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Creation and manipulation of bound states in the continuum with lasers: Applications to cold atoms
and molecules
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We show theoretically that it is possible to create and manipulate a pair of bound states in the continuum in
ultracold atoms by two lasers in the presence of a magnetically tunable Feshbach resonance. These bound states
are formed due to coherent superposition of two electronically excited molecular bound states and a quasibound
state in the ground-state potential. These superposition states are decoupled from the continuum of two-atom
collisional states. Hence, in the absence of other damping processes they are nondecaying. We analyze in detail
the physical conditions that can lead to the formation of such states in cold collisions between atoms and discuss
the possible experimental signatures of such states. An extremely narrow and asymmetric shape with a distinct
minimum of the photoassociative absorption spectrum or the scattering cross section as a function of collision
energy will indicate the occurrence of a bound state in the continuum (BIC). We prove that the minimum will
occur at the energy at which the BIC is formed. We discuss how a BIC will be useful for efficient the creation of
Feshbach molecules and manipulation of cold collisions. Experimental realizations of BIC will pave the way for
a new kind of bound-bound spectroscopy in ultracold atoms.
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I. INTRODUCTION

First introduced by von Neumann and Wigner more than
80 years ago [1], a bound state in the continuum (BIC) is
a counterintuitive and fundamentally profound concept. The
original theoretical approach of von Neumann and Wigner has
undergone extensions and modifications over the years [2–4].
In recent times, it has attracted renewed research interest [5]
with prospective applications in many areas [6–10]. A BIC
refers to a discreet eigenstate with an energy eigenvalue above
the threshold of the continuum of a potential. The amplitude
of the wave function of this state falls off in space, so the wave
function is square integrable. Normally, the eigenstates of a
one-particle or a multiparticle system above the continuum
are infinitely extended and sinusoidal at distances larger than
the range of the potential. Below the threshold, there exists a
negative-energy spectrum of discrete square-integrable bound
states. The idea of von Neumann and Wigner was first to
assume the existence of a positive-energy square-integrable
wave function with its envelop decaying in space and then
to construct an appropriate potential that can support such
states. Physically, a BIC occurs due to destructive interference
of the outgoing Schrödinger waves scattered by the potential,
creating an “unusual” trap [5] for an electron [1]. Hsu et al.
[10] have observed trapped light, namely, a BIC of radiation
modes by the destructive interference of outgoing radiations
amplitudes.

Nearly 45 years after its discovery [1], Stillinger and
Herrick [3] extended the idea of BIC to two-body interactions
and discussed its applications in atomic and molecular physics.
For two interacting particles, a BIC can be identified with
a scattering resonance state with zero width. In general, a
resonance at finite energies arises due to the existence of a
quasibound (almost bound) state at positive energy. In the
absence of any other source of dissipation, it is the coupling
of the quasibound state with the continuum of scattering states

that results in the finite width of the resonance. This means
that a zero width of the resonance would imply decoupling of
the quasibound state from the continuum of scattering states.
In other words, the resonance state with zero width becomes a
BIC [2,4].

Here we show that it is possible to create a BIC in cold
atom-atom collisions in the presence of two photoassociation
(PA) lasers near a magnetic-field-induced Feshbach resonance.
Our proposed scheme is depicted in Fig. 1. The two lasers, L1

and L2, are tuned near the resonance of two excited molecular
(bound) states, |b1〉 and |b2〉, respectively. We consider a
magnetic Feshbach resonance of two colliding ground-state
atoms with two ground-state channels, one of which one
is closed and the other open. In the absence of coupling
with the open channel, the closed channel is assumed to
support a bound state |bc〉. The two PA lasers couple the
open-channel continuum of scattering states |E〉bare, with E

being collision energy, and |bc〉 to both the excited bound
states. Using projector operator techniques, we analyze the
resolvent operator (z − Ĥ )−1 of the Hamiltonian operator Ĥ

and thereby arrive at an effective complex Hamiltonian Ĥeff of
the three interacting bound states. Ĥeff is non-Hermitian, and
its eigenvalues are, in general, complex. However, as we will
demonstrate, under appropriate physical conditions, two of the
eigenvalues of the effective Hamiltonian can be made real. We
establish the mathematical relations involving the parameters
of our model that should hold well for the existence of the
real eigenvalues. The eigenvectors corresponding to the real
eigenvalues are nondecaying states and hence represent bound
states in the continuum. Similar effective Hamiltonians and
their eigenvalue spectrum were studied in the context of the
two-photon dressed atomic continuum or autoionizing states
[11–13] in the 1980s. In passing, we would like to mention that
non-Hermitian Hamiltonians with real eigenvalues also arise
in other areas, such as parity-time (PT) symmetric Hamiltonian
systems [14,15] and the Friedrichs-Fano-Anderson model
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FIG. 1. (Color online) A schematic diagram for creating a BIC
in ultracold atoms. Two lasers, L1 and L2, are used to excite PA
transitions from the magnetic Feshbach-resonant collisional state of
two ultracold ground-state (S + S) atoms to the two bound states,
b1 and b2, respectively, in the same electronically excited molecular
potential. The magnetic Feshbach resonance is considered to be a
two-channel model in the electronic ground-state potentials, with the
lower channel being open and the upper one being closed. In the large
separation limit the ground-state channel potential corresponds to two
separated S + S atoms, while the excited-state potential corresponds
to two separated S + P atoms.

[16–18], in which a similar spectral singularity appears and
can be associated with a nondecaying state in the continuum
[19,20].

Here we emphasize that it is possible to detect the
two predicted bound states in the continuum using two
spectroscopic methods, namely, photoassociative absorption
and photoassociative ionization techniques. Mathematically,
a BIC in our model appears as a spectral singularity in
the scattering cross section as a function of energy. The
expressions for photoassociation probability of either excited
bound state as well as the scattering cross section involve
the inverse operator (E − Ĥeff)−1. This means that for a
real eigenvalue of Ĥeff the denominator of the expressions
goes to zero. This leads to divergence in the scattering cross
section, implying the occurrence of a resonance with zero
width [2,4], that is, a BIC. However, the photoassociative
absorption spectrum does not diverge for a real eigenvalue
because the numerator of the expression for the spectrum
also goes to zero for the real eigenvalue, canceling out the
singularity of (E − Ĥeff)−1. Physically, the singularity in the
scattering cross section implies that the BIC is a nondecaying
state and hence is decoupled from the continuum. However,

a BIC can make the transition to either of the excited bound
states via BIC-bound coupling, leading to a finite probability
for the absorption of a photon. Practically, spectral singularity
cannot be observed in an experiment. Instead, the signature
of a BIC will be manifested as an ultranarrow line in the
coherent photoassociative spectrum or scattering cross section
when the collision energy is tuned very close to the energy
of the BIC. Usually, photoassociation is described in terms of
atom loss from traps due to the formation of excited diatomic
molecules decaying into two hot atoms or to a diatom that can
escape from the trap. The occurrence of the bound states in the
continuum in cold collisions will help us to photoassociate two
atoms effectively through a bound-bound transition process
which can be coherent. We show that a possible signature of a
BIC in photoassociative cold collisions appears as a sharp and
asymmetric line in the photoassociative absorption spectrum
as a function of collision energy. Close to the sharp spikelike
line, there lies a minimum which resembles the well-known
Fano minimum [17] and corresponds to the energy of the BIC.

We further demonstrate that, when the intensities and the
detuning parameters of L1 and L2 are adjusted appropriately,
one of the bound states in the continuum can be reduced to
a superposition of only |b1〉 and |b2〉, while the other BIC
results from a superposition of all three bound states. We
refer to the first one as A-type BIC and the second one as
B-type BIC. The existence of A-type BIC can be probed by a
probe laser producing the molecular ion and measuring the
ion yield as a function of laser frequency. When the two
continuum-bound couplings are much larger than the Feshbach
resonance linewidth, the superposition coefficient of the |bc〉
state in the B-type BIC is much larger than those of |b1〉 and
|b2〉. Since state |bc〉 has a magnetic moment, the B-type BIC
can be probed by bound-free or bound-bound radio-frequency
spectroscopy. In the case of bound-free spectra, the final
state would be two free atoms, and thus, the B-type BIC
can be used for controlling collisional properties of cold
atoms. Furthermore, Feshbach molecules can be created by
stimulating bound-bound transitions with a radio-frequency
pulse at a fixed magnetic field strength. To create Feshbach
molecules, the usual method uses a sudden sweep of magnetic
field from the large negative to large positive scattering
length sides of the Feshbach resonance. However, this sudden
sweep of magnetic field leads to substantial atom loss due
to an increase in kinetic energy and thereby limits the
atom-molecule conversion efficiency. In contrast, since a BIC
is effectively decoupled from the continuum, by creating a
B-type BIC, Feshbach molecules can be produced efficiently
by inducing stimulated transitions from the BIC to Feshbach
molecular states with a radio-frequency pulse.

We also show that, when the coupling of the continuum
to one of the bound states is turned off, one can still find
one BIC, which can be identified as the familiar “dark state”
made of the superposition of the two remaining bound states.
Coherent population trapping occurs in this superposition
state, resulting in the vanishing of the probability of the
continuum of scattering states. When laser coupling to either
of the excited states is turned off, the model reduces to one [21]
that describes the Feshbach-resonance-induced Fano effect in
photoassociation. The effective Hamiltonian approach to this
model shows that the BIC appears at an energy at which
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the Fano minimum occurs. This can be identified with the
standard result that the population trapping occurs due to
the “confluence” of coherences [22] at the Fano minimum.
When the quasibound state in the ground-state potential is
absent or the magnetic Feshbach resonance is turned off, the
resulting effective Hamiltonian has a real eigenvalue when the
corresponding eigenvector is an excited molecular dark state
[23].

This paper is organized in the following way. In Secs. II
and III, we present our model and its solution, respectively.
We analyze in some detail how to realize our model and its
application in cold atoms and molecules in Sec. IV. Finally,
we discuss important conclusions of our study in Sec. V.

II. THE MODEL

The model is schematically depicted in Fig. 1. To begin
with, we keep our model very general. Suppose a two-channel
model is capable of describing an s-wave Feshbach resonance
in a ground-state atom-atom cold collision. One of these two
channels is open, and the other is closed. The closed channel
is assumed to support bound state |bc〉. The thresholds of these
two ground-state channels and the binding energy of |bc〉 are
tunable by an external magnetic field. Both the bare continuum
of scattering states |E〉bare in the open channel, with E being
the collision energy, and |bc〉 are coupled to two bound states,
|b1〉 and |b2〉, in an excited molecular potential by two lasers,
L1 and L2, respectively. Suppose states |b1〉 and |b2〉 have
the same rotational quantum number J1 = J2 = 1 but they
have different vibrational quantum numbers if both of them
are supported by the same adiabatic molecular potential. If
they belong to different molecular potentials, their vibrational
quantum numbers may be the same or different. The energy
spacing between |b1〉 and |b2〉 is assumed to be large enough
compared to the linewidths of the two lasers. Furthermore, |b1〉
and |b2〉 are assumed to be far below the dissociation threshold
of the excited potential(s), so that the transition probability at
the single-atom level is negligible.

In the rotating-wave approximation, the Hamiltonian of our
mode can be expressed as Ĥ = Ĥ0 + V̂ , where

Ĥ0 =
∑

n

(En − �ωLn
)|bn〉〈bn| + E0|bc〉〈bc|

+
∫

E′dE′|E′〉bare bare〈E′|, (1)

V̂ =
∑

n

∫
dE′�n(E′)|bn〉 bare〈E′|

+
∫

dE′VE′ |bc〉 bare〈E′| +
∑

n

��n|bn〉〈bc| + c.c.

(2)

En is the binding energy of the nth excited molecular state
|bn〉, ωLn

denotes the frequency of the Ln laser, Ec is the
energy of the closed-channel bound state |bc〉, and |E′〉bare

is the bare continuum of the scattering state with energy E′.
Note that all the energies are measured from the open-channel
threshold unless stated otherwise. Here �n(E) is the dipole
matrix element of the transition |E〉bare → |bn〉, VE is the

coupling between the closed-channel bound state |bc〉 and
the open-channel scattering state |E〉bare, and �n is the Rabi
frequency between |bn〉 and |bc〉. The magnetic Feshbach
resonance linewidth is �f = 2π |VE |2.

To study BIC, we analyze the resolvent operator G(z) =
(z − Ĥ )−1 and introduce the projection operators

P = |bc〉〈bc| +
∑
n=1,2

|bn〉〈bn|, (3)

Q = 1 − P =
∫

dE|E〉bare bare〈E|, (4)

which satisfy the properties

PP = P, QQ = Q, PQ = QP = 0, P + Q = 1. (5)

Thus, we have

G = G0 + G0V̂ G = 1

E − Ĥ0 + iε
+ 1

E − Ĥ0 + iε
V̂ G. (6)

Projecting out the bare continuum states, after some algebra
given in the appendix, we obtain an effective Hamiltonian of
three interacting bound states. Explicitly, this Hamiltonian is
given by

Heff = H0 +
∑

n,n′=1,2

[(
�δnn′ − i

��nn′ (E)

2

)
|bn〉〈bn′ |

+
(

δc − i
��f (E)

2

)
|bc〉〈bc|

+
∑

n

��nf (E)

2
{qnf − i}|n〉〈bc| + c.c.

]
, (7)

where δnn = (En + 	shift
nn )/� − ωLn

is the detuning of the
light-shifted nth excited level from the Ln laser frequency
ωLn

, δnn′ = �
−1	shift

nn′ (n �= n′), with 	shift
nn′ being the real part

of the quantity
∫

dE′�∗
n(E′)�n′(E′)/(E − E′), and �nn′(E) =

2π�∗
n(E)�n′(E). Here δc = �

−1[Ec(B) + 	shift
f − Eth(B)] r

is the detuning of the shifted closed-channel bound-state level
from the threshold Eth of the open channel. Note that δc

is a function of the applied magnetic field B due to the
dependence of Ec and Eth on B. 	shift

f = P
∫

dE′|VE′ |2/(E −
E′), where P stands for Cauchy’s principal value, is the
shift due to magnetic coupling VE′ between |bc〉 and |E′〉bare.
qnf is the well-known Fano-Feshbach asymmetry parameter
defined by

qnf = δshift
nf + �n

�nf /2
, (8)

where �n is the Rabi frequency for transition |bc〉 ↔ |bn〉 and

δshift
nf = �

−1P
∫

dE′�∗
n(E′)VE′/(E − E′) (9)

is a frequency shift of the |bc〉 ↔ |bn〉 transition frequency
due to the indirect coupling of the two bound states via the
continuum. Here �nf = 2π�

−1�∗
n(E)VE . For energy E near

the threshold of the continuum, the region E′ > E of the above
integrand contributes more strongly [24]. As a result, δshift

nf will
be negative at low energy. Since �n is positive, the sign of qnf

depends on the relative strength between |δshift
nf | and �n. Since
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the magnetic coupling VE′ is determined by the hyperfine spin
coupling between the closed and the open channels, its value
depends on the specific atomic system chosen. In contrast, the
laser couplings �n and δshift

nf depend on which bound state |bn〉
is chosen for the laser to be tuned to, in accordance with the
Franck-Condon principle of molecular spectroscopy. Thus, it is
possible to alter the sign and magnitude of the Fano-Feshbach
asymmetry parameter in our model through the selectivity
of the excited molecular bound states. Since, in molecular
excited states, there are a host of vibrational levels in different
molecular symmetries that can be accessed by PA, there is a
lot of flexibility in choosing the excited bound states in our
model. We will discuss this point further in Sec. IV.

In the absence of the lasers fields, the magnetic-field-
dependent resonant scattering phase shift ηr and the s-wave
scattering length as are given by

− cot ηr = E − Ẽc

��f /2
. (10)

Ẽc = Ec + 	shift
f is the shifted energy of |bc〉, and k is the

wave number related to the collision energy E = �
2k2/2μ,

with μ being the reduced mass of the two colliding atoms.
When Ec lies far above the open-channel threshold and the
energy dependence of �f near E = Ec is weak, the Feshbach
resonance linewidth �f is given by its value at E = Ec [25]. If
the coupling VE between the closed-channel bound state and
the open-channel continuum state primarily occurs at large
separations where the continuum state attains its asymptotic
form, then in the limit k → 0, �f /2 	 kGf , where Gf is
a constant with the dimensions L s−1. In this case we have
− cot ηr 	 1

kas
+ 1

2 r0k, where r0 is the effective range of the

open-channel ground-state potential, which is related to Ẽc

and Gf by 1
as

= −Ẽc

�Gf
and r0 = �

μGf
, respectively. This means

that the magnetic-field-dependent detuning δc(B) = −Gf /as .
When Ẽc > 0, as is negative, and |bc〉 lies above the threshold
of the open channel; hence, |bc〉 is a quasibound state. In
contrast, when Ẽc < 0, |bc〉 is a true bound state (Feshbach
molecular state), and the scattering length is positive. Later,
we will show that by forming a BIC with a large scattering
length, the BIC can be converted into a Feshbach molecule by
stimulated radio-frequency spectroscopy.

As long as Ec is finite, one can define the resonant phase
shift by Eq. (10). However, as Ec approaches the open-channel
threshold (E = 0), 	shift

f approaches a constant value, and the
validity of Eq. (10) may break down [25]. This problem can be
solved by using a threshold-insensitive parametrization of �f

[25]. It is possible to define a threshold-insensitive resonant
linewidth �̃f when the coupling VE occurs at relatively shorter
separations such that �f remains finite at E = 0.

III. THE SOLUTION

For simplicity, let us introduce the dimensionless parame-
ters δ̃n = δnn/(�f /2)gn = �nn/�f , gnn′ = �nn′/(�f /2) (n �=
n′). We assume that δshift

12 = δshift
21 	 0; that is, the real parts of

laser-induced couplings between |b1〉 and |b2〉 are negligible.
Assuming the two free-bound photoassociative couplings �nE

are real quantities, we have �nEVE/|VE |2 = �nE/VE = √
gn.

Under these conditions, the effective Hamiltonian of Eq. (7)

can be written in matrix form:

Heff = ��f

2
[A + iB] , (11)

where

A =

⎛
⎜⎝

δ̃1 0 q1f
√

g1

0 δ̃2 q2f

√
g2

q1f

√
g1 q2f

√
g2 −(kas)−1

⎞
⎟⎠ (12)

and

B =

⎛
⎜⎝

−g1 −g12 −√
g1

−g21 −g2 −√
g2

−√
g1 −√

g2 −1

⎞
⎟⎠ . (13)

For (kas)−1 = 0, these matrices have the same form as
Eq. (2.18) in Ref. [13]. The secular equation for the B
matrix is x3 + (g1 + g2 + 1)x2 = 0, and it has two roots
equal to zero and a third one equal to −(g1 + g2 + 1). When
the two eigenvectors of B with zero eigenvalues become
simultaneous eigenvectors of A with real eigenvalues, we have
two real roots of the effective Hamiltonian. In addition, when
A and B commute, both these matrices are diagonalizable
within simultaneous eigenspace, with Heff having two real
eigenvalues. The commutative condition can be easily found
to be

q1f + δ̃1 = q2f + δ̃2 = q1f g1 + q2f g2 − (kas)
−1. (14)

To evaluate the two real eigenvalues of the complex
Hamiltonian Heff , we proceed in the following way. We first
get an eigenvector of matrix A with an unknown eigenvalue λ

in the form

X = C

⎛
⎜⎝

1

x2

x3

⎞
⎟⎠ , (15)

where C is a normalization constant and x2 and x3 are the two
elements of the vector. All three quantities, C, x2, and x3, are
functions of λ. Assuming that X is also an eigenvector of B

with zero eigenvalue, the eigenvalue equation BX = 0 leads
to a quadratic equation for λ, the solutions of which are the
desired eigenvalues. For (kas)−1 = 0, that is, for as → ∞ or
for the magnetic field tuned to the Feshbach resonance, the
two real eigenvalues of Heff are E± = λ±��f /2, where

λ± = 1
2 (δ̃2 − q1f ) ± 1

2 [(δ̃2 + q1f )2−4g2q2f (q1f −q2f )]1/2,

(16)

provided (δ̃2 + q1f )2 � 4g2q2f (q1f − q2f ). λ+ and λ− are the
two eigenvalues of A; the corresponding eigenvectors are also
the eigenvectors of B with both eigenvalues being zeros. The
two eigenstates corresponding to these two real eigenvalues
are the coherent superpositions of the three bound states and
represent two bound states in the continuum. Note that the
two real eigenvalues are expressed in terms of g2, δ̃2, and the
two Fano-Feshbach asymmetry parameters. However, neither
of the remaining parameters, δ̃1 and g1, can be arbitrary when
Heff has real eigenvalues. By expressing x2, x3, and C in terms
of the set of the parameters g2, δ̃2, q1f , and q2f , from the
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eigenvalue equation AX = λX one obtains

g1 = (δ̃1 − λ)(δ̃2 − λ − g2q2f )

q1f (δ̃2 − λ)
, (17)

with λ �= δ̃2. Now, replacing λ by a real eigenvalue of Eq. (16),
one can use the above equation to set the appropriate parameter
space of g1 and δ̃1 for which λ remains real and fixed for a
fixed set of other parameters.

Let us now consider the special case in which both excited
bound states belong to the same excited molecular potential
with closely lying vibrational quantum numbers 1 � |v1 −
v2| � 2. Hence, the bound-bound Franck-Condon (FC) factors
for transitions |bc〉 ↔ |b1〉 and |bc〉 ↔ |b2〉 will be nearly
equal. Similarly, the free-bound FC factors for transitions
|E〉bare ↔ |b1〉 and |E〉bare ↔ |b2〉 will also be almost equal.
Since Fano asymmetry parameters q1f and q2f are independent
of laser intensities but are dependent on these FC factors, we
expect q1f 	 q2f . The BIC condition of Eq. (14) then implies
δ̃1 = δ̃2. Now, putting q1f = q2f = qf , the commutativity
condition implies δ̃1 = δ̃2 = qf (g1 + g2 − 1). Under these
conditions, two real roots of the effective Hamiltonian are

EA = ��f

2
λ+ = ��f

2
qf (g1 + g2 − 1), (18)

EB = ��f

2
λ− = −��f

2
qf . (19)

The BIC state corresponding to EA is

|A〉BIC = 1√
g1 + g2

[
√

g2|b1〉 − √
g1|b2〉]. (20)

Note that this state does not mix with the closed-channel
bound state |bc〉, so this eigenvector is immune to magnetic-
field tuning of the Feshbach resonance. Nevertheless, |b1〉
and |b2〉 remain coupled with |bc〉 and |E〉bare due to the
lasers. It is easy to see that the photoassociative transi-
tion matrix element for the interaction Hamiltonian V̂PA =√

g1|b1〉 bare〈E| + √
g2|b2〉 bare〈E| + c.c. between |E〉bare and

|A〉BIC is zero. This means that this is an excited molecular
dark state that is predicted to play an important role in the
suppression of photoassociative atom loss [23]. We refer to
this dark state as A-type BIC. The eigenstate corresponding to
the eigenvalue EB is given by

|B〉BIC =
[

1

(g1 + g2)(g1 + g2 + 1)

] 1
2

× [
√

g1|b1〉 + √
g2|b2〉 + (g1 + g2)|bc〉]. (21)

This is a superposition of all three bound states. The involve-
ment of |bc〉 makes this BIC dependent on the magnetic field
B. We refer to this state as B-type BIC. Near the unitarity
regime, |kas | is large, and consequently, |(kas)−1| � 1, and
hence, the effect of finite (kas)−1 can be taken into account
perturbatively. The perturbation part of the Hamiltonian is
then V = −��f

2 (kas)−1|bc〉〈bc|, and the first-order correction
to the energy EB is given by

	EB = BIC〈B|V |B〉BIC = −��f

2
(kas)

−1 g1 + g2

g1 + g2 + 1
.

(22)

The signature of this BIC can be detected in a number of
coherent spectroscopic methods, which will be discussed in
the next section. For example, a BIC may manifest as a strong
and narrow photoassociative absorption line.

IV. APPLICATIONS: RESULTS AND DISCUSSIONS

Before we discuss some specific applications, it is worth-
while to make some general observations about the depen-
dence of the two real eigenvalues, EA and EB , on the magnetic-
field tuning of the Feshbach resonance. In the zero-energy limit
(E → 0) and near the vicinity of the Feshbach resonance, the
applied magnetic field B and the scattering length as are related
by

a−1
s = −a−1

bg

B − B0

	
, (23)

where B0 is the resonance magnetic field at which as → ∞ and
abg is the background scattering length. Since abg	 > 0, as <

0 for B > B0 and as > 0 for B < B0. In the case of fermionic
atoms, the B > B0 (B < B0) region is commonly known as
the BCS (BEC) side of the resonance. The parameter range
−1.0 � (kas)−1 � 1.0 is usually referred to as the “unitarity”
regime.

Although EA changes with the change of (kas)−1, the cor-
responding eigenstate of Eq. (20) remains intact, so coherent
population trapping (CPT) occurs in the A-type BIC that
remains protected against the tuning of the magnetic field or the
scattering length. In contrast, both the eigenvalue and eigen-
state of the B-type BIC depends on B or as . For as → ∞ and
g1 + g2 > 1, as qf → ±0, EA → ±0 and EB → ∓0, as can
be inferred from expressions (18) and (19). Note that the eigen-
values of both A- and B-type BICs depend inversely on kas .

A. Detection of a BIC via photoassociation

Modifications of the photoassociation probability as a result
of the formation of a BIC can be ascertained by making use
of isometric and invertible Møller operators �± of scattering
theory. Since the atoms are in a resonant collisional state before
the lasers and the magnetic field are turned on, the incoming
state of the problem can be taken to be the bare continuum
|E〉bare. The dressed continuum state |E+〉 is given by

|E+〉 = �+|E〉bare, (24)

where

�+ = 1 + G(z + iε)V. (25)

The probability of the photoassociative transition |E〉 → |bn〉
is given by

Pn =
∫

dE|〈bn|E+〉|2. (26)

The quantity

Sn(E) = |〈bn|E+〉|2 (27)

is the photoassociation probability per unit collision energy.
Now, we have

〈bn|E+〉 = 〈bn|(P + Q)G(z + iε)(P + Q)V |E〉
= 〈bn|PG(z + iε)(P + Q)V |E〉bare. (28)
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Using Eq. (A3) we have

PGQ = P (Q + GPV Q)
1

E − H0 − V Q + iε

= PGPV Q
1

E − H0 − V Q + iε
, (29)

〈bn|�+|E〉bare = 〈bn|PG(E + iε)PR(E + iε)|E〉bare,

(30)

where R(E + iε) is given in Eq. (A5). Now,

PG(E + iε)P = (E − Heff + iε)−1

= 2

��f

A

Det[(Ẽ − H̃eff]
, (31)

where Ẽ = 2E/��f , H̃eff = A + iB, and A is the transpose
of the cofactor matrix of (Ẽ − H̃eff). Thus, we have

〈bn|�+|E〉 =
√

2

π��f

1

Det[Ẽ − H̃eff]

×
[ ∑

m=1,2

Anm

√
gm + An3

]
. (32)

The quantity after ‘×’ mark of the above equation, for n = 1
and (kas)−1 = 0, can be expressed as

− √
g1[−Ẽ(δ̃2 − Ẽ) − g2q

2
2f − i(δ̃2 − Ẽ)

+ ig2q2f + ig2q2f ]

+ √
g2[−q1f q2f

√
g1g2 + i

√
g1g2(q1f + q2f ) + i

√
g1g2Ẽ]

− [−q1f

√
g1(δ̃2 − Ẽ) − ig2

√
g1q2f + ig2

√
g1q1f

+ i
√

g1(δ̃2 − Ẽ)], (33)

the zeros of which are the roots of the quadratic equation

Ẽ(δ̃2 − Ẽ) + g2q
2
2f − q1f q2f g2 + q1f (δ̃2 − Ẽ) = 0. (34)

Thus, the numerator has two zeros at

Ẽ± = δ̃2 + 1

2

[
− (δ̃2

+ q1f ) ±
√

(δ̃2 + q1f )2 + 4q2f g2(q2f − q1f )

]
. (35)

It is important to note that the two zeros of the numerator
are the same as the two real eigenvalues of Heff , as given in
Eq. (16). This means that, although the denominator

Det[Ẽ − H̃eff] =
3∑

i=1

(Ẽ − Ẽi), (36)

where Ẽi represents an eigenvalue of H̃eff , may become zero
for a real eigenvalue of H̃eff , the spectrum remains finite in the
limit Ẽ → Ei for a real eigenvalue Ẽi ≡ λ±. When the real
part of a complex eigenvalue is nearly equal to a real eigenvalue
and the imaginary part is extremely small (���f ), the
spectrum S(E) as a function of collision energy E will exhibit
a Fano-like minimum and a highly prominent maximum lying
close to the minimum. Experimentally, searching for such a
spectral structure is possible by choosing the parameters δ̃2,
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FIG. 2. (Color online) Dimensionless spectrum S1(E)Ef as a
function of E/Ef (where Ef = ��f /2) for g1 = 0.25 (solid curve),
g1 = 0.5 (dashed curve), and g1 = 0.75 (dash-dotted curve), with
q1f = −0.5, q2f = −1.0, g2 = 2.0, δ̃2 = −0.5, and δ̃1 = 1.5. For the
solid curve the three complex eigenvalues of H̃eff are Ẽ1 = 1.0964 −
0.0010i, Ẽ2 = 1.4989 − 0.0992i, and Ẽ3 = −1.5953 − 3.1498i; for
the dashed curve Ẽ1 = 1.0242 − 0.0164i, Ẽ2 = 1.4862 − 0.1653i,
and Ẽ3 = −1.5104 − 3.3184i; for the dash-dotted curve Ẽ1 =
0.9581 − 0.0421i, Ẽ2 = 1.4645 − 0.2111i, and Ẽ3 = −1.4226 −
3.4968i. When g1 = 0.1803, Ẽ1 becomes real and is equal to 1.1180,
which corresponds to the minimum of the spectral lines. The spike
height of the solid curve is 2.2 × 104.

g2, q1f , and q2f for a zero of the numerator, but g1 and δ̃1 are
chosen such that the real part of one of the eigenvalues of Heff

is nearly equal to a zero of the numerator with the imaginary
part being small. A Fano-like spectral structure with a nearby
narrow spectral spike will indicate the existence of a BIC [13].

Figures 2 and 3 display photoassociative absorption spectra
S1(E) (which is a measure of the probability of a transition to
|b1〉) as a function of the ratio E/Ef between the energy E

and Ef = ��f /2 for different values of g1, with all other
parameters kept fixed. The fixed parameters are chosen such
that they fulfill Eq. (35). The different values of g1 are chosen
to be close to a value that is given by the condition (17) for
the occurrence of a real eigenvalue λ = Ẽ± for the given δ̃1.
The results displayed in Figs. 2 and 3 and the data mentioned
in the captions clearly support our analytical results described
above. The spikes in the solid curves occur due to the BIC
with a real eigenvalue close to the real part of Ẽ1. In Fig. 2, the
bump near E = 1.5Ef occurs due to the complex eigenvalue
Ẽ2. Note that, as can be seen from Eq. (8), the Fano-Feshbach
asymmetry parameter will be positive (negative) when the
Rabi frequency � is greater (smaller) than the magnitude δshift

nf ,
which is negative.

B. Possible realizations of the model

We next discuss the possibility of experimental realization
of our model in ultracold atomic gases that are of current
experimental interest. The discussed BIC can be realized
in ultracold atoms with the currently available experimen-
tal techniques of magnetic Feshbach resonances [26] and
photoassociation [27,28]. In particular, our theoretical
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FIG. 3. (Color online) The same as Fig. 2, but for g1 = 5.5
(solid curve), g1 = 5.0 (dashed curve), and g1 = 4.5 (dash-dotted
curve) with fixed parameters q1f = 0.5, q2f = 1.0, g2 = 5.0, δ̃1 =
1.45, and δ̃2 = −1.5. For the solid curve the eigenvalues are
Ẽ1 = 0.6645 − 4.5 × 10−6i, Ẽ2 = −2.2178 − 0.4279i, and Ẽ3 =
1.55338 − 11.0720i; for the dashed curve Ẽ1 = 0.7036 − 0.0002i,
Ẽ2 = −2.2165 − 0.44027i, and Ẽ3 = 1.51292 − 10.5595i; for the
dashed-dotted curve Ẽ1 = 0.7466 − 0.0008i, Ẽ2 = −2.2153 −
0.4534i, and Ẽ3 = 1.4687 − 10.0457i. For g1 = 5.2516, Ẽ1 is real
and is equal to 0.6583. The spike height of the solid curve is 1.0 × 106.

proposal can be implemented in the case of experimentally ob-
served narrow Feshbach resonances in cold alkali-metal atoms
like 23Na [29–34], 87Rb [35–37], 6Li [38,39], 7Li [40,41], etc.
Narrow or close-channel-dominated Feshbach resonances [26]
are preferable since the lifetime of the quasibound state in
such resonances will be appreciable for the lasers to excite
bound-bound transitions. For the |χ〉 ↔ |bn〉 bound-bound
laser coupling �n to be significant, one needs to choose the
excited bound state |bn〉 such that its outer turning point lies
within an intermediate separation r (20 � r � 30) since the
wave function of |χ〉 usually peaks in this range. It is possible
to find such excited bound states of alkali-metal dimers with
outer turning points at such intermediate separations, and such
bound state are accessible by PA transitions, which has been
demonstrated in a number of experiments.

As an example, let us consider a narrow Feshbach resonance
in ultracold 87Rb atomic gas near a magnetic field strength
of 1007.4 G [36,37] in order to realize a BIC in cold
collisions. This resonance is characterized by the following
parameters: zero crossing width 	 = 0.21 G, background
scattering length abg = 100.5a0, and the difference between
the magnetic moments of the closed-channel bound state |bc〉
and the two free atoms is δμ = 2.79μB , where μB is the Bohr
magnetron. This means the Feshbach resonance linewidth
�f = kabg	δμ, where k is the collision wave number related
to the collision energy E = �

2k2/(2μ), with μ being the
reduced mass of the two atoms. For E = 50 nK, �f ∼ 10 kHz.
The values of parameters g1 and g2 used in Figs. 2 and 3
would correspond to stimulated linewidths of the order of 10
or 100 kHz. From the positions of the minimum in Figs. 2
and 3, it may be noted that a BIC will occur at sub-μK

energy, requiring a Bose-Einstein condensate (BEC) of 87Rb
atoms in order to realize a BIC near this particular Feshbach
resonance. However, the theoretical results depicted in Figs. 2
and 3 can fit into several other alkali-metal atoms for which
a condensate is not essential. Moreover, different parameter
regimes can be used for different alkali-metal systems. In
short, our model provides a vast range of parameter space
with a well-defined relationship among the various parameters
for searching for a BIC in cold collisions. Before ending
this section, it is worthwhile to discuss how to understand
the results presented in Figs. 2 and 3 when Ec approaches
the open-channel threshold since the spectra are plotted as a
function of E/Ef . Typically, closed-channel bound states with
Ec approaching the open-channel threshold have outer turning
points at intermediate separations where the open-channel
continuum wave functions cannot take asymptotic form. Thus,
we can use a threshold-insensitive Ef = ��f /2 to scale the
energy E in Figs. 2 and 3.

C. Detection of a BIC via photoassociative
ionization spectroscopy

A BIC can also be detected by photoassociative ionization
spectroscopy. In the BIC scheme in Fig. 1, a third laser, L3,
can be applied to excite molecular autoionization transitions
|A〉BIC → |b3〉, where |b3〉 represents a bound state in an
excited potential that asymptotically corresponds to two atoms
in P + P electronic states. Since molecular state |b3〉 is made
of two doubly excited atoms, it can autoionize to produce
a molecular ion. Since |b1〉 and |b2〉 can be chosen to be
energetically close, L3 can couple both of them to |b3〉.
Therefore, we can construct a photoassociative ionization
(PAI) interaction operator

V̂PAI(t) = �31e
−i(ωL3 −ω31)t |b3〉〈b1|

+�32e
−i(ωL3 −ω32)t |b3〉〈b2| + c.c., (37)

where �31 and �32 are the Rabi frequencies for the transi-
tions |b1〉 → |b3〉 and |b2〉 → |b3〉, respectively; ωL3 is the
frequency of laser L3; and ω3n is the transition frequency for
the transition |b1〉 ↔ |b3〉. The PAI spectrum is given by

SPAI(ωL3 ) =
∣∣∣∣
∫ ∞

0
dτ

∫
dEe−iEτ/�−γ τ/2

×〈b3|V̂PAI(τ )|E+〉
∣∣∣∣
2

, (38)

where γ is the nonradiative autoionizing linewidth of |b3〉.
Using the eigenstates |λi〉 (i = 1,2,3) of Heff , one can employ
the identity operator

∑
i |λi〉〈λi | to express 〈bn|E+〉 in terms

of the |λi〉 basis:

〈bn|E+〉 =
3∑

i=1

〈bn|λi〉〈λi |V |E〉bare

E − λi��f /2 + iε
. (39)

When BIC conditions for q1f = q2f = qf are fulfilled, two
of the 〈λi are bound states in the continuum, of which one is
A type and the other is B type. For g1 � 1 and g2 � 1, the
probability amplitudes of |b1〉 and |b2〉 in a B-type BIC will
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be very small. Now, since the operator V̂PAI couples |b1〉 and |b2〉 only to |b3〉, it is expected that, under the conditions g1 � 1
and g2 � 1, laser L3 will predominantly couple an A-type BIC to |b3〉. Thus, the PAI spectrum can be approximated as

SPAI 	 | BIC〈A|V |E〉bare|2
∣∣∣∣∣ �31

√
g2(

ω31 − ωA
BIC − ωL3

) + iγ /2
− �32

√
g1(

ω32 − ωA
BIC − ωL3

) + iγ /2

∣∣∣∣∣
2

, (40)

where ωA
BIC = EA/� is the eigenfrequency of the A-type BIC. Clearly, the spectrum will show a shift equal to ωA

BIC. The spectral
intensity will be suppressed (enhanced) if the quantity

Re

[
�31�

∗
32

√
g1g2(

ω31 − ωA
BIC − ωL3 + iγ /2

)(
ω32 − ωA

BIC − ωL3

) − iγ /2)

]
(41)

is positive (negative). Thus, one can detect the A-type BIC by
PAI with a probe laser (L3) in the presence of two PA lasers
and a magnetic field under BIC conditions.

D. Controlling cold collisions with a BIC

When BIC conditions as discussed in Secs. II and III
are fulfilled, the eigenstate with a real eigenvalue (i.e., BIC)
effectively becomes decoupled from the bare continuum while
the optical and the magnetic transitions between the continuum
and the bound states remain active. As the system parameters
are being tuned very close to the BIC conditions, the complex
eigenvalue will tend to become real. The complex eigenvalue
with a small imaginary part implies the leakage of the
probability amplitude of the BIC into the continuum. This
will give rise to a resonant structure with extremely narrow
width [2] in the variation of the scattering cross section as
a function of energy. To calculate the scattering T matrix,
we follow the standard method of scattering theory based on
Møller operators �±. The dressed continuum |E+〉 describes
outgoing scattering waves that are influenced by laser light and
the magnetic field. The part of the scattering T-matrix element
that is modified by the two laser fields and the magnetic field
is Tfield(E) = bare〈E|V̂ |E+〉 = bare〈E|V̂ �+|E〉bare and can be
written as

Tfield(E) = bare〈E|V (P + Q)G(z + iε)(P + Q)V |E〉bare.

(42)

Since bare〈E|V Q = 0 and QV |E〉bare = 0, we have
Tfield(E) = bare〈E|V PGPV |E〉bare. Now, using the relation
PG(E + iε)P = (E − Heff + iε)−1, we can express

Tfield(E) = 1

Det[(Ẽ − H̃eff]

3∑
n=1

V ∗
n (E)

3∑
m=1

AnmVm(E), (43)

where Vn(E) = �n(E) for n = 1,2 and V3(E) = VE are
the free-bound coupling constants. Assuming these coupling
constants are real, we have �n(E) = √

�f /π
√

gn and VE =√
�f /π . The form of the term Nn = ∑3

m=1 AnmVm(E) for
each n = 1,2 is equivalent to that of the numerator of Sn(E)
described in Sec. IV A. We proved earlier that the numerator
of Sn(E) has a zero for a real eigenvalue of Heff . For n = 3 we
have the term

N3 = −�f

2π
[(Ẽ − δ̃2)2 + (Ẽ − δ̃2)

×{δ̃2 − δ̃1 + q1f g1 + q2f g2} + q2f g2(δ̃2 − δ̃1)]. (44)

This expression shows that while the term N3 will not, in
general, vanish for a real eigenvalue of Ĥeff , the other two
terms, N1 and N2, will. N3 will vanish for a real eigenvalue
when the commutative condition is fulfilled. This means that
for an A-type or B-type BIC as discussed earlier, all three
terms Nn (n = 1,2,3) in the numerator will lead to Fano-like
structures with a minimum and spikelike maximum, and as
the energy approaches the minimum, the spike will become
narrower as in the PA absorption spectrum discussed earlier.

Ideally speaking, exactly at the BIC there will be no
outgoing scattered waves. The reason is obvious: a bound state
with an infinite lifetime cannot give rise to any outgoing wave.
Therefore, to detect a signature of a BIC via scattering reso-
nances, the BIC should have a small but finite width, meaning
the eigenvalue should have a small imaginary part. The above
analysis implies that when the system parameters are tuned
closed to a BIC, the first two terms (N1 and N2) that describe
the contributions from the two excited bound states will cause
a Fano-like structure in the T -matrix element. Further, when
the commutativity condition is fulfilled or nearly fulfilled, the
A-type or B-type BIC will show up as prominent Fano-like
resonances since all three terms in the numerator of Eq. (43)
will contribute to the resonance structures. Thus, BIC in cold
atoms can be utilized to narrow magnetic or optical Feshbach
resonances or to enhance the lifetime of the resonances. Thus,
after creating a BIC in cold atoms with lasers, it is possible to
manipulate resonant interactions between the atoms.

E. Efficient production of Feshbach molecules using a BIC

Here we discuss how a BIC can help in the efficient produc-
tion of Feshbach molecules [42] by stimulated radio-frequency
spectroscopy. Note that, for g1 � 1 and g2 � 1, the amplitude
coefficient of |bc〉 in the B-type BIC is much greater than those
of the two excited bound states. This means that when the two
stimulated linewidths �1 and �2 are much greater than the
Feshbach resonance linewidth �f , by tuning the two detuning
parameters to fulfill the BIC condition δ1 = δ2 = q(�1 + �2 −
�f ), one can prepare a B-type BIC with a large probability
amplitude for the closed-channel bound state, which then
can be converted into a Feshbach molecule by stimulated
radio-frequency spectroscopy. The efficiency of the commonly
used method of magnetic-field sweep for conversion of pairs of
bosonic atoms into Feshbach molecules usually cannot go be-
yond 30%. In contrast, the efficiency of BIC-assisted Feshbach
molecule formation can be close to unity. For experimental
realization of BIC-assisted Feshbach molecule formation, one
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can use ultracold Na atoms in the parameter regime of the
experiment by Inouye et al. [29] and Xu et al. [33].

It is thus possible to suppress the atom loss in the magnetic
Feshbach resonance (MFR) in Bose-Einstein condensates by
creating a BIC with two lasers. This loss occurs primarily due
to the disintegration of quasibound states into noncondensate
atoms that can escape from the trap. To account for the loss, van
Abeelen and Verhaar [31] have introduced a “local” lifetime
of quasibound state |χ〉 due to its exchange coupling to the
incoming open channel at an intermediate separation. For
sodium condensate, this coupling occurs at r � 24 and the
local lifetime τ0 = 1

γ0
= 1.4 μs [31], where γ0 is the width

due to the coupling. By choosing the bound states |b1〉 and
|b2〉 with outer turning points near 24a0 and making the
bound-bound laser couplings �1 and �2 greater than γ0,
one can expect to suppress the atom loss to some extent.
However, substantial suppression of atom loss will result
when the collision energy is tuned closed to the energy of a
BIC. As we analyzed earlier, the scattering T -matrix element
shows a minimum when the energy becomes equal to the
energy of one of the two bound states in the continuum.
Since the width γ0 is given by the energy derivative of the
scattering phase shift at the energy of the quasibound state
[43], in the context of our model γ0 will correspond to the
energy derivative of the phase shift at the minimum point.
Thus, our model provides γ0 	 0, so atom loss in magnetic
Feshbach resonances of Bose-Einstein condensates can be
largely suppressed. Experimental realization of the effect
of the suppression of atom loss in MFR in sodium BECs
or in ultracold sodium gas is possible. Photoassociation of
sodium atoms into relatively shorter ranged (outer turning
points near r ∼ 24a0) bound states in the 1g potential has
been experimentally demonstrated [44–46] and used to create
light force in PA [47] and to manipulate higher partial-wave
interactions [48] via optical optical Feshbach resonance (OFR)
[49].

MFR-induced atom loss in BECs is more severe partly due
to bosonic stimulation unlike that in degenerate Fermi gases.
Feshbach molecular dimers formed from fermionic atoms are
found to be more stable [50,51] due to Pauli blocking. We
therefore predict that the formation of fermionic Feshbach
molecules by stimulated radio-frequency spectroscopy using
a BIC will be quite efficient.

F. Two bound states coupled to the continuum

In our model we have so far considered three bound states
coupled to the continuum, with one being quasibound state
embedded in the ground-state continuum and the others being
excited molecular states. Naturally, a question arises as to what
happens to the BIC if coupling to one of the bound states is
turned off. Let us first consider that one of the lasers, say
L2, is absent, that is, g2 = 0. Then the effective Hamiltonian
reduces to a 2 × 2 matrix with the second row and second
column of the matrix removed. Writing the resulting 2 × 2
effective Hamiltonian in the form A1 + iB1, the matrix B1

has one eigenvalue equal to zero and the other one equal
to −(��f /2)(g1 + 1). Taking Ec 	 0, the condition for the
existence of a real eigenvalue is δ̃1 = q1f g1 − q1, which is also
the condition for the commutativity between A1 and B1. The

real eigenvalue is −q1, and the corresponding eigenvector is

|ψ〉BIC = 1√
�1 + �f

[
√

�f |b1〉 −
√

�1|χ〉]. (45)

Now, for Ec �= 0, by measuring the energy from Ec, we
recover the standard result for the condition of the occurrence
of Fano minimum,

E − Ec

��f /2
= −q1f , (46)

at which population trapping occurs in state |ψ〉BIC. This
should be manifested as a prominent minimum in the scattering
cross section or PA rate versus energy plot [21] as in the case
of three bound states coupled to the continuum, as discussed
above. In fact, a few years back, two experiments [52,53]
demonstrated a minimum in the PA loss rate near the resonant
value B0 of the magnetic field that induces a Feshbach res-
onance. Although the spectroscopy of photoassociative atom
loss or PA loss is an incoherent method, the spectral minimum
observed in such an incoherent spectrum might be related to a
state closely related to |ψ〉BIC. It is expected that in coherent PA
spectroscopy or in the measurement of scattering cross sections
near B0 under the above-mentioned BIC condition, one would
be able to observe the discussed minimum and an ultranarrow
resonant structure as a clear signature of the occurrence of the
BIC. In the experiment of Junker et al. [52], the quasibound
state |χ〉 is probably weakly coupled (� being small) to the
excited bound state since the bound-state chosen was relatively
long ranged, ensuring stronger free-bound Franck-Condon
overlap rather than bound-bound coupling. This means that
q1f should be negative [21], so the minimum was expected to
occur on the positive side of the scattering length, and indeed,
that was the case in Ref. [52]. In contrast, the experiment
by Bauer et al. [53] used a relatively shorter ranged excited
bound state, and the minimum (although not very prominent)
occurred very close to the resonant magnetic field where
as → ∞. The minimum position shows a slight shift towards
the negative side of as as the laser is blue-detuned by about 3
MHz (the subplots in Fig. 3 of Ref. [53] should be compared).
Assuming q1f is positive, the BIC condition provides δ1 =
ωb1 − ωL1 = −q1f (�1 − �f ). Since in the experiment of Ref.
[53] a narrow Feshbach resonance is used and a relatively
strong PA laser is used, (�1 − �f ) > 0. With blue detuning
(ωL1 > ωb1 ), the BIC condition will be fulfilled only if q1f

is positive, ensuring significant bound-bound coupling. An
Autler-Townes double-peaked spectral shape will arise when
the real parts of the two eigenvalues are not very far apart. If
the BIC condition is maintained more precisely, it is expected
that one of the peaks will be very narrow and sharp and will
correspond to a BIC, while the other will be relatively broad
due to the fact that the other eigenvalue is essentially complex.

We next discuss the situation when state |χ〉 or the magnetic
field is absent. Writing the resulting 2 × 2 matrix in the form
A2 + iB2, one finds that B2 has a zero eigenvalue and the other
eigenvalue is equal to −(�1 + �2). The effective Hamiltonian
has a real eigenvalue when δ1 = δ2. Note that δ1 and δ2

refer to the detuning from the light-shifted bound states. The
eigenvalue is δ = δ1 = δ2, and the corresponding eigenvector
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is

|φ〉BIC = 1√
�1 + �2

[
√

�2|b1〉 −
√

�1|b2〉], (47)

which is an excited molecular dark state which has been found
to be useful for making an OFR more efficient [23].

V. CONCLUSIONS

In conclusion, we have demonstrated theoretically that it is
possible to create and manipulate bound states in the contin-
uum in atom-atom cold collisions using lasers and a magnetic
field, employing the currently available techniques of pho-
toassociation and magnetic Feshbach resonance. Our model is
composed of three bound states interacting with the continuum
of scattering states between ground-state cold atoms. Within
the framework of effective Hamiltonian methods, we eliminate
the continuum and obtain an effective Hamiltonian. The eigen-
vectors of this effective Hamiltonian with real eigenvalues
represent the bound states in the continuum. We have provided
specific conditions for the occurrence of a BIC in the form
of analytical expressions of the relationships between the
parameters of our model. We have derived a photoassociative
absorption spectrum and scattering cross sections that can
exhibit signatures of a BIC as an ultranarrow asymmetric peak
near a prominent minimum. The minimum occurs exactly at
the energy at which the BIC occurs. We have analyzed in some
detail the possible applications of a BIC in controlling cold
collisions and efficient production of Feshbach molecules.

The original proposal of von Neumann and Wigner to
create a BIC of a particle was through destructive quantum
interference of Schrödinger’s waves scattered by a specially
designed potential so that no outgoing waves exist, resulting
in the trapping of the particle in the continuum. The key
mechanism for creating a BIC is the quantum interference,
which happens not only in the scattering of waves but also in
different transition pathways in atomic and molecular physics.
Bound states in the continuum in our model result from the
quantum interference in three possible free-bound transition
pathways. In the case of two bound states interacting with
the continuum, the effective Hamiltonian yields one BIC
that occurs at an energy at which the Fano minimum takes
place. This indicates that the BIC in our model does occur
due to quantum interference in possible transition pathways.
In recent times, utilization and manipulation of quantum
interference effects have been essential in demonstrating a
number of coherent phenomena, paving the way for emerging
quantum technologies. Of late, quantum interference is being
considered for manipulating ultracold collisions [54,55]. The
realization of our proposed bound states in the continuum
in cold collisions will open a new perspective in quantum
interference phenomena with cold atoms and molecules.

APPENDIX: DERIVATION OF EFFECTIVE
HAMILTONIAN

V̂ G = V̂ (P + Q)G = V̂ PG + V̂ QG, (A1)

QG = QG0 + Q

E − H0 + iε
(V̂ PG + V̂ QG), (A2)

which leads to

QG = 1

E − H0 − QV̂ + iε
(Q + QV̂ PG). (A3)

Substituting (A3) in (A1) and Eq. (6), after some algebra, we
get

PGP = 1

E − H0 − P V̂ P − P V̂ Q 1
E−H0−QV̂ Q+iε

QV̂ P
,

which suggests that the effective Hamiltonian is

Heff = H0 + PRP, (A4)

where

R = V̂ + V̂ Q
1

E − H0 − QV̂ Q + iε
QV̂ . (A5)

Now, in the subspace of three bound states, we need to
diagonalize Heff . Using Eqs. (2) and (4), we have

QV̂ Q = 0 (A6)

and

V̂ Q
1

E − H0 − QV̂ Q + iε
QV̂

=
∑
n,n′

[
	shift

nn′ (E) − i
�nn′ (E)

2

]
|bn〉〈bn′ |

+
[
	shift

f (E) − i
�f (E)

2

]
|bc〉〈bc|

+
[∑

n

{
	shift

nf (E) − i
�nf (E)

2

}
|n〉〈bc| + c.c.

]
, (A7)

where

	shift
nn′ (E) = P

∫
dE′ �n(E′)�∗

n′(E′)
E − E′ , (A8)

��nn′ (E) = 2π�n(E)�∗
n′(E), (A9)

	shift
f (E) = P

∫
dE′ |VE′ |2

E − E′ , (A10)

��f (E) = 2π |VE′ |2, (A11)

	shift
nf (E) = P

∫
dE′ �n(E′)V ∗

E′

E − E′ , (A12)

��nf (E) = 2π�n(E)V ∗
E. (A13)

�f is the Feshbach resonance linewidth. Using (A6) in (A4)
and (A3), one can obtain the effective Hamiltonian of Eq. (7),
the matrix elements of which are given by

〈bn|Heff|bn′ 〉
= (En − �ωLn

)δnn′ + 	shift
nn′ (E) − i

��nn′(E)

2
, (A14)

〈bc|Heff|bc〉 = E0 + 	shift
f (E) − i

��f (E)

2
, (A15)

〈n|Heff|bc〉 = 	shift
nf (E) + ��n − i

��nf (E)

2
. (A16)
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