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Scaling behavior of a very large magneto-optical trap
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We investigate the scaling behavior of a very large magneto-optical trap (VLMOT) containing up to 1.4 ×
1011 Rb87 atoms, loaded from a background vapor. By varying the diameter of the trapping beams, we are able
to change the number of trapped atoms by more than 5 orders of magnitude. We then study the scaling laws
of the loading and size of the VLMOT, and analyze the shape of the density profile in this regime where the
Coulomb-like, light-mediated repulsive interaction between atoms is expected to play an important role.
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I. INTRODUCTION

Since its first realization in 1987 [1] the magneto-optical
trap (MOT) has been the working horse of cold atom
experiments and continues to be used in a large variety of
experiments, such as Bose-Einstein condensates or degenerate
Fermi gases, atomic clocks and sensors, and quantum mem-
ories. In some of these experiments, increasing the number
of trapped atoms is an important advantage. Previous studies
have shown that when increasing the number of atoms loaded
into a MOT, the peak atomic density tends to saturate and
the size of the atomic cloud increases [2]. This has been
a strong limitation to the straightforward use of the MOT
towards Bose-Einstein condensation, requiring novel cooling
techniques, often based on conservative trapping potentials
combined to evaporation, in order to achieve the quantum
degeneracy regime. At first it seemed that by increasing the
number of atoms in a MOT, a net additional compression force
could be obtained due to a shadow effect of the large number
of atoms, attenuating the incident laser beams [3]. However, a
more refined model, taking into account the radiation pressure
force of the scattered photons showed that the size of a
MOT increases with increased atom number [2]. This size
increase has been confirmed by experiments [2] and is due to
a modified frequency spectrum of the scattered photons when
atoms are driven at large values of the saturation parameter. For
a vanishing incident saturation parameter, the shadow effect
can at best merely compensate the repulsion force due to the
scattered photons, which explains that all experiments up to
now have observed an increase in MOT size as the number of
atoms is increased. The most commonly used model proposed
in Ref. [2] shows that the repulsion force is analogous to a
Coulomb repulsion between particles of same charge, leading
to a constant density of particles in a harmonic trap. Further
studies [4,5] have shown that in contrast to most common
explanations of MOTs, not only the velocity distribution of the
trapped atoms but also their spatial distribution might require
sub-Doppler mechanisms, such as Sisyphus cooling [6].

With the availability of larger laser power at the relevant
wavelengths for cooling and trapping atoms, it is possible to
trap more and more atoms in a MOT. It is therefore important
to study the MOT scaling laws for large atom numbers, to
understand, e.g., how the capture velocity and the number of
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trapped atoms can be maximized. This may allow for adapting
designs in new experiments where atom number and trap
size are important parameters to be optimized. Another aim
would be to obtain experimental signatures in the multiple
scattering regime of the MOT that could help improving our
understanding of this complex situation and discriminating
between various available models.

We thus report in this paper the results of an experiment
where the number of trapped atoms N is varied over a wide
range (more than 5 orders of magnitude) in a well-controlled
way. The paper is organized as follows. A first section is
devoted to the description of the experimental scheme. Details
of the experimental procedure are important since it is known
to affect the observed scaling laws [7]. We then report in
Sec. III our measurement of the scaling law for the number
of trapped atoms versus the size of the trapping beams, which
is found to increase with an exponent larger than previously
reported in the literature. We discuss this result using a simple
numerical simulation based on the standard Doppler model for
the MOT. We then analyze in Sec. IV the scaling law for the
size of the MOT as a function of the number of atoms, and
compare it to various models. Finally, we discuss in Sec. IV
the evolution of the shape and ellipticity of the atomic density
distribution as the number of atoms is varied.

II. EXPERIMENTAL SETUP

The six independent VLMOT trapping beams are derived
from a single beam using a 1 × 6 fiber splitter (OZ optics).
Both input and output fibers are polarization maintaining. The
input beam is obtained from a weak beam delivered by a DFB
laser (2–3 MHz line width), after single-pass amplification
through a 2-W tapered amplifier. The output fibers tips are
placed in the object focal plane of six 10-cm diameter, 30-cm
focal length lenses to obtain large (waist 2.6 cm) collimated
trapping beams (see Fig. 1). For each dimension of space the
corresponding pair of beams is aligned in a counterpropagating
fashion. The total trapping power sent to the atoms is 329 mW,
corresponding to a peak intensity I = 5 mW/cm2 per beam.
We trap Rb87 using a trapping light detuned by a quantity
δMOT from the F = 2 → F ′ = 3 transition. In the present
paper, we will use δMOT = −3, −4 or −5 � (where the
natural width � = 2π × 6.06 MHz). We use these rather
large detuning values because they maximize the number of
trapped atoms, and also to avoid the dynamical instability
that arises at large numbers of atoms and smaller detunings
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FIG. 1. (Color online) Experimental scheme. We show the MOT
trapping scheme along one of the three spatial dimensions, corre-
sponding to the axis of the coils generating the magnetic field gradient
(x). The arrangement is identical for the other two dimensions (except
for the magnetic coils). A CCD is used to image the fluorescence of
the cold cloud in the (x,y) plane (see text for details).

[8]. In our setup, the repumping light is produced by another
DFB laser tuned close to the F = 1 → F ′ = 2 transition. The
repumper beam is superimposed to the trapping beam (the
repumper power representing a few percent of the total) before
the injection into the tapered amplifier. Thus, the repumping
light is present in each of the six VLMOT beams with the
same circular polarization as the trapping light, yielding a
very symmetrical configuration. The main remaining source
of asymmetry in our setup is the slight imbalance between the
intensities of the six beams, due to the specifications of the
fiber splitter. This imbalance is at most 10% for two beams in
the same counterpropagating pair. A magnetic field gradient of
7.4 G/cm along the axis of the anti-Helmoltz coils is applied
to spatially trap the atoms. The MOT loading time constant
is typically 1.5 s, yielding an estimated background rubidium
pressure of roughly 3 × 10−9 torr.

This experiment aims at measuring scaling laws for the
VLMOT as the number N of trapped atoms is varied. We
tune N via the diameter of the trapping beams, using six large
diaphragms whose aperture D is adjusted (see Fig. 1). Since
the capture range of the MOT depends strongly [9] on D, this
is an efficient and well-controlled way of varying N without
changing the MOT parameters at the location of the trapped
atoms.

Fluorescence images are recorded in a plane containing the
magnetic gradient coils axis x, where the gradient is twice
that along the two other axes. We thus have access to the
intrinsic anisotropy of the MOT shape, which is studied in
Sec. V. To acquire the fluorescence images, we switch the
trapping light detuning to δim = −8� for a short duration
of 230 μs. This is short enough to neglect the displacement
of the atoms during the image acquisition (≈30 μm). The
large detuning employed to record the fluorescence images
has two important consequences: First, the cloud’s optical
density (OD) at the illuminating light’s detuning is then
�1 (single scattering regime). As a result, the fluorescence
intensity distribution closely matches the atomic density
distribution (note that this argument is also valid because
the effective saturation parameter is only a few 10−2, which
allows one to neglect inelastic scattering and thus the resonant
component of the Mollow triplet [10]). As will be discussed
in Sec. V, multiple scattering can strongly distort the recorded

fluorescence intensity profiles (see Fig. 7). Second, because
of the large detuning we can safely neglect the Zeeman shift
due to the magnetic field gradient which is still on during
the measurement (the maximal Zeeman shift across the MOT
size is ≈1.6�, resulting at most in a 10% change of the
scattering cross section of the atoms at the edge of the cloud).
To improve the signal to noise ratio, we average over 20
successive images. In the following, the error bars shown on
various plots will represent the statistical fluctuation (standard
deviation) of the measured quantity over these 20 images. By
integrating the fluorescence over the whole images, we get
a relative measurement of the number of trapped atoms. A
calibration of the absolute number of atoms is performed by
measuring the optical density of the cloud along the line of
sight of the camera z with a weak probe beam (waist 1.5 mm).
For the highest MOT beam diameter D = 94 mm and a
detuning δMOT = −5�, the on-resonance optical density is
185 and the number of atoms 1.4 × 1011 assuming an equal
distribution of the atomic population among Zeeman substates.

III. VLMOT LOADING

Figure 2 shows the measured evolution of the number of
trapped atoms when the beam diameter is varied (log-log
scale). As can be seen, N first increases very strongly with
D: N ∝ D5.82±0.05. This exponent α = 5.82 is significantly
larger than predicted by the standard model (α = 4) [9,11].
This Doppler model, based on the balance between loading
rate and losses due to collisions with background atoms, leads
to

N ∝ D2

σ

(
vc

u

)4

, (1)

where σ is the collisional cross section with background atoms,

vc is the velocity capture range of the MOT, and u =
√

2 kBT
m

the

FIG. 2. (Color online) Loading the VLMOT (experiment). We
plot the number of trapped atoms N as a function of the diameter D

of the trapping beams (see text), for three different MOT detunings:
δMOT = −3� (stars); δMOT = −4� (dots); δMOT = −5� (squares). We
observe a fast increase, followed by a progressive saturation. The line
is a fit N ∝ D5.82 of the data for δMOT = −4�. The error bars are
smaller than the symbol size.
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most probable velocity in the Maxwell-Boltzmann distribution
(u = 240 m/s in our case). If one assumes a constant force (i.e.,
a constant photon scattering rate) acting on an atom inside the
MOT volume, one finds [11] vc ∝ √

D and from Eq. (1) the
scaling N ∝ D4 follows (assuming a vc-independent σ ).

However, the assumption of a constant scattering rate during
the trajectory of an atom entering the trapping volume is
in general not verified. As the atom moves toward the trap
center and is being decelerated, it gradually gets tuned out of
resonance with the MOT laser beams and the scattering rate
decreases. An accurate estimation of the capture velocity and
of its scaling with D thus requires a numerical simulation of the
atomic trajectories. We performed such a three-dimensional
(3D) numerical simulation based on the Doppler model, and
found two regimes for the scaling of vc with D (see Fig. 3):
Below a certain critical value of D, which depends on both
δMOT and ∇B, vc is roughly proportional to D (dotted line,
vc ∝ D1.11±0.02), while for larger values of D the increase
of vc is slower (solid line, vc ∝ D0.356±0.008). We stress that
this crossover is not due to the finite waist (2.6 cm) of the
MOT beams. Instead, it is due to the nonlinear dependency
of the MOT force as a function of velocity. For small D the
capture velocity is small, and lies in the linear range of the
force kvc < |δMOT|. In this regime, increasing D will result
in an increase of the capture velocity by roughly the same
amount, since the force will increase proportionally to vc. For
large D such that kvc ≈ |δMOT|, the force is already maximal.
Therefore, an increase of D will result in a much smaller
increase of vc than in the linear regime.

Inserting vc ∝ D into Eq. (1), we obtain N ∝ D6 which is
in good agreement with what we measure in Fig. 2 for D <

30 mm (N ∝ D5.82). The saturation of the number of trapped
atoms at larger D is mainly due to the crossover seen in Fig. 3,
although one expects the Gaussian profile of the MOT beams
to enhance this saturation for D 	 w. Comparing Figs. 2 and
3, we observe a quite striking qualitative agreement for the

FIG. 3. (Color online) Capture velocity vs MOT beam diameter
(numerics). Using a simple Doppler model, we compute the MOT’s
capture velocity versus D, for the detunings of Fig. 2. The lines
emphasize the two observed regimes: vc ∝ D1.11 (dotted line) and
vc ∝ D0.356 (solid line).

behavior of the different detunings. Finally, we note that even
a higher number of atoms could be loaded in the VLMOT using
larger beams and larger detunings, which requires higher laser
powers.

IV. VLMOT SIZE SCALING

It is known since the 1990s [2] that atoms in a MOT are
in general not independent, but interact through exchange
of photons. The reabsorbtion of scattered photons indeed
generates a repulsive interatomic force, which tends to expand
the cloud. As a result, the size L of the cloud increases with
N , while it is independent of N in the noninteracting, small-N
regime where it is determined only by the MOT parameters
and the temperature (hence the name “temperature-limited”
regime).

Figure 4 illustrates the large variation of MOT size observed
in our situation as the number of atoms is tuned. The size varies
by a factor ≈35 while N varies by a factor 31 000. To be more
quantitative, we plot in Fig. 5 the measured cloud size Lx

along the magnetic coil axis, as a function of N and for the
three detuning values. This size is determined as the full width
at half maximum (FWHM) of a cut of the image, through its
center, along x. Since the cloud shape is generally not Gaussian
(see next section), we do not integrate the image along y.
For δMOT = −4�, the size increase for N > 2 × 107 is well
fitted by L ∝ N0.394±0.004. This exponent is observed over a
large range of four decades. Similar scalings are found for the
two other detunings: L ∝ N0.388±0.005 and L ∝ N0.411±0.002

for δMOT = −5� and δMOT = −3�, respectively. The sizes
along the weak confinement axis y, not shown in Fig. 5,
are larger (see Sec. V) and exhibit similar exponents: L ∝
N0.417±0.005,N0.381±0.004, and N0.35±0.004 for δMOT = −3, − 4,
and −5�, respectively. For N < 107, the expansion of the
cloud with N seems to slow down. This is indeed expected in
the limit of small N where light-induced interactions vanish
and the MOT size becomes independent of N . However, this
regime is expected to occur for much smaller atom numbers:
In Ref. [2], the temperature-limited regime was observed
for N < 80 000. It does not seem likely that the observed
“saturation” of the size around ≈200 μm for small N could be

FIG. 4. Variation of VLMOT size with N . We show two examples
of fluorescence images (see text for details), respectively, at low [N =
4.2 × 106 (a)] and large [N = 1.3 × 1011 (b)] number of trapped
atoms. The MOT detuning is δMOT = −4�. The field of view is
23 mm. The axis of the magnetic gradient coils is along x.
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FIG. 5. (Color online) VLMOT size scaling. We measure the
FWHM size of the cloud along the magnetic coils axis Lx as a
function of the number of atoms. The three sets of data correspond
to different MOT detunings: δMOT = −3� (stars); δMOT = −4�

(dots); δMOT = −5� (squares). A fit of the δMOT = −4� data for
N > 2 × 107 yields Lx ∝ N 0.394±0.004 (solid line). The dashed line
corresponds to the prediction of the standard model [2] L ∝ N 1/3.

due to a poor resolution of our imaging system. The ultimate
resolution (limited by the pixel size) is of 23 μm. Another
factor limiting the resolution is the motion of the atoms during
the image exposure. The typical displacement corresponding
to our temperature is of the order of 30 μm. The residual effect
of multiple scattering is minimized by our choice of a large
detuning for the imaging (see Fig. 7), but its exact magnitude
remains difficult to estimate. However, its impact is expected
to be very small in the small N limit, where the cloud’s OD is
small [see Fig. 6(b)].

In the standard Doppler model of the MOT [2], the MOT
size is determined by the balance between the external trapping
force, the interatomic repulsion, and a “shadow” compressive
force due to the attenuation of the MOT beams inside the
cloud [3]. The last two are “collective” forces which vanish
in the temperature-limited regime. Under the assumptions of
Ref. [2], which amount to linearizing the trapping and shadow
forces and assuming a spatially independent Coulomb-like
interaction force, this balance yields a constant spatial density
inside the cloud:

nmax = cκ

2IσL(σR − σL)
, (2)

where c is the speed of light, κ is the spring constant
characterizing the restoring force for a single-atom MOT, σL

is the absorption cross section for a laser photon, and σR the
cross section for the absorption of a scattered photon. σL and
σR are different due to the fact that both the spectral and
polarization properties of the scattered light differ from that
of the laser light. In this model, increasing N thus results
in an expansion of the MOT at constant density: L ∝ N1/3.
A good agreement with this prediction was reported by the
authors of Ref. [2] for N < 5 × 107, while they observed a
faster increase for larger atom numbers. Possible explanations

FIG. 6. (Color online) VLMOT peak density and optical density.
We plot in (a) the peak spatial density and in (b) the on-resonance
optical density of the cloud obtained from the data of Fig. 5 (see
text). The error bars are computed from the statistical errors on the
measured atom number and MOT size.

for this behavior included the effect of the magnetic field
gradient and high-order multiple scattering of light inside the
cloud. A more involved (numerical) model [7] surprisingly
led to the same L ∝ N1/3 scaling, although the calculated
density profiles were no longer homogeneous but displayed a
truncated Gaussian shape [7]. This model takes into account
the nonlinear form of both trapping and shadow forces and
the spatial dependence of the interaction force. However, the
interaction force takes into account only double scattering
(a single re-absorption event), as in the standard model. In
Ref. [7], we have shown that using different techniques to
vary the number of atoms (i.e., tuning the intensity or the
diameter of a repumping beam) could yield different scaling
laws for the MOT size. This still unexplained observation hints
at the complexity of the trapping process which is intrinsically
multilevel in nature. In the experiment where the diameter of
the repumping beam was used as a mean to vary N , which is
closest in principle from that described in the present paper,
a scaling L ∝ N0.29 was observed which is consistent with
the standard model. Our present observation L ∝ N0.39 is not
too far off the N1/3 prediction. The complex behavior of the
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observed MOT shapes, discussed in the next section, may be
responsible for this deviation.

Finally, we plot in Fig. 6(a) the peak spatial density of
the cloud versus N for the three MOT detunings of Fig. 5.
This density is inferred from the measured number of atoms
N and sizes Lx and Ly , assuming an axially symmetric MOT
Lz = Ly and a Gaussian density distribution. We find densities
around a mean value of 2 × 1011 cm−3, which are rather
independent of N (typical variation of a factor of 3 over
more than 4 orders of magnitude of variation of N ). This
relatively high value of the peak density may be due to our
rather large detuning values, which can lead to an effective
“dark MOT” effect (see, e.g., Ref. [12]). The lowest variation
of density corresponds to the largest detuning δMOT = −5�,
which is due to the fact that the scaling exponent of Fig. 5 is
closest to 1/3. These observations are thus in rough agreement
with the constant-density model of [2]. Note, however, that
we observe for the cloud’s density profiles a different shape
(see next section) from that predicted in [2] and measured in
Ref. [13]. The residual variations observed on the density plot
may be attributed to these changes of cloud shape. Figure 6(b)
shows the on-resonance optical density calculated using the
same assumptions. The OD is seen to increase continuously
with N with a rough scaling OD ∝ N0.3 for δMOT = −5� (as
determined by a fit over the whole N range) and a maximal
value of 185 for our parameters.

V. VLMOT SHAPE

In this section we discuss the evolution of the shape of the
cloud as N is varied. Indeed, as emphasized in Ref. [7], the
density profile of the cloud may be the ultimate signature to
discriminate between various models rather than the L(N )
scaling. We start by reviewing the existing models in the
various MOT regimes, as well as the published observations.

In the limit of small N (temperature-limited regime) where
photon re-absorption can be safely neglected, the cloud’s
density distribution is Gaussian and independent of N . For
larger atom numbers, when re-absorption sets in, the standard
model [2] predicts a uniform density profile. This results
from the combination of the trapping, “shadow” and repulsive
forces, with the model of Ref. [2] assuming a linear spatial
dependence of both the first two compression terms and a
spatially independent repulsive force. It has been shown in
Refs. [7,14] that including the full spatial dependence of these
forces in the Doppler model yields density profiles that are
truncated Gaussians. The size σdens of these Gaussians is only
determined by MOT parameters, while the truncation radius
Rtr depends on the number of atoms. In the limit of small
N (Rtr � σMOT) one recovers a uniform density profile has
predicted by the standard model. On the contrary, in the limit
of very large N this spatially dependent model predicts a
Gaussian shape for the density profile.

These predictions rely on the Doppler model of the MOT.
However, it was realized very early after the advent of the
MOT that sub-Doppler mechanisms play a determinant role
in the force near the center of the trap [6]. This picture,
initially developed in the framework of independent atoms,
somewhat survives in the regime of multiple scattering albeit
with a modified friction and diffusion rate leading to higher

temperatures [15]. When the number of atoms is further
increased, the position-dependent profile of the restoring force
leads to a “two-component” regime for the MOT [4,16]. There,
a central part with a higher density of atoms is subjected to a
highly restoring sub-Doppler force, and is surrounded by a halo
of lower density where the force is essentially Doppler-like.
The radius R2 of the surface separating these two volumes is
given by the equality of Zeeman shift and light shift of the
ground state [4]:

R2 ≈ ��2

μB∇BδMOT
. (3)

If the radius of the cloud is larger than R2, the MOT is in the
two-component regime. For ∇B = 20 G/cm, δMOT = −8�,
I = Isat and with the parameters of cesium, the authors of
Ref. [4] find that this occurs for N ≈ 107 (with R2 ≈ 110 μm).
Equation (3) shows that for moderate N where the MOT size
is not very large, the two-component regime may be reached
for high magnetic gradients and light detunings, and low Rabi
frequencies.

We now turn to the reported measurements of density
distributions in a MOT. We first stress that all these were
performed by direct fluorescence imaging of the MOT (i.e.,
using the actual MOT detuning for the imaging), which may
cause significant distortions of the profiles as shown in Fig. 7.
Here we compare the profiles obtained for the same cloud, but
with different values of the detuning δim during the imaging.
The profiles obtained close to resonance are broader with a
flatter top than for a detuned illumination, where the profiles
become almost independent of δim and converge toward the
atomic density distribution. The choice of the detuning also
significantly affects the measured width, as illustrated in the
insert. We thus conclude that when the shape measurement is
performed by direct imaging of the MOT fluorescence (and not

FIG. 7. (Color online) Impact of multiple scattering during imag-
ing. We compare the fluorescence profiles obtained for the same
cloud (N = 2 × 1010) but with different detuning values used for the
imaging: δim = −2� (1), δim = −4� (2), δim = −6� (3), δim = −8�

(4), and δim = −10� (5). The inset shows the evolution of the
measured FWHM with δim.
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with a detuned excitation as done here), one should be cautious
with the interpretation of the recorded profiles as long as the
OD at the MOT detuning is not � 1 (in Fig. 7, it is 0.4 for
δim = −8�).

A general feature of most reported cloud shape mea-
surements (including ours) is that the density distribution is
integrated along the line of sight of the detection device.
For an axially symmetric MOT it is in principle possible to
reconstruct the 3D density distribution using an inverse Abel
transformation [17], but since its implementation necessitates
low noise and highly symmetrical MOT shapes it is in general
impractical.

The authors of Ref. [13] reported Gaussian profiles corre-
sponding to the temperature-limited regime for N < 8 × 104.
For larger N , the standard model predicts a constant density
which integrated once yields a profile f (x) ∝ √

R2 − x2

where R is the radius of the uniform sphere of atoms. Such
rather flat profiles were also observed in Ref. [13], but not
in a subsequent detailed study [4] where Gaussian profiles
were observed instead. The “constant density” signature of
the multiple-scattering regime was then observed on the peak
density, similarly to what we show in Fig. 6(a). Deviations
from a Gaussian were also reported in Ref. [18], and well
fitted to the functional dependence introduced by the authors
of Ref. [19] to account for multiple scattering and finite
temperature. The difference between all these experimental
findings is not elucidated, but we note that flat-top profiles
can also be due to multiple scattering of the illuminating light
even if the density distribution is Gaussian, as discussed before.
The two-component regime was observed in Refs. [4,20], and
the sub-Doppler component was nicely separated from the
Doppler halo in Ref. [5].

We now discuss our observations. We show in Fig. 8 some
fluorescence profiles recorded for different atom numbers
[Figs. 8(a)–8(d)] at δMOT = −4�. These profiles are cuts of the
two-dimensional fluorescence images such as shown in Fig. 4
along the two axes x and y. The symbols correspond to the
data, the lines to Gaussian profiles. The vertical and horizontal
scales are normalized to ease the comparison. The horizontal
scaling is different in Figs. 8(a)–8(d), and is chosen such that
the FWHM of the profiles is equal to 1. The vertical scale
is logarithmic to allow for a better observation of the wings,
and the scaling is such that the peak value of the profiles
is 1. For N below typically 108 atoms, we obtain profiles
quite close to Gaussians [Fig. 8(a)]. When N is increased to
roughly 109 [Fig. 8(b)], the profiles deviate from a Gaussian
and get quite close to the flat-top shapes of Refs. [18,19].
This is accompanied by a steepening of the wings of the
profiles, which is a prediction of all models including multiple
scattering [2,7,19]. When N is increased even further, the
profile along y gradually rounds off, while the profile along
x develops for N > 1010 a central feature with enhanced
density [Figs. 8(c) and 8(d). This last behavior is best seen
in Fig. 8(e) where we plot the data of Fig. 8(d) along x in
linear scale (the arrows point at the inflexion points in the
profile). We stress that this general behavior is, apart from
minor details in the shapes, robust against modifications of the
MOT alignment such as, e.g., the beam intensity imbalance.
We find that all profiles along x for N between 1010 and
1011 are consistent with a double-component distribution,

FIG. 8. (Color online) Fluorescence profiles of the cloud. We
plot the fluorescence profiles along x (dots) and y (circles) for
four different atom numbers: (a) N = 3.2 × 107; (b) N = 1.2 × 109;
(c) N = 2 × 1010; (d) N = 1.3 × 1011. The lines correspond to a
Gaussian shape. (a)–(d) Data are all scaled in the same way: All
profiles are vertically normalized to a maximum value = 1 (note the
log scale), while the horizontal scaling is different for all four plots
such that the profile’s FWHM is equal to 1. (e) Shows the data of
(d) along x, in linear scale.

including a narrower part near the MOT center. We believe
that for this range of atom numbers, our MOT operates in
the two-component regime. Indeed, Eq. (3) yields in our
case R2 ≈ 1 mm (with ∇B = 7.4 G/cm, δMOT = −4�, and
�2/�2 = 0.7). This corresponds to N ≈ 4 × 109, which is in
rough agreement with the appearance of the central feature.
This is also in rough agreement with an extrapolation of the
MOT “phase diagram” computed in Ref. [4]. A measurement
of the velocity distribution of the atoms, not performed in this
work, could possibly corroborate this hypothesis. We also find
that for a fixed N , the deviation from a Gaussian profile is
larger when the detuning is smaller (MOT operating closer
to resonance), which is to be expected for multiple scattering
effects.

The double-component behavior does not show up clearly
in the profiles along y. Indeed, one expects from Eq. (3)
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FIG. 9. (Color online) Ellipticity of the cloud. We plot the el-
lipticity ε of the MOT measured versus the number of atoms N .
ε is measured at 90% (half-filled circles), 50% (dots), and 10%
(circles) of the peak value of the fluorescence images. The shaded
area corresponds to the limits obtained from the model of Ref. [21],
while the dashed line ε = √

2 is the expected ellipticity for a MOT
in the temperature-limited regime.

that the radius of the sub-Doppler central feature is inversely
proportional to the magnetic field gradient. We thus expect for
the central feature an ellipticity ε = Ly/Lx = 2. However, the
ellipticity of the Doppler component which makes up most of
the cloud’s size is only of the order of 1.5 as can be seen in
Fig. 9. The widths of the sub-Doppler and Doppler components
are thus more similar along y, rendering their differentiation
difficult. Figure 9 shows the cloud’s ellipticity measured versus
N , at different proportions of the peak value in the fluorescence
images: 90% (half-filled circles), 50% (dots), and 10% (cir-
cles). It can be seen that the ellipticities measured at 10% and
50% of the maximum are following a quite parallel evolution
when N is varied, with values around 1.5 for N > 1010. On
the contrary, the ellipticity measured at 90% of the maximum
(i.e., near the center of the cloud) shows a steep increase for
N > 109 and reaches higher values at large N (average of
ε = 2.2 for N > 1010). This behavior is consistent with the
appearance of a two-component distribution for high N values.

The shaded area in Fig. 9 corresponds to the possible
values of ε according to the model of Ref. [21]. The authors of
this recent work proposed the measurement of the ellipticity
as a means to determine experimentally the cross-section
ratio σR

σL
[see Eq. (2)], an interesting quantity difficult to

compute in a realistic MOT situation. Their model relies on
the standard approach of Ref. [2], using the same hypothesis
(small OD, double scattering only, and spatially independent
cross sections σL and σR). It predicts a variation of ε with the
MOT parameters (intensity and detuning), but not with N as it
is observed in the present work (Fig. 9). This is not surprising,
however, since we expect these assumptions to break down
at large N values. Furthermore, our complicated MOT shape
behavior is clearly not accounted for by this model.

Figure 10 shows how ε (measured at 50% of the peak
fluorescence) depends on δMOT. We observe globally that for

FIG. 10. (Color online) Ellipticity of the cloud versus MOT
detuning. We plot here the ellipticity measured at 50% of the peak
value of the fluorescence images, for different values of δMOT:
δMOT = −3� (stars); δMOT = −4� (dots); δMOT = −5� (squares).
The shaded area corresponds to the limits obtained from the model
of Ref. [21], while the dashed line ε = √

2 is the expected ellipticity
for a MOT in the temperature-limited regime.

intermediate atom number 108 < N < 7 × 109,ε increases
with |δMOT|. In the framework of Ref. [21] this would
correspond to a strong increase of σR

σL
(note however that

for δMOT = −5� our measured ε largely exceeds the the-
oretical limit of 1.81). Interestingly, for N > 7 × 109 all
curves collapse together and seem to converge towards the
temperature-dependent limit (dashed line). This corresponds
roughly to the situation where the cloud’s optical density at
δMOT becomes larger than 1. In this regime which is clearly
beyond the reach of the standard model of Ref. [2], the trapping
laser beams are strongly attenuated inside the cloud. A more
refined model needs to be developed to understand how shadow
effect and multiple scattering concur to yield the observed
behavior.

VI. CONCLUSION

In this paper we have presented our observations on the
behavior of a very large magneto-optical trap containing up
to 1.4 × 1011 atoms. The number of trapped atoms and the
cloud’s size and shape are studied as a function of the diameter
D of the MOT’s lasers beams. Using this technique, the atom
number can be varied by 5 orders of magnitude. We observe an
increase of N with D much faster than previously reported, a
feature well reproduced by simulations of the MOT’s capture
velocity based on a simple Doppler model. We find a scaling
of the cloud size versus N roughly consistent with the standard
model of a MOT in the multiple scattering regime, even up to
such large numbers of atoms. A careful measurement of the
cloud shape yields Gaussian profiles up to 108 atoms, and then
strong deviations for larger N . For N > 1010, our observations
are consistent with the two-component regime for the MOT, in
agreement with the predictions of Ref. [4]. Such large MOTs
where strong multiple scattering effects constitute interesting
tools to search for analogies with, e.g., plasma physics,
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hydrodynamics, or stellar physics [8]. They can also be used
to produce large (centimeter-scale) cold clouds with a high
optical density, well suited to perform original experiments in,
e.g., nonlinear optics [22] and self-organization [23].
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