However, for large
N , the improvement coming from the quantum correlations
dominates over the loss of the signal, leading to the SSN
scaling of the sensitivity.

Another distinguished time is when φ = π
2 . Then, Eq. (25)

simplifies to

�δ

δ
� 1√

m

1

ε

1√
4
〈
Ĵ 2

y

〉 + 4
〈
Ĵ 2

z

〉 . (28)

Interestingly, in this case the sensitivity can be improved
over the SNL for both phase-squeezed states, which give
4〈Ĵ 2

z 〉 > N , or number-squeezed states, which give 4〈Ĵ 2
y 〉 >

N . Still, the loss of the signal for small ε, in comparison to the
sensitivity of the MZI (27), can overshadow the SSN scaling
if N is not sufficiently large.

Finally, we focus on the long-time behavior of the QFI.
When ϕ 
 1, Eqs. (16) simplify and give the following bound

for the sensitivity:

�δ

δ
� 1√

m

ε2 + 1

θε

1√
4〈(�Ĵx)2〉 + 4

〈
Ĵ 2

z

〉
ε2

. (29)

If ε � 1 and the state is spin squeezed with ξ 2
n < 1, the 4〈Ĵ 2

z 〉ε2

term can be safely neglected, and we obtain

�δ

δ
� 1√

m

1

θε

1√
4〈(�Ĵx)2〉

. (30)

If |ψ〉 is strongly squeezed—i.e., it is close to the twin-Fock
state |ψ〉 	 |N

2 ,N
2 〉—then 〈(�Ĵx)2〉 	 〈Ĵ 2

y 〉, and Eqs. (27)
and (30) differ only by a presence of ε in the denominator
of the latter. Still, both expressions share the same scaling
of the sensitivity with time. When ε 	 1 and |ψ〉 is close to
a coherent spin state or is phase squeezed, then Eq. (29) is
approximately

�δ

δ
� 1√

m

ε2 + 1

θε2

1√
4
〈
Ĵ 2

z

〉 . (31)

This expression gives the SSN scaling for phase-squeezed
states, scales inversely in time, and is only ε2+1

ε2 	 2 times
worse than the ultimate bound for the pure phase imprint (10).

To summarize this section, we have calculated the ultimate
bound for the sensitivity of the double-well interferometer.
We have shown that it betrays the characteristic oscillatory
behavior due to the presence of the Josephson term in the
Hamiltonian (5). We have also shown that for some particular
instants of time, the QFI can be improved beyond the SNL
with either number-squeezed or phase-squeezed states. At long
times and with spin-squeezed input states with the reduced
relative population imbalance (ξ 2

n < 1), the sensitivity closely
resembles that of the MZI, whereas with phase-squeezed states
(ξ 2

φ < 1), it is almost as good as for a pure phase imprint.

IV. ESTIMATION FROM THE POPULATION IMBALANCE

We now focus on a particular scheme of estimation based on
the measurement of the population imbalance. The sequence
we consider is the following. First, the input state (8) evolves
according to Eq. (7). Next, a population imbalance n between
the two sites is measured. If these data are used to estimate the
value of δ, the CRLB reads

�δ � 1√
m

1√
Fimb

. (32)

Here, Fimb is the Fisher information for the population imbal-
ance measurement. It is related to the conditional probability
p(n|δ) for detecting n given δ as follows:

Fimb =
N∑

n=0

1

p(n|δ)

(
∂p(n|δ)

∂δ

)2

. (33)

The above probability results from the projection of the output
state onto a state with n particles in one mode and N − n in
the other:

p(n|δ) = |〈n,N − n|Û |ψ〉|2. (34)
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The Fisher information (33) through the CRLB (32) provides
the maximal precision for the estimation of δ from the
population imbalance measurement, whichever estimator is
used. Moreover, FQ � Fimb always holds since the QFI sets
the ultimate CRLB optimized over all possible measurements.

Although the Fisher information from Eq. (33) is “the best
one can get” from the population imbalance measurement,
reaching the bound (32) requires the knowledge of the
full probability (34). This renders the Fisher information
approach impractical in most of the cases because in order
to know Eq. (34) one must go through a laborious calibration
stage. Therefore, typically some simpler estimators, which
still utilize the data acquired from the measurements of the
population imbalance, are used. The simplest estimator is
based on the knowledge of the lowest moment of Eq. (34),
namely, the average, which is equal to the mean of the
population imbalance operator Ĵz:

〈n(t)〉 =
N
2∑

n=− N
2

(
n − N

2

)
p(n|δ) = 〈Ĵz(t)〉. (35)

This average can be evaluated in the Heisenberg picture, where
Ĵz reads

Ĵz(t) = Û †ĴzÛ . (36)

Using the evolution operator (7), we obtain

Ĵz(t) = ux(t)Ĵx + uy(t)Ĵy + uz(t)Ĵz. (37)

The three time-dependent coefficients are

ux(t) = ε[cos(ϕ
√

ε2 + 1) − 1]

ε2 + 1
, (38a)

uy(t) = − sin(ϕ
√

ε2 + 1)√
ε2 + 1

, (38b)

uz(t) = cos(ϕ
√

ε2 + 1) + ε2

ε2 + 1
. (38c)

The scheme of the estimation from the average population
imbalance is presented in Refs. [25,30,32]. First, we assume
that the function (35) is known with δ being a free parameter.
In the experiment, this function is obtained in the calibration
process. Then, the population imbalance is measured m times
at time t . According to the central limit theorem, if m 
 1, the
averaged outcomes are distributed with a Gaussian probability
around the true mean value. This probability, together with
the experimental outcomes, is used to construct the likelihood
function L(δ). In the final step, δ is assigned to the value
maximizing L(δ). Such an estimator is unbiased, and its
sensitivity is given by the error-propagation formula

�δ � 1√
m

√
〈[�Ĵz(t)]2〉∣∣ ∂〈Ĵz(t)〉

∂δ

∣∣ . (39)

The average and the variance of the population imbalance
operator are expressed in terms of the two lowest moments
of the angular momentum operators and the coefficients ui .
Combining Eqs. (37), (38), and (39), we obtain the bound for

δ

ϕ

√ m
Δ

δ δ

= 1
= 0.5
= 0.25

1

0.1

0.01

10

0 π 2π

FIG. 5. (Color online) The normalized sensitivity �δ in units of
δ calculated using the error propagation formula for a spin-coherent
state with N = 100. The figure shows Eq. (41) as a function of ϕ for
three different values: ε = 1 (solid black line), ε = 0.5 (dotted blue
line), and ε = 0.25 (dashed red line).

the sensitivity in units of δ:

�δ

δ
� 1√

m

√
u2

x(t)N 〈(�Ĵx )2〉
〈Ĵx 〉2 + u2

y(t)ξ 2
φ + u2

z(t)ξ 2
n√

Nδ
∣∣ ∂ux (t)

∂δ

∣∣ . (40)

It is again a complicated function of ε, ϕ, and the input state.
For a particular case of a spin-coherent state (18), when ξ 2

n =
ξ 2
φ = 1, we obtain that

�δ

δ
� 1√

m

√
u2

y(t) + u2
z(t)

√
Nδ

∣∣ ∂ux (t)
∂δ

∣∣ . (41)

We plot this result in Fig. 5 as a function of ϕ for the same
three values of ε as in Fig. 1. We observe behavior similar to
that in the case of the ultimate bound discussed in Sec. III. For
each ε, the sensitivity reveals some oscillatory features, and
the values of �δ/δ are similar to those in Fig. 1. To complete
the comparison, in Figs. 6 and 7, we plot Eq. (40) for the
number-squeezed state (ξ 2

n = 0.15) and the phase-squeezed
state (ξ 2

φ = 0.15). Again, we observe the typical oscillatory
behavior and quite similar values of the sensitivity.

δ

ϕ

√ m
Δ

δ δ

= 1
= 0.5
= 0.25

1

0.1

10

0 π 2π

FIG. 6. (Color online) The normalized sensitivity in units of δ

calculated using the error propagation formula for a number-squeezed
state of N = 100 particles with ξ 2

n = 0.15. The figure shows Eq. (40)
as a function of ϕ for three different values: ε = 1 (solid black line),
ε = 0.5 (dotted blue line), and ε = 0.25 (dashed red line).
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ϕ

√ m
Δ

δ δ
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= 0.5
= 0.25

1
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FIG. 7. (Color online) The normalized sensitivity �δ in units of
δ calculated using the error propagation formula for a phase-squeezed
state of N = 100 particles with ξ 2

φ = 0.15. The figure shows Eq. (40)
as a function of ϕ for three different values: ε = 1 (solid black line),
ε = 0.5 (dotted blue line), and ε = 0.25 (dashed red line).

In order to gain a better insight into the precision that can
be achieved from Eq. (40), we again consider the ε � 1 and
ϕ 	 1 case. In this limit, we obtain that

�δ

δ
� 1√

m

1√
N

1

ε

√
ξ 2
φ sin2 ϕ + ξ 2

n cos2 ϕ

| cos ϕ − 1| . (42)

To draw a parallel with the results from Sec. III, we first
consider the case ϕ = π , which simplifies Eq. (42) to

�δ

δ
� 1√

m

1√
N

1

2ε
ξn. (43)

This expression resembles the sensitivity of the estimation
from the average population imbalance with the MZI,

�δMZI

δ
� 1√

m

1√
N

1

θ
ξn, (44)

just as Eq. (26) resembles the ultimate bound of the MZI.
Again, the ratio of those two is equal to ϕ/2. Nevertheless, the
precision (43) improves below the SNL if the interferometer
is fed with a squeezed state with ξ 2

n < 1.
The other distinguished instant of time is when φ = π

2 . At
this point, Eq. (42) transforms into

�δ

δ
� 1√

m

1√
N

1

ε
ξφ. (45)

Again, there is a close analogy between this expression and
the bound from Eq. (28). As in the case of Eq. (28), the
sensitivity (45) drops below the SNL if the input state is
phase-squeezed (ξ 2

φ < 1). Note, however, that the presence
of ε in the denominator deteriorates the precision.

At long times—when ϕ 
 1—and when ε is small, the
formula (42) takes an appealing form:

�δ

δ
� 1√

m

1√
N

1

θε2

√
ξ 2
φ + ξ 2

n cot2 ϕ. (46)

Again, this expression scales inversely with time. At times such
that cot2 ϕ = 0, this sensitivity, analogically to the short-time
expression (45), improves over the shot-noise scaling with
phase-squeezed states. Nevertheless, the improvement from

ϕ

√ m
Δ

δ δ

quantum Fisher information
Fisher information
mean population imbalance

1

0.1

10

0 π 2π

FIG. 8. (Color online) Comparison of the three bounds for the
normalized estimation precision. The solid black line is the QFI
from Eq. (12). The dotted blue line is obtained from the full
population imbalance probability (34). The dashed red line is the
error propagation formula for the estimation from the lowest moment
of the population imbalance probability. The parameters are ε = 0.1,
ξ 2
n = 0.15, and N = 100.

the particle entanglement might be eclipsed by the presence of
ε2 in the denominator.

Finally, we compare the ultimate sensitivity (12) to the
Fisher information (32) and the error propagation formula (40).
In Fig. 8, we plot the normalized (

√
m�δ

δ
) sensitivity in units

of δ with ε = 0.1 as a function of ϕ for a spin-squeezed state
with ξ 2

n = 0.15. We observe that the simple estimation from the
average population imbalance gives the sensitivity almost as
good as the Fisher information. Moreover, for ϕ = π—when
Eqs. (26) and (43) hold—all three methods give the same
precision. This result can be explained as follows. At this time
point, the sensitivities (26) and (43) resemble the precision of
the MZI. For this interferometer, the Fisher information for the
population imbalance probability (32) saturates the QFI for all
states (8) with real coefficients Cn [36,37]. A spin-squeezed
ground state of the Hamiltonian (22) satisfies this condition,
therefore Eqs. (26) and (32) must coincide. On the other hand,
such a state is Gaussian, meaning that it is characterized by the
two lowest correlation functions. Not surprisingly, in such a
case the sensitivity, which depends on these two moments (39),
is as powerful as the estimation from the full probability (32).
To summarize, at ϕ = π the simple estimation protocol from
the average population imbalance is optimal; i.e., it saturates
the ultimate bound of the QFI.

V. CONCLUSIONS

We performed a systematic study of an atom interferometer
which can be implemented in a double-well potential. This
interferometer combines the phase imprint and the mode
mixing at the same time. We derived the ultimate bounds
for the precision of the parameter estimation and showed
that these bounds improve from the particle entanglement of
spin-squeezed states. Importantly, for such an interferometer
the estimation from the average population imbalance gives the
sensitivity which closely resembles the expression obtained
for the MZI. Finally, we showed that this estimation method
can be optimal at the half of the period of the Joseph-
son oscillation. Such an oscillation-assisted interferometer,
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similarly to the Mach-Zehnder interferometer, can benefit
from the time scaling of the sensitivity. However, in every
limiting case, the precision of the interferometer suffers from
the loss of the signal, represented by the presence of ε in the
denominator.

Our work shows that a simple evolution operator (7)
allows for an astonishing variety of interferometric scenarios,
though the presented analysis is not general. We restricted
our calculations only to pure states and assumed that the
interactions are fully suppressed during the interferometric
sequence. In some situations, the interactions might either
improve the interferometric signal [38] or barely affect it [39].
Nevertheless, in most cases the presence of interactions
worsens the visibility of the interferometric fringes [10]. To

avoid such effects, the two-body collisions are tuned down to
zero with the help of Feshbach resonances [17].

We also did not take into account the impact of decoher-
ence [40–42]. In any realistic application, the above theory
should be extended to include those effects. Nevertheless,
our results serve for two purposes. First, the idealized model
determines the ultimate bounds for the precision of the
parameter estimation. Second, these findings provide a simple
theoretical background for further analysis.
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Lett. 104, 250801 (2010).

[13] Z. Chen, J. G. Bohnet, S. R. Sankar, J. Dai, and J. K. Thompson,
Phys. Rev. Lett. 106, 133601 (2011).

[14] T. Berrada, S. van Frank, R. Bücker, T. Schumm, J.-F. Schaff,
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