
PHYSICAL REVIEW A 90, 063425 (2014)

Transport in a harmonic trap: Shortcuts to adiabaticity and robust protocols
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We study the fast transport of a particle or a Bose-Einstein condensate in a harmonic potential. An exact
expression for the final excitation energy in terms of the Fourier transform of the trap acceleration is used
to engineer optimal transport protocols (with no final excitation) that are robust with respect to spring-constant
errors. The same technique provides a way to design the simultaneous and robust transport of a few noninteracting
species that experience different harmonic trap frequencies in the same trap.
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I. INTRODUCTION

The accurate control of atomic motion is one of the goals of
modern atomic, molecular, and optical physics. Neutral atoms
and ions, individually, in condensates or in thermal clouds,
are moved in many experimental settings from preparation to
science chambers, to implement interferometers and metro-
logical devices, or for quantum information operations among
processing and storing sites. Atoms may simply be launched
into free-flight or free-fall orbits, or be driven along moving
traps. Moving traps offer the advantage of a more precise
control that would let the atom, for example, start at rest and
finish translationally unexcited, be stopped or accelerated, and
perform curved trajectories in complex circuit geometries.
Controlled atomic motion is a requisite for current and
potential quantum technologies in which preserving quantum
coherence and achieving high final fidelities with respect to
target states are of paramount importance. Since the effects
of noise and decoherence increase with process time, several
groups have recently developed fast and robust transport
protocols, shortcuts to adiabaticity (STA) [1], which are
generically nonadiabatic but reproduce the final populations
of an adiabatic transport process. They not only minimize
the effects of noise but also allow for quick information
processing or for more repetitions of the operation [2–13].
Several experiments have also demonstrated STA transport for
different systems and conditions [2,14–16].

The “robustness” mentioned before is a relative concept
that depends on the type of perturbation that affects the ideal
external driving [12,17,18]. One of the basic problems that
protocol design must face is the instability of the spring
constant from run to run of the experiment, while keeping
a constant value during each run. This may in fact be the
dominant problem in some settings [12]. In this paper we
address this difficulty by providing a protocol design strategy
that imposes zeros of final excitation in a discrete set of spring
constants. With an appropriate arrangement of points, broad
trap-frequency windows for excitation-free fast transport may
be achieved.

In Sec. II and the Appendices the expression of the
excitation energy for the transport of one atom in a harmonic
trap is worked out. Sections III and IV develop the robust
protocols, and the final discussion in Sec. V points out further
applications of the method.

II. TRANSPORT OF A ONE-BODY WAVE FUNCTION

The transport of a wave function of a particle of mass m

in a moving harmonic trap of angular frequency ω0 (spring
constant mω2

0) is described, in an effectively one-dimensional
scenario, by the time-dependent Schrödinger equation:

i�
∂�(x,t)

∂t
= H0(x,t)�(x,t), (1)

where H0(x,t) = p2/2m + V (x,t) and V (x,t) = mω2
0[x −

x0(t)]2/2. The scalar “transport function” x0(t) denotes the
position of the minimum of the harmonic potential and obeys
the boundary conditions x0(0) = 0, ẋ0(0) = 0, x0(tf ) = d, and
ẋ0(tf ) = 0 for a transport over a distance d in a time interval tf ,
assuming that the trap starts and ends at rest. In Appendix A we
give the expression for the exact solution of Eq. (1) whatever
is x0(t). This solution is related to the evolution of a fictitious
classical particle of coordinate xc(t) that obeys the equation of
motion of the classical counterpart of the transport problem:

ẍc + ω2
0(xc − x0) = 0. (2)

When the initial wave function is in the ground state, the energy
at a time t can be readily calculated from the solution �(x,t)
(see Appendix B):

E(t) − E(0) = 〈�(t)|H0(t)|�(t)〉 − 〈�(0)|H0(0)|�(0)〉
= 1

2mẋ2
c + 1

2mω2
0(xc − x0)2. (3)

If the goal is to avoid any excess energy, E(tf ) = E(0), the
fictitious particle trajectory must obey the boundary conditions
xc(0) = x0(0) = 0, xc(tf ) = x0(tf ) = d, ẋc(0) = ẋc(tf ) = 0.
By virtue of the equation fulfilled by xc, we have also ẍc(0) =
ẍc(tf ) = 0, as x0(t) is assumed to be continuous. This set
of boundary conditions coincides with that obtained with the
shortcut-to-adiabaticity method based on Lewis-Riesenfeld
invariants [1,5]. The solution for the transport function is then
constructed by an inverse-engineering method which consists
in (i) choosing a function xSTA

c that obeys the appropriate set
of boundary conditions and (ii) then inferring from Eq. (2) the
corresponding trajectory of the potential, xSTA

0 .
As shown in [7] the wave function of a Bose-Einstein

condensate satisfying a Gross-Pitaevskii equation in a moving
external harmonic potential is shape invariant and the only
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possible excitations associated with such a mode are center-
of-mass oscillations, along the classical trajectory in Eq. (2),
with constant mean-field energy. The same STA strategy as
for the one-body wave function can therefore be used for the
transport of a condensate.

III. TRANSPORT WITHOUT FINAL EXCESS ENERGY
AT TWO TRAP FREQUENCIES

The optimal transport of a particle corresponds to the
cancellation of the Fourier transform of the acceleration of
the displacement of the trap, ẍ0, at the trap angular frequency
ω0 (see Appendix B):

V(ω0) =
∣∣∣∣
∫ tf

0
ẍ0(t ′)e−iω0t

′
dt ′

∣∣∣∣ = 0. (4)

Consider two angular frequencies ω1 and ω2 for which we
would like the final state to have no excitation: V(ω1) =
V(ω2) = 0. To design the appropriate acceleration function,
ẍ0(t), we introduce an auxiliary function g(t) such that

ẍ0(t) = d4g

dt4
+ (

ω2
1 + ω2

2

)d2g

dt2
+ ω2

1ω
2
2g(t), (5)

and which obeys the boundary conditions g(tf ) = g(0) =
g′(tf ) = g′(0) = g′′(tf ) = g′′(0) = g(3)(xf ) = g(3)(0) = 0.
The auxiliary function is defined through the differential
equation (5) so that, after integrating by parts and taking into
account these boundary conditions, the Fourier transform
of the acceleration becomes the product of a polynomial in
ω2 with the desired zeros by the Fourier transform of the
auxiliary function:

V(ω) =
∣∣∣∣(ω2 − ω2

1

)(
ω2 − ω2

2

) ∫ tf

0
e−iωt ′g(t ′)dt ′

∣∣∣∣. (6)

The squared frequencies in (ω2 − ω2
1)(ω2 − ω2

2) imply zeros
at positive and negative frequencies. The latter might seem to
be superfluous, but they avoid imaginary factors in Eq. (5) and
guarantee the reality of x0(t) for real g.

After designing g(t) and deducing ẍ0 via Eq. (5), we
integrate this equation twice with the boundary conditions
x0(0) = 0, ẋ0(0) = 0, x0(tf ) = d, and ẋ0(tf ) = 0 to specify
the transport function:

x0(t) =
∫ t

0
dt ′

∫ t ′

0
dt ′′ẍ0(t ′′). (7)

Those latter boundary conditions imply that∫ tf

0
g(t)dt = 0 and

∫ tf

0
dt ′

∫ t ′

0
g(t ′′)dt ′′ = d

ω2
1ω

2
2

. (8)

Consider for instance the following polynomial interpolation:

g(t) = N (t/tf )4(1 − t/tf )4(1 − 2t/tf ). (9)

The normalization factor N is deduced from the second
condition in Eq. (8):

N = d
/(

ω2
1ω

2
2t

2
f �

)
, (10)

with

� = −B0(5,5) + 3B0(6,5) − 2B0(7,5)

+B1(5,5) − 3B1(6,5) + 2B1(7,5), (11)

where Bz(u,v) is the incomplete beta Euler function. The
second and third factors in Eq. (9) guarantee the boundary
conditions at the time edges and the fourth one provides
the odd symmetry to satisfy the first integral condition in
Eq. (8). We therefore obtain an exact analytical solution for the
transport problem which fulfills exactly the desired boundary
conditions.

Finally, note that it is possible to set ω1 = ω2. The effect
is to increase (double) the multiplicity of the zero at ω = ω1

which flattens the excitation energy at that point. Examples to
illustrate this effect and its applications are worked out in the
following section.

IV. ROBUST PROTOCOLS

Robust protocols can be designed by generalizing the
previous idea. Suppose that we identify an angular frequency
region [ω0(1 − η),ω0(1 + η)] in which the values of the trap
frequencies corresponding to different runs of the experiment
are distributed. We would like our transport protocol to provide
excitation-free final states in this region. For this purpose,
we choose N angular frequencies {ω1 < ω2, . . . , < ωN },
with ω1 < ω0 < ωN and ωN − ω1 ≈ 2ω0η. The function g(t)
should have now 4N vanishing boundary conditions:

g(0) = g(tf ) = 0,g(1)(0) = g(1)(tf ) = 0, . . . ,

g(2N−1)(0) = g(2N−1)(tf ) = 0, (12)

where g(k) ≡ dkg

dtk
. For instance, we can use the following sim-

ple polynomial interpolation: g(t) = N (t/tf )2N (1 − t/tf )2N

(1 − 2t/tf ). The normalization factor N is determined in the
same manner as previously [see Eq. (10)] with

� = −B0(1 + 2N,1 + 2N ) + 3B0(2 + 2N,1 + 2N )

− 2B0(3 + 2N,1 + 2N ) + B1(1 + 2N,1 + 2N )

− 3B1(2 + 2N,1 + 2N ) + 2B1(3 + 2N,1 + 2N ). (13)

The desired form of the Fourier transform is

V(ω) =
∣∣∣∣∣
(

N∏
i=1

(
ω2

i − ω2
))(∫ tf

0
e−iωt ′g(t ′)dt ′

)∣∣∣∣∣ . (14)

As
N∏

i=1

(
ω2

i − ω2) =
N∑

j=0

Pj (−1)j (ω2)N−j , (15)

where
P0 = 1, P1 =

∑
i

ω2
i , P2 =

∑
i<j

ω2
i ω

2
j ,

P3 =
∑

i<j<k

ω2
i ω

2
jω

2
k, . . . ,PN = ω2

1ω
2
2, . . . ,ω

2
N, (16)

we can infer the link between the acceleration ẍ0 and the
auxiliary function g:

ẍ0 = P0g
(2N) + P1g

(2N−2) + · · · + Pjg
(2N−2j )

+ · · · + PNg(t), (17)

where we have used the fact that∫ tf

0
e−iωt ′g(k)(t ′) = (−iω)k

∫ tf

0
e−iωt ′g(t ′), (18)
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FIG. 1. Transport of a particle by moving its harmonic confine-
ment of angular frequency ω0. The parameters are chosen for the
transport of 40Ca+ ions over a distance of 0.4 μm (see text). (a)
The trajectory of the bottom of the trap, x0(t)/d for a one (solid
line, ω1 = ω0), two (dashed line, ω1 = ω2 = ω0) and three (dotted
line, ω1 = ω2 = ω3 = ω0) frequency robust protocol for a final time
tf given by ω0tf = 2π×1.25. The results of the one-point protocol
with ω0tf = 2π×5 are represented as a double dot-dashed curve. The
dotted-dashed line corresponds to the same kind of 3-point protocol
but for a transport duration increased by 25%: ω0tf = 1.5625×2π .
This slight increase of the transport duration reduces dramatically the
amplitude of the trap center trajectory. (b) Variation in log-scale of
the transient excess energy (in units of the quantum of energy �ω0).

due to the boundary conditions (12). As in Sec. III, it is also
possible to flatten the excitation energy curve versus ω around
ω0 by increasing the multiplicity of the zero, i.e., simply

Δ
E

(t
f
)/

�
ω

0

ω/ω0

FIG. 2. Excess of energy �E(tf ) acquired after the transport
normalized to the quantum of energy �ω0 when the trap angular
frequency ω differs from the optimal choice ω0. Same notations as
in Fig. 1.

ε

Λ
(η

=
0.

02
)

FIG. 3. Robustness function �(η) for η = 0.02 for three different
protocols: one-point protocol with ω1 = ω0 (square), two-point pro-
tocol with ω1 = ω0(1 − ε) and ω2 = ω0(1 + ε) (circle) and the three-
point protocol with ω1 = ω0(1 − ε), ω2 = ω0, and ω3 = ω0(1 + ε)
(triangle). The transport time is ω0tf = 2π×1.25 for the filled
symbols, and ω0tf = 2π×2.5 for the open symbols.

choosing ω1 = ω2 = · · · = ωN = ω0. In Fig. 1, we compare
the one, two, and three frequency protocols with the choice
ωi = ω0. We have plotted both the trajectory x0(t) and the
transient excess of total energy �E(t) during the transport.
The parameters chosen for Fig. 1 are inspired by Ref. [16], in
which a transport of single 40Ca+ ions is performed over a dis-
tance 20 000 a0 where a0 = (�/mω0)1/2 is the harmonic length
associated with the angular frequency ω0 = 2π×1.41 MHz, in
a time ω0tf = 2π×5. We have chosen for Fig. 1 the same atom
and angular frequency ω0 but have considered a transport over
a larger distance, d = 30 000 a0, realized over a much shorter
time duration tf such that ω0tf = 2π×1.25.

We clearly observe in Fig. 2 an impressive increase of the
robustness against the variations of ω about ω0 through the
increasing local flatness about ω0 when N increases. A price
to pay to benefit from this robustness is a more involved trap
trajectory with a clear nonmonotonous character [Fig. 1(a)]
and with an increasingly large transient energy [Fig. 1(b)].1

The oscillatory character of the trajectory can be intuitively un-
derstood. Indeed, to ensure an optimal transport even for a trap
frequency slightly smaller or larger than ω0, one has to design
a trajectory that compensates for the delay or advance that the
two types of trapping about ω0 will imply. Such strategies are
reminiscent of the spin-echo technique in which a succession
of pulses is used to focus the spins toward the desired state
even though they experience different Rabi frequencies [19].

The performance of the protocols can be evaluated by
means of the function

�(η) = 1

2ω0η

∫ ω0(1+η)

ω0(1−η)

�E(tf )

�ω0
dω, (19)

which gives the average excitation number over a finite range of
frequencies about the central angular frequency ω0. It therefore
measures the robustness of the transport against the frequency
of the trap. Figure 3 compares the performance of the 1,2
and 3-point protocols for η = 0.02 and for two different final

1For a transport over a distance d = λa0 in an amount of time
T = 2πμ/ω0, the maximum of the transient energy normalized to
�ω0 scales as (md2/T 2)/�ω0 ∼ λ2/μ2 [5].
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times. The abscissa ε measures the interval between chosen
frequencies for two and three points (see the figure caption).
If not stated otherwise, the parameters for Fig. 3 are the same
as for Fig. 1.

The observed general trends are intuitive: for a given
protocol, increasing the final time improves the robustness
(see Fig. 1); the N -point protocol yields an improvement
by more than two orders of magnitude compared to the
(N − 1)-point protocol. For the shortest transport time, the
optimal choice for the three-point protocol improves the
robustness of the transport by more than five orders of
magnitude compared to the one-point protocol. Figure 3
also demonstrates the importance of the choice of the trap
frequencies ωi and the optimal intervals. This optimization
shows that the protocol that relies on the same frequencies
ωi = ω0 is never the best strategy. For instance, the three-
point protocol with ω1 = 0.97ω0, ω2 = ω0 and ω3 = 1.03ω0

reduces the average excitation energy by a factor of more than
5 compared to the 3-point protocol with ω1 = ω2 = ω3 = ω0.

V. DISCUSSION

We have designed systematic fast transport protocols to
leave the atoms (isolated, or in condensates) translationally
unexcited at final time for a range of trap frequencies. This
is instrumental in avoiding the effect of instability of trap
frequencies among different runs of the experiment. Compared
to a previous method (perturbative with respect to the spring-
constant deviations) to robustify the transport function [12],
the current approach is simpler to implement, contains no
approximations, and gives an explicit form for the transport
function for a chosen trap-frequency domain of stability. The
same methods put forward here may be applied to other
systems as well. Consider in particular two particles, 1 and
2, confined by two different harmonic potentials with angular
frequency ω1 and ω2, respectively, for instance two different
atoms in the same dipole trap or two atoms of the same species
but in different Zeeman states that are magnetically trapped.
We assume that the two particles do not interact. To transport
optimally such a dual species system, we need to guarantee a
vanishing energy excess for both types of atoms. The results
of the two-point protocol developed in Sec. III can then be
applied directly. Its robustness can also be improved using
higher-order protocols as explained in the previous section.
The technique to design optimal and robust trap trajectories
can be readily generalized to more than two species following
directly Sec. IV. Finally, the method described may also be
applied to a broader set of physical inverse problems, e.g.,
in optics, to nullify the Fourier transform of a controllable
function in a given interval.
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APPENDIX A: EXACT SOLUTION

To find the exact solution of Eq. (5) we search for a solution
of the form [13,20]

�(x,t) = �(X,t)eiγX, (A1)

where γ is a time-dependent variable and X = x − xc(t) is
the position shifted by a scalar time-dependent parameter
xc(t) to be determined. In the following we show how γ

and xc are related self-consistently. For this purpose, we
calculate separately the different terms of the time-dependent
Schrödinger solution:

∂�(x,t)

∂t
=

[
−ẋc

∂�

∂X
+ ∂�

∂t
+ i(γ̇ X − γ ẋc)�

]
eiγX, (A2)

− �
2

2m

∂2�

∂x2
= − �

2

2m

(
∂2�

∂X2
+ 2γ i

∂�

∂X
− γ 2�

)
eiγX, (A3)

V (x,t)�(x,t) = 1

2
mω2

0(X + xc − x0)2�eiγX. (A4)

Combining Eqs. (A2)–(A4), we obtain

i�
∂�

∂t
= − �

2

2m

∂2�

∂X2
+ 1

2
mω2

0X
2�

+ i�

(
ẋc − �γ

m

)
∂�

∂X

+ [
�γ̇ + mω2

0(xc − x0)
]
X�

+
[
�γ ẋc + �

2

2m
γ 2 + 1

2
mω2

0(xc − x0)2

]
�. (A5)

By setting to zero the factor of ∂�/∂X and also the factor of
X� we get the relation between γ and xc, γ = mẋc/m, and the
equation of motion of the variable xc: ẍc + ω2

0(xc − x0) = 0.
The variable xc corresponds to the trajectory of the classical
counterpart of the quantum transport problem. The last term of
Eq. (A5) is a scalar time-dependent term which contributes as
a time-dependent phase. To remove it we introduce the wave
function �̃ defined by

�(X,t) = �̃(X,t) exp

(
i

�

∫ t

0
dt ′L(t ′)

)
, (A6)

where L(t) is the classical-mechanical Lagrangian of the
transport:

L(t) = m

2
ẋ2

c − 1

2
mω2

0(xc − x0)2. (A7)

With this choice, the wave function �̃ obeys the time-
dependent Schrödinger equation for a static harmonic potential
of angular frequency ω0:

i�
∂�̃

∂t
= − �

2

2m

∂2�̃

∂X2
+ 1

2
mω2

0X
2�̃(X,t). (A8)

Finally, the exact expression for the solution of Eq. (5) takes
the form

�(x,t) = �̃(X,t)e

imXẋc

� e

i

�

∫ t

0
dt ′L(t ′)

. (A9)
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APPENDIX B: ENERGY

The instantaneous energy reads E(t) = 〈�(t)|H0(t)|�(t)〉.
To perform this calculation using the solution (A9), it is
convenient to write the potential in the form V (x − x0) =
V (x − xc + xc − x0) = V (X + xc − x0). As V is quadratic
there are three contributions to the energy:

E(t) =
∫

dX�∗(x,t)

(
− �

2

2m

d2

dX2
+ 1

2
mω2X2

)
�∗(x,t)

+ m

2
ω2

0(xc − x0)2

+mω2
0(xc − x0)

∫
dX�̃∗(X,t)X�̃(X,t). (B1)

Assuming that the initial state corresponds to the nth eigenstate
of the harmonic potential, we have �̃(X,t) = ϕn(X)e−iEnt/�

with En = �(n + 1/2)ω0 and the last integral of Eq. (B1)
vanishes by parity. The first term can be readily calculated.
We thus find

E(t) = E(0) + m

2
ẋ2

c + m

2
ω2

0(xc − x0)2. (B2)

Let us introduce the position ξ = xc − x0 of the fictitious
classical particle in the frame of the moving potential. This
position obeys the equation

ξ̈ + ω2
0ξ = −ẍ0. (B3)

The solution of this equation provided that xc(0) = 0 and
ẋc(0) = 0 reads

ξ (t) = − 1

ω0

∫ t

0
dt ′ẍ0 sin[ω0(t − t ′)]. (B4)

Interestingly, we can write this solution in the complex form

a(t) = ξ − i
ξ̇

ω0
= i

ω0
eiω0t

∫ t

0
ẍ0(t ′)e−iω0t

′
dt ′. (B5)

The instantaneous energy can be also reexpressed in terms
of a:

�E(t) = E(t) − E(0) = mξ̇ẋ0 + m

2
ẋ2

0 + mω2
0

2
|a(t)|2. (B6)

For the transport problem we are interested in [13]

�E(tf ) = m

2

∣∣∣∣
∫ tf

0
ẍ0(t ′)e−iω0t

′
dt ′

∣∣∣∣
2

. (B7)

In terms of dimensionless variables for time and trap
position,

T = tω0, y0 = x0/a0, (B8)

where a0 = [�/(mω0)]1/2 is the characteristic length for the
harmonic oscillator; the excitation energy in units of the
vibrational quantum �ω0 takes the simple form

�E(Tf )

�ω0
= 1

2

∣∣∣∣
∫ Tf

0
y ′′

0 e−iT ′
dT ′

∣∣∣∣
2

, (B9)

where Tf = ω0tf and the double prime represents the second
derivative with respect to T .

Equation (B7) provides us with an analogy between
transport and Fraunhofer diffraction in optics. Indeed, the
excess of energy is proportional to the modulus of the
Fourier transform of the acceleration profile at the angular
frequency ω0. The acceleration profile therefore plays the
role of an optical transmittance. According to this analogy, an
optimal transport corresponds to a dark fringe in wave optics
(zero intensity) [2].
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