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Fully relativistic calculations are presented for the double K-shell photoionization cross section for several
neutral medium-Z atoms, from magnesium (Z = 10) up to silver (Z = 47). The calculations take into account
all multipoles of the absorbed photon as well as the retardation of the electron-electron interaction. The approach
is based on the partial-wave representation of the Dirac continuum states and uses the Green’s-function technique
to represent the full Dirac spectrum of intermediate states. The method is strictly gauge invariant, which is used
as an independent cross-check of the computational procedure. The calculated ratios of the double-to-single
K-shell ionization cross sections are compared with the experimental data and with previous computations.
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I. INTRODUCTION

Double photoionization is a fundamental atomic process
in which a single photon, being absorbed by an atom,
simultaneously kicks out two electrons. The characteristic
feature of this process is that it can proceed only through
the electron-electron interaction. Indeed, the incoming photon
can (formally) interact only with one electron, so for the
second electron to be kicked out, the required energy should
be transferred from one electron to another through the
electron-electron interaction. This feature makes the double
photoionization very sensitive to the details of the electron-
electron interaction.

A typical system for studying double photoionization has
long been the helium atom, for which numerous experimental
and theoretical investigations have been performed [1]. The
most widely studied quantity was the ratio of the double-to-
single photoionization cross sections σ++/σ+ as a function of
the energy of the incoming photon ω. Today, the helium double
photoionization is often considered as well understood, and
the results of several independent computations [2–5] agree
reasonably well with the experimental data [6–9] in the whole
region of the photon energies.

Unlike the helium case, an adequate description of double
photoionization of both K-shell electrons in neutral medium-
and high-Z atoms is much more challenging for theory. This
is because of the enhanced relativistic effects (that scale as
Z2) as well as the more complex electronic structure of
many-electron atoms. The difficulties of the theory in this
case were demonstrated by the experiments of Kanter et al.
on molybdenum [10] and later also on silver [11], which re-
ported large discrepancies with nonrelativistic calculations and
claimed “the need for theoretical treatments to properly deal
with such systems.” More recently, Hoszowska et al. [12,13]
presented detailed experimental investigations of the double
K-shell photoionization for eight medium-Z atoms in the
range 12 � Z � 23. In the absence of suitable ab initio
calculations, the experimental data of Refs. [12] and [13] were
interpreted only in terms of various semiempirical models.

An attempt for a systematic ab initio calculation of the
double K-shell photoionization in neutral atoms was reported

by Kheifets et al. [14]. In that work, nonrelativistic close-
coupling calculations were performed with three gauges of the
electromagnetic operator: length, velocity, and acceleration.
Convergence (or the lack of it) between the calculations in the
different gauges is commonly used as a test of the accuracy
of the treatment of the electron correlation. The calculations
of Ref. [14] showed that deviations of double-photoionization
results obtained in different gauges are large and becoming
even larger as the nuclear charge and/or the photon energy
are increased. The authors [14] concluded that “significant
difficulties” arise and that “none of the available ground-state
wave functions satisfied the strict gauge convergence test.”

In a previous study of two of us [15], a calculation of
the double photoionization was performed within a fully
relativistic framework, for which the problem of gauge
dependence does not arise as the formalism is gauge invariant
from the very beginning. Large relativistic effects were
demonstrated in that work, but results were reported only for
the He-like ions. In the present investigation, we extend our
previous approach to many-electron systems and present fully
relativistic calculation of the double K-shell photoionization
cross section in neutral atoms.

The computational approach is based on the relativistic
QED perturbation theory. It takes into account all multipoles
of the absorbed photon as well as the retardation (the
frequency dependence) of the electron-electron interaction.
The electron-electron interaction is accounted for rigorously to
the leading order of perturbation expansion. The higher-order
electron-electron interaction (in particular, the interaction with
the spectator electrons) is taken into account approximately by
means of a suitable screening potential in the Dirac equation.

The remaining paper is organized as follows. In Sec. II we
briefly describe our theoretical approach. Section III presents
details of the calculation. Numerical results are presented and
discussed in Sec. IV. The relativistic units (� = c = m = 1)
are used throughout this paper.

II. THEORY

We consider the process in which an incoming photon with
energy ω and helicity λ collides with a neutral atom and kicks
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out two electrons from the K shell into the continuum. The
final-state electrons have energies ε1 and ε2 and momentum
p1 and p2, respectively. Such a process can occur when the
photon energy ω is equal to or greater than the threshold energy
ωcr, which is the (double) ionization energy of the K shell.

The energy-differential cross section of the double K-shell
photoionization is given by [15]

dσ++

dε1
= 4π2α

ω

∑
κ1κ2μ1μ2

∣∣τ++
λ (ε1κ1μ1,ε2κ2μ2; ω)

∣∣2
, (1)

where τ++
λ is the amplitude of the process. The summation in

the above formula runs over the partial waves of the continuum
wave functions of the ejected (final-state) electrons, i.e., the
relativistic angular quantum numbers κ1,2 and the projections
of the total angular momentum μ1,2. The remaining N − 2
(spectator) electrons do not change their state during the
ionization process.

Since the two outgoing electrons share the excess energy of
the photoionization process, the total cross section is obtained
as the integral of the single-differential cross section over a
half of the energy-sharing interval

σ++ =
∫ m+(ω−ωcr)/2

m

dε1
dσ++

dε1
, (2)

where ωcr denotes the threshold of the double-photoionization
process. The other half of the energy interval corresponds to
interchanging the first and the second electron and is accounted
for by the antisymmetrized electron wave function.

To the leading order of QED perturbation theory, the
amplitude of the double-photoionization process is represented
by the two Feynman diagrams as displayed in Fig. 1. The
general expression for the amplitude was derived in Ref. [15]
by using the two-time Green’s-function method [16]:

τ++
λ = N

∑
μaμb

C
J0M0
jaμa jbμb

∑
PQ

(−1)P+Q

×
∑

n

{ 〈Pε1 Pε2|I (
Pε2 Qb)|nQb〉 〈n|Rλ|Qa〉
εQa + ω − εn(1 − i0)

+ 〈Pε1|Rλ|n〉 〈nPε2|I (
Pε2 Qb)|Qa Qb〉
εPε1 − ω − εn(1 − i0)

}
. (3)

p1 a p1 a

p2 b p2 b

kk

FIG. 1. Feynman diagrams that represent the double-
photoionization process in the leading order of perturbation
theory. a and b denote the bound electron states, p1 and p2 are the
continuum electron states, and k refers to the incoming photon.
Double lines denote electrons that are propagating in a central
potential (nuclear Coulomb field plus some screening potential).
Proper antisymmetrization of the initial and the final two-electron
wave functions is assumed.

The operators in the matrix elements in the above formula are
the frequency-dependent electron-electron interaction opera-
tor I (
) and the operator of the photon absorption Rλ. The
states |a〉 ≡ |κaμa〉 and |b〉 ≡ |κbμb〉 describe the initial bound
electron states, whereas |ε1〉 ≡ |ε1κ1μ1〉 and |ε2〉 ≡ |ε2κ2μ2〉
describe the final continuum electron states with a definite total
angular momentum.

The first term in the curly brackets of Eq. (3) corresponds to
the diagram with the electron-electron interaction attached to
the final-state electron wave function (the left graph in Fig. 1)
and the second one, to the diagram with the electron-electron
interaction attached to the initial-state electron wave function
(the right graph in Fig. 1). The summation over P and Q

in Eq. (3) corresponds to the permutation of the initial and
final electrons; Pε1Pε2 = (ε1ε2) or (ε2ε1), QaQb = (ab)
or (ba), and (−1)P and (−1)Q are the permutation signs.
The summation over n in Eq. (3) runs over the complete
Dirac spectrum of intermediate states [16]; 
εib ≡ εi − εb,
N = 1/

√
2 for the equivalent initial-state electrons and N = 1

otherwise; ja,b and μa,b are the total angular momentum and
its projection of the initial-state electrons; and J0 and M0 are
the total angular momentum of the initial two-electron state
and its projection. In the case of the K shell, N = 1/

√
2,

J0 = M0 = 0, ja = jb = 1/2.
The general relativistic expression for the photon absorption

operator Rλ is given by

Rλ = α · ûλ eik·r + G (α · k̂ − 1) eik·r , (4)

where α is a three-component vector of the Dirac matrices,
ûλ is the polarization vector of the absorbed photon, k is the
photon momentum, k̂ = k/|k|, and G is the gauge parameter.

The relativistic frequency-dependent electron-electron in-
teraction operator in the Feynman gauge is given by

I Feyn(ω) = α (1 − α1 · α2)
ei|ω|x12

x12
, (5)

where x12 = |x1 − x2|. In the Coulomb gauge, the electron-
electron interaction acquires an additional term:

ICoul(ω) = I Feyn(ω)

+α

[
1 − (α1 · ∇1)(α2 · ∇2)

ω2

]
1 − ei|ω|x12

x12
. (6)

In our approach, all one-electron states in Eq. (3), |ε1,2〉,
|a〉, |b〉, and |n〉, are assumed to be eigenstates of the same
one-particle Dirac Hamiltonian,

hD = α · p + (β − 1) m + Vnuc(r) + Vscr(r) , (7)

where β is the Dirac β matrix, p is the momentum operator,
Vnuc is the binding potential of the nucleus, and Vscr is the
screening potential induced by the presence of other electrons.
So our approach includes the electron-electron interaction to
the first order of the QED perturbation theory exactly, whereas
the higher-order electron-electron interactions are accounted
for approximately, through the screening potential in the Dirac
equation. By varying the definition of the screening potential,
we can estimate the residual electron correlation effects that
are omitted in the present treatment.

In the present work, we construct the screening potential by
first solving the Dirac-Fock equation for the neutral atom and
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then generating the potential as it arises from the charge density
of the Dirac-Fock orbitals weighted by the occupation numbers
of the orbitals. In particular, we make use of two variants of
the potential which will be termed as the core-Hartree (CH)
potentials VCH,1(r) and VCH,2(r) and which are defined by

VCH,K (r) = α

∫ ∞

0
dr ′ 1

max(r,r ′)

×
∑

n

(qn − K δna)
[
G2

n(r) + F 2
n (r)

]
, (8)

where K = 1 or 2, n numerates the one-electron orbitals, qn

is the occupation number of the orbital, a is the initial 1s

electron state, and Gn and Fn are the upper and the lower
radial components of the Dirac-Fock orbitals.

As can be seen from the definition (8), VCH,2(r) represents
the potential generated solely by the charge density of the
spectator electrons that do not change their state during the
process, whereas VCH,1(r) includes in addition the interaction
with the second 1s electron in the K shell.

It is important that all initial and intermediate states in our
approach are the exact eigenstates of the same one-particle
Dirac Hamiltonian hD with the potential Vnuc(r) + Vscr(r).
Because of this and the fact that the screening potential Vscr

constructed by Eq. (8) is a local potential, the amplitude (3) is
gauge invariant. We note that if we had used a nonlocal (e.g.,
Dirac-Fock) screening potential in hD , it would have broken
the gauge invariance [17].

It can be proved that the amplitude (3) is separately gauge
invariant with respect to the gauge of the absorbed photon
as well as the gauge of the electron-electron interaction. This
gauge invariance was used in order to check our numerical
procedure. In addition, the gauge invariance provides us with
a cross-check of the computation of the two Feynman diagrams
against each other. Indeed, while the contributions of the
two diagrams in Fig. 1 are different for different gauges of
the emitted photon, their sum should be (and was checked
numerically to be) the same.

III. NUMERICAL ISSUES

A general (numerical) scheme for the computation of
double-photoionization cross sections was developed in our
previous investigation [15]. Similarly to that, the summation
over the complete spectrum of the Dirac equation is performed
in the present work by using the Dirac-Green’s function. The
distinct feature of the present computation is that the initial
and final states as well as the Dirac-Green’s function need to
be calculated not only for the point-nucleus Coulomb potential
(as in Ref. [15]), but for some general (Coulomb+screening)
potential. For the wave functions, such a generalization is quite
straightforward, and these functions can be readily obtained,
e.g., with the help of the FORTRAN package developed by
Salvat et al. [18]. In contrast, an efficient computation of
the Dirac-Green’s function for the general potential is more
difficult.

For a given value of the relativistic angular quantum number
κ , the radial part of the Dirac-Green’s function is represented
in terms of the two-component solutions of the radial Dirac

equation that are regular at the origin (φ0
κ ) and at infinity (φ∞

κ ):

Gκ (E,r1,r2) = −φ∞
κ (E,r1) φ0T

κ (E,r2) θ (r1 − r2)

−φ0
κ (E,r1) φ∞T

κ (E,r2) θ (r2 − r1) , (9)

where E denotes the energy argument of the Green’s function,
r1 and r2 are the radial arguments, and θ is the Heaviside step
function.

An efficient numerical scheme for computing the regular
and irregular solutions of the Dirac equation for an arbitrary
Coulomb + short-range potential was developed by one of us
in Ref. [19]. We note that practical computations for arbitrary
potential become much more time consuming as compared
to computations with the point-nucleus Coulomb potential.
The reason is that the point-nucleus Dirac-Coulomb-Green’s
function can be calculated directly at any radial point, whereas
for arbitrary potential, a two-step procedure is required: first
one needs to solve the radial Dirac equation on the grid
and only then one can obtain the regular and irregular Dirac
solutions by interpolation.

A serious numerical problem arises in the evaluation of the
radial integrals for the left graph in Fig. 1 (where the electron
correlation modifies the final-state wave function). In this case,
the continuum-state Dirac wave function has to be integrated
together with the Dirac-Green’s function with the energy E >

m. All functions under the integral are strongly oscillating and
decrease only (very) slowly for large radial arguments. It is
therefore practically impossible to evaluate such integrals to
high precision by just applying a straightforward numerical
integration. In our approach, we use instead the method of the
complex-plane rotation of the integration contour, described
in detail in Ref. [20].

After the radial integrals are successfully evaluated, the
next problem is the summation of the partial-wave expansions.
When all angular momentum selection rules are taken into
account, two (out of five) partial-wave summations remain
infinite. One can choose the parameters for these two infinite
summations differently. Our choice was the relativistic angular
momentum parameters κ1 and κ2 of the two final-state
electrons in Eq. (1). In the present work, the number of partial
waves included was (|κ1|,|κ2|) = (10,10), with the tail of the
expansion estimated by extrapolation. This is slightly less than
in our previous investigation [15], since the maximal photon
energy is smaller in the present work.

A number of tests have been performed in order to check our
numerical procedure. First, we checked the gauge invariance
of the calculated results. Apart from the Feynman gauge
which was normally used, we repeated our calculations with
the electron-electron interaction in the Coulomb gauge [see
Eq. (6)] and found perfect agreement. We also checked that
varying the gauge of the absorbed photon [parameter G in
Eq. (4)] has no effect on the numerical results. Second,
we recalculated the contribution of the right diagram in
Fig. 1 by using a completely different numerical technique,
based on the explicit summation over the Dirac spectrum
represented by the finite basis set of B splines [21]. Finally,
we checked the nonrelativistic limit of our calculations for
the point-nucleus Coulomb potential against the independent
perturbation-theory calculations of Mikhailov et al. [22] and
Amusia et al. [23] and found good agreement.
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TABLE I. K-shell double-ionization energy ωcr, in keV.

Z CH1 CH2 Coul MCDF Ref. [25]

12 2.65 3.05 3.93 2.79 2.61
20 8.12 8.79 10.9 8.39 8.09
29 18.0 19.0 23.2 18.4 18.0
47 51.1 52.8 62.0 51.9 51.3

IV. RESULTS AND DISCUSSION

In the present work, we study the process of the double
K-shell photoionization for several neutral medium-Z atoms:
magnesium (Z = 12), calcium (Z = 20), copper (Z = 29),
and silver (Z = 47). The results of the calculation are
presented in terms of the ratio of the double-to-single K-shell
ionization cross section,

R = Z2 σ++

σ+ , (10)

as a function of the ratio of the incoming photon energy and the
double K-shell photoionization energy ω/ωcr. The prefactor
of Z2 in the definition (10) ensures that the function R(ω/ωcr)
depends only weakly on the nuclear charge and the degree of
ionization of the atom (ion); this fact is often termed as the
universal scaling law of double photoionization [26,27]. In our
previous calculation for He-like ions [15], we demonstrated
that this scaling holds exactly in the nonrelativistic limit and
to the first order in perturbation theory, but is violated by the
relativistic effects.

In order to obtain numerical results for R(ω/ωcr), we
need first to calculate the double K-shell ionization energy
ωcr and the cross section of the usual (single) K-shell
photoionization σ+. These calculations are relatively simple
and can be performed by many different methods. In the
present investigation, however, we required that ωcr and
σ+ be calculated within exactly the same approach as the
double-photoionization cross section σ++.

In Tables I and II, we present numerical results for the K-
shell double-ionization energy ωcr and the cross section of the
single K-shell photoionization σ+ for ω = 2 ωcr, respectively.
The columns labeled CH1, CH2, and Coul display the data
obtained in the present work with the corresponding potential
in the Dirac equation (VCH,1, VCH,2, and the Coulomb potential,
respectively). The Coulomb-potential values correspond to the
case of He-like ion in the independent particle model. The data
in the MCDF column are obtained by the multiconfigurational
Dirac-Fock method by using the RATIP package [24], whereas
the data in the last column are taken from the literature [25].

TABLE II. Cross section of single K-shell photoionization σ+

for the photon energy ω = 2 ωcr, in kbarn.

Z CH1 CH2 Coul MCDF Ref. [25]

12 4.88 3.55 1.70 4.95 5.40
20 1.38 1.15 0.61 1.40 1.52
29 0.575 0.510 0.288 0.635 0.649
47 0.183 0.171 0.108 0.188 0.189

TABLE III. Ratio of the double-to-single K-shell-
photoionization cross sections R = Z2 σ++/σ+, for the photon
energy ω = 2 ωcr.

Z CH1 CH2 Coul Coul (NR)

12 0.340 0.286 0.200 0.191
20 0.316 0.287 0.214 0.191
29 0.323 0.305 0.239 0.191
47 0.383 0.373 0.318 0.191

The single-photoionization cross sections CH1, CH2, and
Coul are obtained within the single-electron approximation,
where the electron-electron interaction is accounted for ap-
proximately either through the screening potential (for the
CH1 and CH2 values) or is totally ignored (for the Coulomb
case). It is thus natural that these results are less accurate than
the ones obtained by the MCDF method. As might have been
anticipated, the CH1 potential is the best choice among the
three potentials considered. It is important that the difference
between the CH1 and CH2 values yields a reliable estimate of
the residual electron correlation effects neglected by the
effective single-electron approximation.

Let us now turn to the main objective of the present
work: the ratio of the double-to-single K-shell photoionization
cross sections R. Our numerical results for R are presented
in Table III for the photon energy ω = 2 ωcr and for the
three different potentials, CH1, CH2, and Coul. In the last
column, we list also the nonrelativistic limit of the Coulomb
results. The striking feature of the presented comparison is
that the ratio R is much less sensitive to the choice of the
potential than the single-photoionization cross section σ+.
This explains why we took great care in order to calculate
σ++ and σ+ fully consistently, i.e., both to the leading order in
perturbation theory with exactly the same screening potential
in the Dirac equation (7). The importance of such consistency
was implicitly acknowledged already in previous perturbation-
theory calculations [15,22,23], where results were presented
solely in terms of R and not in terms of σ++.

From the comparison in Tables I–III, we see that the
difference between the CH1 and CH2 results (which we
use for estimating the magnitude of the residual electron
correlation effects) monotonically decreases with the increase
of the nuclear charge. It is consistent with what one might
have anticipated: the single-electron approximation usually
performs the better, the heavier the atom under consideration.

The nonrelativistic Coulomb values of R in Table III
are exactly the same for all atoms. This demonstrates the
universal scaling law of the nonrelativistic double photoioniza-
tion [26,27]. As seen from the table, the nonrelativistic scaling
is violated by the relativistic effects, so that the relativistic
Coulomb results depend on nuclear charge.

We now discuss our results for selected atoms in more
detail. Figure 2 presents our calculation for magnesium.
The left panel compares our results with the nonrelativistic
calculations in the length, velocity, and acceleration gauge by
Kheifets et al. [14], as well as the experiments by Hoszowska
et al. [12,13]. Our results are shown for the CH1 (red solid
line) and CH2 (orange dashed line) potentials. In addition,
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FIG. 2. (Color online) Double K-shell photoionization cross section for neutral magnesium (Mg, Z = 12). The double-to-single K-shell
ionization ratio (R = Z2σ++/σ+) is plotted as function of the incoming photon energy ω in units of the double K-shell photoionization energy
ωcr. The results of the present calculation are plotted by a solid line (red) for the CH1 potential and by a dashed line (orange) for the CH2

potential, respectively. The experimental results of Refs. [12] and [13] are shown by black diamond points. On the left panel, the calculations
by Kheifets et al. [14] in length, velocity, and acceleration gauge are shown by dotted lines (navy, purple, and blue, respectively). On the right
panel, the present theory and experiment [12,13] for neutral magnesium are compared with the computations for He-like magnesium ions. The
relativistic results for the He-like ion are shown by the down-triangle points (dark green line); the nonrelativistic calculation is shown by the
up-triangle points (light green line).

the right panel of this figure displays our calculations for
the corresponding He-like ion (Coulomb potential), presenting
the relativistic results (dark green, down-triangle points) and
nonrelativistic results (light green, up-triangle points). The
results for the He-like ions are equivalent to those obtained in
our previous work [15].

From the comparison in the right panel of Fig. 2, we
can identify the magnitude of various effects. The differ-
ence between the nonrelativistic and the relativistic curves
for He-like ion shows the effect of relativity, whereas the
difference between the CH2 results for the neutral-atom and
the relativistic results for He-like ion identifies the effect
of the outer electrons. The difference between the CH1 and
CH2 curves might be interpreted as the effect of higher-order
interactions between the two K-shell electrons. We may
therefore conclude that for magnesium, the relativistic effects
are not very prominent but the interaction with the outer
shells increases the ratio R by about 50% and thus cannot
be neglected.

The results of our calculation for magnesium agree rea-
sonably well with the experimental data [12,13] for energies
up to the maximum of the curve (ω/ωcr ≈ 2) but deviate
noticeably for higher photon energies. Good agreement is also
observed with the nonrelativistic results by Kheifets and co-
workers [14], obtained in the velocity gauge, while their results
in the acceleration and length gauge deviate significantly, both
from our predictions as well as from experimental data.

Figure 3 displays our results for calcium and compares them
with previous calculations [14,22] and experiments [12,13,28].
We observe that for this element, neither of the calculations
agrees well with experiment. The computations by Kheifets
et al. [14] exhibit a very strong gauge dependence. At the

same time, similarly as for magnesium, their results in the
velocity gauge are found to be in good agreement with our
values. The computations by Mikhailov et al. [22] agree
with our results and with Kheifets’s velocity-gauge data for
small photon energies of ω/ωcr � 1.5 but predict significantly
smaller values of R at higher photon energies.

Figure 4 presents the ratio R for copper. Results of our
relativistic calculation for the neutral atom with the screening
potentials CH1 and CH2 (the red solid line and the orange
dashed line, respectively) are compared with our relativistic
calculation for the He-like ion (dark green line, down-triangle
points) and the corresponding nonrelativistic calculation (light
green line, upper-triangle points). Here our results agree well
with the only available experimental point [29] in the near-to-
threshold region.

Finally, Fig. 5 presents theoretical and experimental results
for silver, which is the heaviest atom for which measurements
of the double K-shell photoionization have been performed.
We observe that two of the three experimental points reported
in Ref. [11] disagree strongly with the theory. Comparison of
theoretical curves for neutral atoms and He-like ions shows
that the influence of the outer-shell electrons is rather weak
in this case, so it seems unlikely that the residual electron
correlation can explain the discrepancy. The relativistic effects
are large and change the form of the curve remarkably [15],
but they are not large enough to bring theory into agreement
with experiment.

More generally, our calculations show that the relative
influence of the outer-shell electrons on R, being significant
for low-Z systems, gradually decreases as Z increases.
This is what one might have anticipated, having in mind
that the characteristic photon energy scales as Z2, so that
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FIG. 3. (Color online) The same as Fig. 2 but for neutral calcium (Ca, Z = 20). The crosses denote the experimental results of Oura
et al. [28]. On the left panel, the violet dash-dotted line denotes the calculation by Mikhailov et al. [22].

the interaction of electrons with the photon should become
increasingly localized around the nucleus when Z increases.

It is interesting that for small and medium photon energies,
ω/ωcr � 2, the relativistic results for R exhibit essentially the
same scaling law for neutral atoms as those reported previously
for the nonrelativistic He-like ions [26,27]. In particular, the
relativistic theoretical values of R for ω/ωcr = 2 are nearly
the same for all neutral atoms considered in the present work
(about 0.35, see Table III). This is because, for low-Z atoms,
the electron correlation effects are large and relativistic effects
are small, whereas for medium-Z atoms, it is vice versa.
Since both effects increase the ratio R, the sum of them
leads to a nearly uniform (in Z) enhancement of the familiar
nonrelativistic He-like curve.

1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

ω ω

R

FIG. 4. (Color online) The same as Fig. 2 but for neutral copper
(Cu, Z = 29). The experimental result is by Diamant et al. [29].

The situation becomes drastically different for large photon
energies, ω/ωcr � 2. In this region, the R curve for light
atoms decreases gradually, similarly to what is found for
the well-studied nonrelativistic helium case. For heavy atoms,
however, the relativistic effects change this behavior. Already
for copper the familiar nonrelativistic peak of the curve around
ω/ωcr = 2 disappears (Fig. 4), while for silver the curve
becomes monotonically increasing (Fig. 5). Our previous
calculation [15] suggests that the relativistic curve increases
monotonically also at higher energies, thus changing the
asymptotic behavior with regard to the nonrelativistic theory.

We mention that in all experimental studies [11–13], the
experimental data for R were fitted to semiempirical curves
assuming the nonrelativistic behavior in the high-energy limit,
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FIG. 5. (Color online) The same as in Fig. 4, but for neutral silver
(Ag, Z = 47). The experimental points are by Kanter et al. [11].
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which is not fully justified in the case of medium-Z atoms,
according to our calculations.

V. CONCLUSION

We performed calculations of the double K-shell pho-
toionization cross section for several neutral, medium-Z
atoms from magnesium (Z = 10) up to silver (Z = 47). Our
fully relativistic approach accounts for all multipoles of the
absorbed photon as well as the retardation (the frequency
dependence) of the electron-electron interaction. The electron-
electron interaction was taken into account rigorously to
the leading order of perturbation theory. The higher-order
electron-electron interactions (in particular, with the outer-
shell electrons) were treated approximately by means of some
screening potential in the Dirac equation. The approach of this
work is strictly gauge invariant, and this was utilized in order
to cross-check the computational procedure.

The results of our computations are in reasonable agreement
with experimental data [12,13,29] for the light elements, but
they disagree strongly with the measurement of Ref. [11] for
silver. The reason for this disagreement is unknown.

Our calculations predict large relativistic effects for copper
(Z = 29) and for heavier atoms, as well as at large photon
energies (more than twice larger than the double K-shell
ionization energy). For these energies, the shape of theR curve
is changed quite remarkably due to relativity. This prediction
cannot be presently tested against experiment, as there have
not been any direct measurements of double photoionization
in this region so far.
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063408 (2010).

[14] A. S. Kheifets, I. Bray, and J. Hoszowska, Phys. Rev. A 79,
042504 (2009).

[15] V. A. Yerokhin and A. Surzhykov, Phys. Rev. A 84, 032703
(2011).

[16] V. M. Shabaev, Phys. Rep. 356, 119 (2002).
[17] J. Hata and I. P. Grant, J. Phys. B 17, L107 (1984).
[18] F. Salvat, J. M. Fernández-Varea, and W. Williamson Jr.,

Comput. Phys. Commun. 90, 151 (1995).
[19] V. A. Yerokhin, Phys. Rev. A 83, 012507 (2011).
[20] V. A. Yerokhin and A. Surzhykov, Phys. Rev. A 82, 062702

(2010).
[21] V. M. Shabaev, I. I. Tupitsyn, V. A. Yerokhin, G. Plunien, and

G. Soff, Phys. Rev. Lett. 93, 130405 (2004).
[22] A. I. Mikhailov, I. A. Mikhailov, A. N. Moskalev, A. V.

Nefiodov, G. Plunien, and G. Soff, Phys. Rev. A 69, 032703
(2004).

[23] M. Ya. Amusia, E. G. Drukarev, V. G. Gorshkov, and M. P.
Kazachkov, J. Phys. B 8, 1248 (1975).

[24] S. Fritzsche, Comp. Phys. Comm. 141, 163 (2001); ,183, 1525
(2012).

[25] J. H. Scofield, Lawrence Livermore National Laboratory Report
No. UCRL-51326, 1973 (unpublished); M. J. Berger, J. H.
Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S.
Zucker, and K. Olsen, XCOM: Photon Cross Sections Database
(National Institute of Standards and Technology, Gaithersburg),
http://www.nist.gov/pml/data/xcom/.

[26] M. A. Kornberg and J. E. Miraglia, Phys. Rev. A 49, 5120
(1994).

[27] A. I. Mikhailov, A. V. Nefiodov, and G. Plunien, J. Phys. B 42,
231003 (2009).

[28] M. Oura, H. Yamaoka, K. Kawatsura, K. Takahiro, N.
Takeshima, Y. Zou, R. Hutton, S. Ito, Y. Awaya, M. Terasawa,
T. Sekioka, and T. Mukoyama, J. Phys. B 35, 3847 (2002).

[29] R. Diamant, S. Huotari, K. Hämäläinen, C. C. Kao, and
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