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Sudden death of particle-pair Bloch oscillation and unidirectional propagation
in a one-dimensional driven optical lattice
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We study the dynamics of bound pairs in the extended Hubbard model driven by a linear external field. It
is shown that two interacting bosons or singlet fermions with nonzero on-site and nearest-neighbor interaction
strengths can always form bound pairs in the absence of an external field. There are two bands of bound pairs,
one of which may have incomplete wave vectors when it has an overlap with the scattering band, referred to as an
imperfect band. In the presence of the external field, the dynamics of the bound pair in the perfect band exhibits
distinct Bloch-Zener oscillation (BZO), while in the imperfect band the oscillation presents a sudden death. The
pair becomes uncorrelated after the sudden death and the BZO never comes back. Such dynamical behaviors are
robust even for the weak-coupling regime and thus can be used to characterize the phase diagram of the bound
states.
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I. INTRODUCTION

The dynamics of particle pairs in lattice systems has
received a lot of interest, due to the rapid development of
experimental techniques. Ultracold atoms have turned out to
be an ideal playground for testing few-particle fundamental
physics since optical lattices provide clean realizations of
a range of many-body Hamiltonians. This stimulates many
experimental [1–3] and theoretical investigations in strongly
correlated systems, which mainly focus on bound-pair for-
mation [4–9], detection [10], dynamics [9,11–16], collisions
between a single particle and a pair [17,18], and bound-pair
condensate [19]. The essential physics of the proposed bound
pair (BP) is that the periodic potential suppresses single-
particle tunneling across the barrier, a process that would lead
to decay of the pair. This situation cannot be changed in the
general case when a weak linear potential is applied. Then a
BP acts as a single particle, sharing single-particle dynamical
features, such as Bloch oscillation (BO) and Bloch-Zener
oscillation (BZO) [20–25].

The aim of this paper is to show that the nearest-neighbor
(NN) interaction can not only lead to distinct BO and BZO,
but also induce the sudden death of the oscillations within a
Bloch period. We study the dynamics of BPs in the extended
Hubbard model driven by a linear external field. It is shown
that two interacting bosons or singlet fermions with nonzero
on-site and nearest-neighbor interaction strengths can always
form BPs in the absence of an external field. There are two
kinds of BP, which form two bound bands. We find that
the existence of the nearest-neighbor interaction can lead to
overlap between the scattering band of a single particle and the
bound band, which can spoil the completeness of the bound
band, referred to as an imperfect band. In the presence of
an external field, the dynamics of the BP in the perfect band
exhibits perfect BO and BZO, while in the imperfect band
the oscillation presents a sudden death. The pair becomes
uncorrelated after the sudden death of the oscillation and the
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correlation never comes back. This behavior is of interest in
both fundamental and application aspects. It can be utilized to
control the unidirectional propagation of the BP wave packet
by imposing a single pulse, which is of great interest for
applications in cold-atom physics. Numerical simulations have
shown that this scheme achieves very high efficiency and a
wide spectral band. Such a unidirectional filter for a cold-atom
pair may be realized in a shaking optical lattice in experiment.

This paper is organized as follows. In Sec. II, we present
the model Hamiltonian, and the two-particle band structures.
In Sec. III, we investigate the BP dynamics in the presence of
a linear field. Section IV is devoted to the application of our
finding, the realization of unidirectional propagation induced
by a pulsed field. Finally, we give a summary and discussion
in Sec. V.

II. MODEL HAMILTONIAN AND BAND STRUCTURE

We consider an extended Hubbard model describing inter-
acting particles in the lowest Bloch band of a one-dimensional
lattice driven by an external force, which can be employed
to describe ultracold atoms or molecules with magnetic or
electric dipole-dipole interactions in optical lattices. We focus
on the dynamics of the BP states. The pair can be two identical
bosons, or equivalently, spin-1/2 fermions in the singlet state.
For simplicity we will consider only bosonic systems, but it is
straightforward to extend the conclusion to singlet fermionic
pairs. We consider the Hamiltonian

H = H0 + F
∑
j=1

jnj , (1)

where the second term describes the linear external field while
H0 is the one-dimensional Hamiltonian for the extended Bose-
Hubbard model on an N -site lattice,

H0 = −κ
∑
j=1

(a†
j aj+1 + H.c.) + U

2

∑
j=1

nj (nj − 1)

+V
∑
j=1

njnj+1. (2)
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FIG. 1. (Color online) (a) Phase diagram for the BP states. The solid black (blue) line is the hyperbolic function in Eq. (10), which is the
boundary of the transition from the BP state |ψ+

k 〉 (|ψ−
k 〉) to a scattering state in each invariant subspace indexed by k. There are six regions

divided by the lines from Eq. (10), where ± indicates the types of bound states |ψ±
k 〉 in each region. (b) Phase diagram (in units of κ) indicates

the features of the BP band: complete bands in regions I–IV, and incomplete bands in regions V and VI. Points a(7,6), b(3,−2), c(7,7), d(7,6.7),
e(2,−0.6), f (−2,3), g(5,4), and h(5,5) denote typical cases in each phase. The band structures and dynamical features in these cases are
presented in Figs. 2 and 3.

Here a
†
i is the creation operator of the boson at the ith site,

and the tunneling strength and on-site and NN interactions
between bosons are denoted by κ , U , and V .

Let us start by analyzing in detail the two-boson problem in
this model. As in Refs. [15,17,18], a state in the two-particle
Hilbert space can be expanded in the basis set {|φk

r 〉, r =
0,1,2, . . .}, with∣∣φk

0

〉 = 1√
2N

∑
j

eikj (a†
j )2|vac〉, (3)

∣∣φk
r

〉 = 1√
N

eikr/2
∑

j

eikj a
†
j a

†
j+r |vac〉, (4)

where |vac〉 is the vacuum state for the boson operator ai . Here
k denotes the momentum, and r is the distance between the
two particles. Due to the translational symmetry of the present
system, we have the following equivalent Hamiltonian:

Hk
eq = −Jk

⎛
⎝√

2
∣∣φk

0

〉〈
φk

1

∣∣ +
∑
j=1

∣∣φk
j

〉〈
φk

j+1

∣∣ + H.c

⎞
⎠

+U
∣∣φk

0

〉〈
φk

0

∣∣ + V
∣∣φk

1

〉〈
φk

1

∣∣ (5)

in each invariant subspace indexed by k. In its present
form, Hk

eq is formally analogous to the tight-binding model
describing a single-particle dynamics in a semi-infinite chain
with the k-dependent hopping integral Jk = 2κ cos(k/2) in the
thermodynamic limit N → ∞. In this paper, we are interested
in the BP states, which correspond to the bound-state solution
of the single-particle Schrödinger equation

Hk
eq|ψk〉 = εk|ψk〉. (6)

For a given Jk , the Hamiltonian Hk
eq possesses one or

two bound states, which are denoted as |ψ+
k 〉 and |ψ−

k 〉,
respectively. Here the Bethe-ansatz wave functions have the
form

|ψ±
k 〉 = Ck

0

∣∣φk
0

〉 + ∑
r=1

(±1)rCk
r e

−βr
∣∣φk

r

〉
, (7)

with β > 0. For two such bound states |ψ±
k 〉 the Schrodinger

equation in Eq. (6) admits

±e3β + (uk + vk)e2β ± (ukvk − 1)eβ + vk = 0, (8)

where uk = U/Jk and vk = V/Jk are respectively the reduced
interaction strengths. The corresponding bound-state energy
of |ψ±

k 〉 can be expressed as

ε±
k = ±Jk cosh β. (9)

The transition from bound to scattering states occurs at β = 0.
Then the boundary at which the bound state |ψ±

k 〉 disappears
is described by the hyperbolic function

uk = − 2vk

1 ± vk

, (10)

which is plotted in Fig. 1. It shows that the boundary lines
divide the uk-vk plane into six regions, from I to VI. The type
of bound states in each region can be foreseen from the extreme
situations where |uk|,|vk| � 1. Under this condition, it is easy
to check that there are two bound states with the eigenenergies

ε±
k ≈ U and V, (11)

in each invariant k subspace. Comparing Eqs. (11) and (9), we
arrive at the conclusion that there are two bound states in the
regions I, II, III, and IV: two |ψ−

k 〉 in I, one |ψ+
k 〉 and |ψ−

k 〉
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FIG. 2. (Color online) (a1)–(d1) The band structures for the systems with parameters fixed at the typical points (a-d) labeled in Fig. 1. All
the BP bands are complete. (a2)–(d2) The profiles and the average distances r̄(t) of the time evolution of the initial wave packets in the form of
Eq. (19) with k0 = −0.8π , α = 0.15, and NA = 80 of the two BP bands, in an external field with F0 = 0.05, in which the time t is expressed
in units of 1/κ . We can see the perfect BO and BZO phenomena. The evolution of r̄(t) shows that the correlation of the BP remains strong.

in II and IV, and two |ψ+
k 〉 in III, while there are bound states

|ψ−
k 〉 in V and |ψ+

k 〉 in VI, respectively.
On the other hand, we know that the scattering band of

Hk
eq ranges from −4κ cos(k/2) to 4κ cos(k/2), which reaches

the widest bandwidth at k = 0. Therefore, when we take J0 =
±2κ , this diagram can characterize the bound-state number
distribution Nb(U,V ): we have Nb = 2N in the regions I,
II, III, and IV, where all the 2N bound states indexed by k

constitute a complete BP band. In contrast, we have Nb < 2N

in V and VI, where all Nb bound states are indexed by the
survival k, which does not cover the whole range of momentum
in the Brillouin zone, from −π to π . We refer to this property
as an incomplete BP band. Therefore, the phase diagram also
indicates the boundary U = −2V/(1 ± V ), for the transition
from the complete to the incomplete BP bands, which agrees
with the results reported in Refs. [6,26,27]. For given U

and V , the complete spectrum of H0 can be computed by
diagonalizing the Hamiltonian Hk

eq numerically. In Figs. 2
and 3, we plot the band structures for several typical cases,
which are marked in Fig. 1. We do not cover all the typical
points in every region due to the following fact. The spectrum
of H0 obeys the relation

Ek(U,V ) = −Ek(−U,−V ), (12)

in view of

H0(U,V ) = −RH0(−U,−V )R−1, (13)

where the transformation R is defined as RajR
−1 = (−1)j aj .

It is a rigorous result in the whole range of the parameters. As
expected, we observe that the two-particle spectrum comprises
three Bloch bands, two BP bands formed by two kinds of BP
states, and one scattering band formed by uncorrelated states.
We can see from Fig. 2 that two bound bands are separated
from the scattering band whenever the system is in the regions
I, II, III, and IV (points a, b, c, and d). In contrast, whenever

the points (e, f , g, and h) lie in the regions V and VI, the
pseudogap between the BP and the scattering bands around
k = 0 vanishes, resulting in the formation of an incomplete
band. What is quite unexpected and remarkable is that if we
apply a linear field, the dynamics of the BP exhibits some
peculiar behaviors, which will be investigated in the following
section.

III. BP DYNAMICS

Before starting the investigation of the BP dynamics, we
would like to study the relation between the center path of
a wave packet driven by a linear field and dispersion of the
Hamiltonian H0. Consider a general one-dimensional tight-
binding system, which has the dispersion relation E(k) that is
an arbitrary smooth periodic function E(2π + k) = E(k). The
dynamics of the wave packet can be simply understood in terms
of a semiclassical picture: A wave packet centered around
kc can be regarded as a classical particle with momentum kc

[28–30]. When the wave packet is subjected to a homogeneous
force of strength F , the acceleration theorem ∂kc(t)/∂t = F

tells us that

kc(t) = kc(0) +
∫ t

0
Fdt

= kc(0) + F t (14)

for a constant field. The central position of the wave packet is

xc(t) = xc(0) +
∫ t

0
υgdt

= xc(0) + 1

F
[Ek(kc(0) + F t) − Ek(kc(0))] (15)

where υg = ∂Ek/∂k is the group velocity. Notice that the
trajectory of a wave packet is essentially identical with
the dispersion relation for the field-free system under the
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FIG. 3. (Color online) As Fig. 2 but for systems with parameters fixed at the typical points e–f labeled in Fig. 1. It shows that the BP band
becomes incomplete due to the overlap between the bound and scattering energy levels. We can see the sudden death of the BO, which closely
accompanies the breakdown of the pair correlation. Here the time t is also expressed in units of 1/κ .

semiclassical approximation. This observation provides a
fairly clear picture of the dynamics of a wave packet in the
presence of a linear field. As a simple example we consider
the single-particle case for illustration. The single-particle BO
with Bloch frequency ωB = F for H can be simply understood
from its cosinusoidal dispersion relation E(k) = −2κ cos k,
rather than quadratic, in momentum k.

Now, we switch gears to the case of two particles. We note
that the bandwidth of the BP band is comparable to that of
the scattering band, which leads to the conclusion that a BP
wave packet has a distinct group velocity. This indicates that
the dynamics of the BP state has similar behavior to that of the
single particle. The BO-like behavior of the BP wave packet
emerges in the presence of a linear external field.

In order to demonstrate these points, we consider an
example for the Hamiltonian H in Eq. (1) with U,V �
|U − V |κ . As studied in Ref. [15], in the absence of the
external field, the BP lies in the quasi-invariant subspace
spanned by the basis {|l〉}, which is defined as

|l〉 ≡
{

(a†
l/2)2/

√
2|vac〉 (even l),

a
†
(l−1)/2a

†
(l+1)/2|vac〉 (odd l).

(16)

In the presence of the external field, the bound pair can be
described by the following effective Hamiltonian:

Heff = −
√

2κ
∑

l

(|l〉〈l + 1| + H.c.)

+
∑

l

[
F l + δ

2
(−1)l

]
|l〉〈l|, (17)

where we neglect a constant term (U + V )/2
∑

l |l〉〈l| and take
δ = U − V to represent the unbalanced on-site and nearest-
neighbor interactions. Heff is nothing but the tight-binding
Hamiltonian that describes a single particle subjected to a
staggered linear potential, which has been well studied in

previous literature [31]. Unlike the fractional BO [32–35] in
the case of V = 0, Heff can support a wide bandwidth [15],
which is responsible for the large-amplitude oscillations. In the
situation with δ = 0, it turns out that the particle undergoes a
BO with frequency ωB = F . In the case of nonzero imbalance
δ 
= 0, it has been reported that the dynamics of the wave
packet shows a BZO, a coherent superposition of Bloch
oscillations and Zener tunneling between the sub-bands. The
Zener tunneling takes place almost exclusively when the
momentum of the wave packet reaches ±π . Then we arrive
at the conclusion that the BPs serve as composite particles,
exhibiting BO and BZO in the strong-coupling region.

In this paper we are interested in what happens if the
initial state is placed in an incomplete band. We presume that
the semiclassical theory still holds when the wave packet is
inside the extent of the incomplete band, because the nonzero
pseudogap can protect the BP wave packet from the scattering
band. However, when the wave packet reaches the band edge,
the transition from the bound to the scattering band occurs. The
wave packet diffuses into the continuous spectrum rather than
undergoing the repetitive motion of acceleration and Bragg
reflection. We refer to this phenomenon as the sudden death of
the BO. In the case of the incomplete BP band with an edge
km > 0, the lifetime τ for an initial wave packet with kc(0)
satisfies

km = |kc(0) + τF |. (18)

When this occurs, the correlation between the two particles
breaks down and the wave packet spreads out in space,
irreversibly.

To verify and demonstrate the above analysis, numerical
simulations are performed to investigate the dynamics be-
havior. We compute the time evolution of the wave packet
by diagonalizing the Hamiltonian H numerically. Throughout
this paper, we investigate the dynamics of the initial Gaussian
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FIG. 4. (Color online) The comparison between the BP dispersion relations and the central positions for the cases plotted in Figs. 2 and 3:
(a) lower band in c; (b) lower band in a; (c) lower band in h. This shows that the two are in close proximity to each other even for the case of
the incomplete band, which corresponds to the sudden death of the BO. The time t is expressed in units of 1/κ .

wave packet in the form

|�(0)〉 = �
∑

k

exp

[
− (k − k0)2

2α2
− iNA(k − k0)

]
|ψk〉,

(19)
where � is a normalization factor, and k0 and NA denote the
central momentum and position of the initial wave packet,
respectively. The evolved state under the Hamiltonian H is
|�(t)〉 = e−iH t |�(0)〉. We would like to stress that the initial
wave packet involves one BP band, either the upper or the
lower one. However, the evolved state may involve two BP
bands, even the scattering band, when Zener tunneling occurs.
We plot the probability profile of the wave packet evolution in
several typical cases in Figs. 2 and 3. In Fig. 2, the simulation
is performed in systems where the two bound bands are
well separated from the scattering band. As the external field
is turned on, several dynamical behaviors occur: when the
two bound bands are well separated (a1) and (b1), BOs in
both bands are observed (a2) and (b2). In the case (d1),(d2),
two bound bands are very close at ±π , which induces the
BZO as expected. For these three cases, the BO frequency
doubles compared with that of the single-particle case. The
case (c1),(c2) fixes U = V , two bound bands merge into a
single bound band. As predicted above, simple BO rather than
BZO is observed, with a period equal to that of single-particle
BO. In Fig. 3, the systems have a common feature: one of
the BP bands is incomplete due to the pseudogap vanishing.
In the three cases (e2), (f2), and (g2), the BOs remain in
one band, whereas the BOs break down at the edges of the
incomplete band. For the cases (h1),(h2) with U = V , two
bound bands merge into a single incomplete band. The BP
wave packets in both bands cannot survive because of the
irreversible spreading.

Furthermore, the correlation between the two particles is
measured by the average distance between the two particles,

r(t) =
∑
i,r

r〈�(t)|nini+r |�(t)〉, (20)

which can be used to characterize the feature of sudden death
of BO for an evolved state |�(t)〉. As comparison, the average
distance r(t) as a function of time for several typical cases is

plotted in Figs. 2 and 3. We find that the sudden death of BO is
always accompanied by the irreversible increase of r(t), which
accords with our analytical predictions.

Finally, we also plot the BP dispersion relation E(k) and
the central position xc(t) of the wave packet under the driving
force together in one figure. For several typical cases, the plots
in Fig. 4 indicate that the shape of the function xc(t) coincides
with that of the dispersion relation E(k). We also find that the
semiclassical analysis in Eq. (15) is valid if δ is not too small.
Remarkably, one can see that such a relation still holds even for
the incomplete BP band. These results are in agreement with
the theoretical prediction based on the spectral structures.

IV. UNIDIRECTIONAL PROPAGATION

We now investigate the effect of the a time-dependent
driving force on the dynamics of a BP wave packet. The
acceleration theorem (14) tells us that a pulsed field can
shift the central momentum of the wave packet in the case
of the complete band. However, it is easy to find that a pulsed
field may destroy a BP wave packet in the incomplete band,
similarly referred to as the sudden death of uniform motion.
The death and survival of a propagating wave packet strongly
depend on the difference between the initial central momentum
and the edge of the incomplete band. Of course, a surviving
wave packet can be caused to retain its original state of motion
by a subsequently compensating pulsed field. This gives rise
to a scheme for destroying the pair wave packet propagating in
one direction, but retaining the one with the opposite direction.
This kind of scheme can be carried out by two pulsed fields
in a pair of adjacent intervals, which provides two opposite
impulses to the wave packet (see Fig. 5).

To illustrate the scheme, we propose two concrete exam-
ples. The first one is a square-wave pulse driving force in the
form

F (t) =

⎧⎪⎨
⎪⎩

F0, −T/2 < t � 0,

−F0, 0 < t � T/2,

0 otherwise.

(21)

According to the acceleration theorem, an initial wave packet
with momentum kc(0) will acquire a momentum shift F0T/2
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(a)    t < -T/2
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FIG. 5. (Color online) Schematic illustration for the process of realizing unidirectional propagation of the BP. The dashed ∞ represents
the correlation between the two particles. The shaking lattice induces an inertial force F (t). (a) For t< −T/2, the bound-pair wave packet
moves towards the right or left with constant group velocity. (b) During the period of time [−T/2,T /2], a pulsed field F (t) is caused to act on
the pairs by shaking the lattice back and forth, which may break down the BP moving to the left. (c) After the time T/2, the surviving wave
packet goes back to its original state, while another pair is bounded back and becomes uncorrelated. (d) and (e) are two example forms of F (t),
which are taken for the numerical simulations in Fig. 6.

at the instant t = 0 if kc(0) + F0T/2 is within the band. The
action of the subsequent force −F0 can return the group
velocity to its initial value, continuing its motion in the same
direction. However, in the case of kc(0) + F0T/2 beyond the
incomplete band, the BP wave packet breaks down before
t = 0 and the subsequent force cannot regain the correlation.
Therefore, for two BP wave ackets with opposite momenta
±kc(0) or group velocities ±υg(0), one can always choose
a proper F (t) to destroy one of them and maintain the other.
This feature can be used to control the direction of wave packet

propagation on demand. Alternatively, one can also consider
a sine-wave pulse driving force

F (t) =
{

(−F0π/2) sin(2πt/T ), t � |T/2|,
0 otherwise,

(22)

to achieve the same effect as from Eq. (14). To examine
how these schemes work in practice, we apply them to a
wave packet in the form of (19). Figure 6 shows a numerical
propagation of the Gaussian wave packet under the action
of two kinds of pulsed driving forces. It shows that wave

FIG. 6. (Color online) The profiles and the avarage distances r̄(t) of the time evolution of the initial wave packets in the form of Eq. (19)
with k0 = ±0.6π , α = 0.15, and NA = 70, in the lower band of the system with U = 5, V = 4, and F0 = 0.05. The pulsed field is taken in
the forms of (a) a square wave and (b) a sine wave, respectively. We can see in both cases that the wave packet with k0 = −0.6π is spread out
by the pulse field, while the one with k0 = 0.6π remains in its original state of motion. Here the time t is expressed in units of 1/κ .
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FIG. 7. (Color online) Plots of the c.m. xc(t) (a) and the fidelity f (t) (b) for the process illustrated in Fig. 6, where the time t is expressed in
units of 1/κ . (a) clearly shows that the pulsed field bounces back one pair but maintains the other. The gray dashed lines are drawn as guidance
to the eye, indicating the initial and final paths for the case of a sine wave. (b) indicates that the sine-wave pulse has very high efficiency for
the control of unidirectional propagation.

packets with opposite group velocities exhibit entirely different
behaviors: one remains in the original state of motion, while
the other spreads out in space. Remarkably, the probability of
the broken wave packet is reflected by the pulsed field, which
indicates that the unidirectional effect in the scheme works not
only for the two-particle correlation but also for the probability
flow. In addition, one can see a slight separation from the
moving wave packet under the action of the square-wave
pulsed field. The probability flow of two particles, no matter
whether correlated or not, can be depicted by the center of
mass (c.m.)

xc(t) =
∑

j

〈jnj 〉t , (23)

where 〈· · · 〉t denotes the average for the evolved state. On the
other hand, to characterize the efficiency of the schemes, we
introduce the fidelity defined as

F = max[f (t)],
(24)

f (t) = |〈�t (t)|�0(t0)〉|,
where

|�0(t0)〉 = exp(−iH0t0)|�(0)〉 (25)

is the target state and

|�t (t)〉 = T exp

(
−i

∫ t

0
H (t)dt

)
|�(0)〉 (26)

is the transferred state subjected to a pulsed field. Here we have
omitted a shift on the time scale compared to the expression of
F (t). The computation is performed by using a uniform mesh
in the time discretization for the time-dependent Hamiltonian
H (t). As an example, in Fig. 7, we show the evolution of the
c.m. xc(t) and the fidelity f (t) for the same parameter values
as the four processes simulated in Fig. 6. The plot in (a) shows
the behavior of the two-particle transmission and reflection
induced by the pulsed field, while in (b) the fidelities of the
state are transferred. It indicates that a sine-wave pulse has a

higher fidelity (F = 0.994) than that of square-wave pulse
(F = 0.940). These results clearly demonstrate the power
of the mechanism proposed in this paper with the purpose
of inducing unidirectional propagation which is caused by a
pulsed field.

It is easy to estimate the spectral band of the unidirectional
filter by neglecting the width of the wave packet. We find
that there are three reasons that trigger the death of a
propagating wave packet: (i) the central momentum of the
initial wave packet, (ii) the edge of the incomplete band, which
is determined by the values of U/κ and V/κ , and (iii) the
impulse of the single pulsed field. We consider a lattice with
one bound band just touching the scattering band at the center
momentum k = 0. We note, but do not prove exactly, that the
dispersion relations in the left region [−π,0] and right region
[0,π ] are monotone functions. Then if we apply a pulsed field
with impulse π , a moving wave packet with momentum in the
left region should be pushed into the scattering band and will
not be recovered by the subsequent −π impulse. In contrast,
a wave packet in the right region still keep its initial situation
after this process. Therefore, roughly speaking, the proposed
unidirectional filter works for wave packets with all possible
group velocities.

V. SUMMARY

In this paper, the coherent dynamics of two correlated
particles in the one-dimensional extended Hubbard model with
on-site U and nearest-neighbor site V interactions, driven by
a linear field, has been theoretically investigated. The analysis
shows that in the free-field case, there always exist BP states for
any nonzero U and V , which may have comparable bandwidth
with that of single particle. This results in the onset of distinct
BO and BZO for a correlated pair in the presence of an external
field. We found that the incompleteness of the BP band spoils
the correlation of the pair and leads to the sudden death of the
BO and BZO. Based on this mechanism, we propose a scheme
to control the unidirectional propagation of the BP wave packet
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by imposing a single pulse. As a simple application of this
scheme, we investigate the effects of two kinds of pulsed
field. Numerical simulations indicate that a sine-wave pulse
has a higher fidelity than that of a square-wave pulse. In
experiment, it has been proposed that ultracold atomic gases
in optical lattices with sinusoidal shaking can be an attractive
testing ground to explore the dynamical control of quantum
states [36–39]. The sudden death of BO predicted in this paper

is an exclusive signature of a correlated particle pair and could
be applied to quantum and optical device design.
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Kopeinig, and H. C. Nägerl, Phys. Rev. Lett. 100, 080404
(2008).

[4] S. M. Mahajan and A. Thyagaraja, J. Phys. A 39, L667 (2006).
[5] M. Valiente and D. Petrosyan, J. Phys. B 41, 161002 (2008).
[6] M. Valiente and D. Petrosyan, J. Phys. B 42, 121001 (2009).
[7] M. Valiente, D. Petrosyan, and A. Saenz, Phys. Rev. A 81,

011601(R) (2010).
[8] J. Javanainen, O. Odong, and J. C. Sanders, Phys. Rev. A 81,

043609 (2010).
[9] Y. M. Wang and J. Q. Liang, Phys. Rev. A 81, 045601 (2010).

[10] A. Kuklov and H. Moritz, Phys. Rev. A 75, 013616 (2007).
[11] D. Petrosyan, B. Schmidt, J. R. Anglin, and M. Fleischhauer,

Phys. Rev. A 76, 033606 (2007).
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