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Phase differences of near-threshold high-order harmonics generated in atoms and molecules
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We present the observations of the phase differences �φ
(2n)
HH between adjacent high-order harmonics generated

from Ar and N2 at the near-threshold region. The �φ
(2n)
HH ’s are extracted from the photoelectron signals resulting

from two-color two-photon ionization of rare-gas atoms, which are produced by high-order harmonics to be
measured and a part of the fundamental pulse for probing. An analysis method is employed to remove the
inevitable modulations in high-order-harmonic intensities based on the underlying mechanism of the production
of photoelectrons. We find a significant difference in the �φ

(2n)
HH at the nearest-threshold order between Ar and

N2. This difference cannot be reproduced by the model calculation by using the saddle-point method within the
strong-field approximation. To elucidate the origin of the difference between the �φ

(2n)
HH for Ar and that for N2, we

note the fact that the phase difference �φ
(2n)
HH contains information both on the recombination time tr of the freed

electron and on the phase of the recombination dipole moment d∗. With the help of some numerical calculations,
we discuss the effect of the potential created by the parent ion on tr and d∗ which are neglected in the strong-field
approximation.
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I. INTRODUCTION

High-order harmonics generated from atoms and molecules
are regarded as the most promising tool to explore ultrafast
phenomena with an unprecedented time resolution. From
the viewpoint of a light source, their pulse width reaches
the shortest of tens of attoseconds, and from the viewpoint
of light-matter interaction, electron and nuclear dynamics
can be traced with subfemtosecond, subangstrom resolutions
by high-order-harmonic spectra [1–3]. High-order-harmonic
generation is understood by the three-step model [4]: (1) An
atom or molecule is ionized by an intense laser field and
an electron is released from the potential. (2) The released
electron is driven and accelerated by the laser field and returned
to the parent ion. (3) The returning electron recombines
with the parent ion and its kinetic energy is transferred
to a high-energy photon. According to this model, high-
order harmonics can extend to the energy of 3.17Up + IP

with Up the ponderomotive energy and IP the ionization
potential.

The high-order harmonics far above IP are well described
by the strong-field approximation [5], where the Coulomb
potential of the parent ion can be ignored for the trajectories of
the returning electron. This approximation allows us to extract
the image of atomic or molecular orbitals from the harmonic
spectra [6]. Using a sample of aligned molecules, high-order-
harmonic spectra give us valuable information about molecular
electronic and geometric structures [6–11]. On the other hand,
in the energy region near the ionization potential, the harmonic
generation process is strongly influenced by the Coulomb
potential of the parent ions and cannot be described within
the strong-field approximation. It was reported in 1995 that
the 13th harmonic intensity generated in Ne is higher when
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the driving pulse has a nonzero value of ellipticity than that
generated with a linearly polarized pulse [12,13], though under
the three-step model assuming the strong-field approximation,
the high-order harmonics are expected to be maximized at the
linear polarization. Recently, similar phenomena were also
found by Soifer et al. [14]: They show that the high-order
harmonics from aligned O2 molecules are maximized at a
nonzero value of ellipticity of the driving pulse when the
harmonic photon energy is near IP. The phenomena beyond
the strong-field approximation attract increasing attention to
understand more deeply the underlying mechanism of high-
order-harmonic generation in the vicinity of Coulomb potential
and to extract the information about atomic or molecular
orbitals.

We expect that at the near-threshold region the spectral
phase of the high-order harmonics will show different be-
haviors from those at far-above threshold region. The phase
differences between adjacent harmonic orders are closely
related to the time when the returning electron recombines
with the parent ion [15]. Thus, when the Coulomb potential
affects the trajectories of the electron its effect should appear
in the phase difference. In addition, at the recombination the
electron with low energy undergoes a phase shift depending
on the shape of the potential, and this shift will be encoded in
the phase of the harmonics [16]. In this paper, we report the
observations of the phase differences of high-order harmonics
in the near-threshold region generated in Ar and N2, and
discuss the origin of the difference between them. A significant
difference found between the near-threshold harmonics of Ar
and those of N2, whose ionization potentials are almost the
same, is explained in terms of the electron trajectories and
the phase shift of the electron de Broglie wave. This paper
is organized as follows: In Sec. II, we briefly review the
theoretical background of the harmonic phase and explain the
principle of its detection. Next, Sec. III presents the details of
our experimental setup. In Sec. IV, we present the experimental
results and the analysis of them and in Sec. V we discuss the
origins of our findings. Finally we summarize the results in
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Sec. VI. Throughout this paper the atomic units and the length
gauge are used unless otherwise stated.

II. THEORETICAL BACKGROUND

In this section, the theories about the phase of high-order
harmonics are reviewed. In Sec. II A, we explain the relation
among the phase differences between adjacent high-order
harmonics, the moment when the harmonics are emitted, and
the phase of the recombination dipole moment. In Sec. II B
we explain the method we used for the detection of the phase
difference.

A. Relation between the phase differences and the characteristic
times in the process of high-order-harmonic generation

As pointed out in the work by Mairesse et al. [15], the phase
of the high-order harmonics is related to two characteristic
times: the time when the high-order harmonics is emitted
(emission time te), and that when the electron recombines
with the parent ion (recombination time tr). In this section we
review these relations.

First we discuss the emission time te of the high-order
harmonics. Let us consider the high-order harmonics

EHH(t) =
∑

n

A(2n+1) cos
[
(2n + 1)ω0t − φ

(2n+1)
HH

]
, (1)

generated by the driving field

Edriving(t) = E
driving
0 cos [ω0t]. (2)

In the work by Mairesse et al. [15] it is shown that the time
te when the harmonic with frequency ∼2nω0 is emitted is
related to the phase differences between adjacent harmonic
orders �φ

(2n)
HH ≡ φ

(2n+1)
HH − φ

(2n−1)
HH by

te � �φ
(2n)
HH

2ω0
. (3)

In Ref. [15] the relation (3) is derived with the approximation
dφ/dω � �φ

(2n)
HH /(2ω0). The relation (3) can also be derived

without this approximation as follows: Equation (1) can be
rewritten as

EHH(t) =
∑

n

(A′(2n) + A′(2n+2)) cos
[
(2n + 1)ω0t − φ

(2n+1)
HH

]

=
∑

n

A′(2n)
{

cos
[
(2n + 1)ω0t − φ

(2n+1)
HH

] + cos
[
(2n − 1)ω0t − φ

(2n−1)
HH

]}

=
∑

n

2A′(2n) cos

[
2nω0t − φ

(2n+1)
HH + φ

(2n−1)
HH

2

]
cos

{
ω0

[
t − �φ

(2n)
HH

2ω0

]}
, (4)

where A′(2n) + A′(2n+2) = A(2n+1) with A′(0) = 0. Equation (4)
shows that the superposition of odd-order harmonics [Eq. (1)]
is equivalent to the superposition of trains of wave packets
with carrier frequency 2nω0 whose maxima of the envelope lag
behind those of the driving field [Eq. (2)] by te � �φ

(2n)
HH /2ω0.

Next, we consider the relation between the recombina-
tion time tr of the electron and the phase of the high-
order harmonics. Under the strong-field approximation with
the saddle-point approximation [17–19], the electron which
ionizes at time ti and recombines with the parent ion
at tr generates a pulse of harmonics with the spectrum
of F (ω)e+iωtr , where

F (ω) ≡ ω2 i2π√
det Sst(ti; tr)

(
π

iτ/2 + ε

)3/2

e−iSst(ti ;tr)

× [E(ti) · d( pst(ti; tr) + A(ti))] d∗( pst(ti; tr) + A(tr)).

(5)

Here, τ ≡ tr − ti is the flight time of the electron, ε is a
positive small value to remove the unphysical singularity,
E(t) is the electric field of the driving pulse, A(t) ≡
− ∫ t

0 dt ′ E(t ′), Sst(ti; tr) ≡ ∫ tr
ti
{[ pst + A(t ′′)]2/2 + IP}dt ′′, and

pst(ti; tr) ≡ − 1
τ

∫ tr
ti

A(t ′′)dt ′′. The ionization time ti and the
recombination time tr are the solutions of the saddle-point

equations

[ pst(ti; tr) + A(tr)]
2

2
+ IP − ω = 0, (6)

[ pst(ti; tr) + A(ti)]
2

2
+ IP = 0. (7)

The transition dipole moment d is defined by

d( p) ≡ (2π )−3/2
∫ +∞

−∞
d3x e−i p·x x ψ0(x). (8)

For the periodicity of the driving field, the ionization and
recombination will occur periodically. We assume that by
satisfying an appropriate phase matching condition [20] only
the short trajectory is selected per one half cycle of the driving
field. When T ≡ 2π/ω0 denotes the cycle of the driving
field, the harmonic fields are generated with their polarity
reversed alternately at every one half cycle T/2 (Fig. 1), and
consequently the spectrum of the harmonic field becomes

ẼHH(ω) ∝
∑

n

(−1)nF (ω)e+iωtre+inωT/2

= 2ω0F (ω)e+iωtr

+∞∑
n=−∞

δ [ω − (2n+1)ω0] . (9)
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FIG. 1. (Color online) The periodic structure of the high-order
harmonics. The harmonic fields are generated with their polarity
reversed alternately at every one half cycle T/2.

From this we find that the (2n + 1)th harmonic has a phase
φ

(2n+1)
HH which is the sum of the phase of F [(2n + 1)ω0], which

we write as φ
(2n+1)
F , and the term (2n + 1)ω0tr:

φ
(2n+1)
HH = φ

(2n+1)
F + (2n + 1)ω0tr. (10)

Therefore, the recombination time tr is related to the phase
difference �φ

(2n)
HH as

tr = �φ
(2n)
HH

2ω0
− φ

(2n+1)
F − φ

(2n−1)
F

2ω0
. (11)

If the phase of the F (ω) is constant and φ
(2n+1)
F = φ

(2n−1)
F , the

right-hand side of Eq. (11) is equal to that of Eq. (3), and the
emission time of harmonics te is equal to the recombination
time tr. However, this is not true when φ

(2n+1)
F depends on the

harmonic order (2n + 1).
To summarize, the phase difference �φ

(2n)
HH is not neces-

sarily proportional to the recombination time tr [Eq. (11)], in
contrast to the emission time te [Eq. (3)]. Equation (11) shows
that the emission time te lags (φ(2n+1)

F − φ
(2n−1)
F )/2ω0 behind

the recombination time tr, so the harmonic order dependence

of φ
(2n+1)
F must be taken into consideration when the relation

between �φ
(2n)
HH and tr is discussed.

B. Detection technique of the phase difference by using
two-photon ionization

As a method to observe the phase differences of high-order
harmonics, we employ a technique called RABBIT (recon-
struction of attosecond beating by interference of two-photon
transitions) [10,15,21–26]. This method relies on the obser-
vation of the intensity variation of photoelectrons produced
by two-photon ionization with the high-order harmonics to be
measured and the fundamental near-infrared pulse for probing
(hereafter called “probe pulse”). Considering that the photon
energy of harmonics is odd multiple of the photon energy ω0 of
the driving field, the kinetic energies of the photoelectrons pro-
duced by (2n − 1)th harmonics is (2n − 1)ω0 − IP, where n is
an integer and IP is the ionization potential of the target atom.
When the probe pulse is irradiated together with the high-order
harmonics, the two-color two-photon ionization process with
one high-order-harmonic photon and one photon in the probe
pulse produces additional sidebands in between single-photon
ionization signals. To the two-photon signal [(2n)th sideband]
between the signals from the (2n − 1)th and (2n + 1)th
harmonics, two processes can contribute: (1) absorption of
one photon of the (2n − 1)th harmonic and one photon of
the probe pulse, and (2) absorption of one photon of the
(2n + 1)th harmonic and stimulated emission of one photon of
the probe pulse. These two processes interfere with each other
and consequently the intensity of the (2n)th sideband varies
as a function of the delay �t between high-order harmonics
and the probe pulse. As shown below, the phase differences
between adjacent harmonics are evaluated by analyzing the
�t dependence of the photoelectron signals thus produced.

Let us consider that the rare gas as a target is irradiated
with the generated high-order harmonics and the probe pulse
at the point to which the optical path length from the harmonic
generation point is z as shown in Fig. 2. We write the electric
fields of the (2n ± 1)th harmonics and the probe pulse at the
detection point as

E
(2n±1)
X (t) = A(2n±1)

X ei

(2n±1)
HH e−i(2n±1)ω0t + c.c., (12)

EI(t) = AIe
i
probee−iω0t + c.c., (13)

respectively, where AX, AI, 

(2n±1)
HH , and 
probe are real num-

bers. Within the second-order time-dependent perturbation

FIG. 2. (Color online) The relation between the phases at the generation point and that at the detection point.
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theory, the intensity of the (2n)th sideband S2n is calculated as

S2n =A2
IA

(2n−1)
X

2
A

(2n+1)
+ + A2

IA
(2n+1)
X

2
A

(2n−1)
−

+ AI
2A(2n−1)

X A(2n+1)
X A

(2n)
atom

× cos
(
2
probe + 


(2n−1)
HH − 


(2n+1)
HH + �φ

(2n)
atom

)
. (14)

Here, A
(2n±1)
± , A

(2n)
atom, and �φ

(2n)
atom are constants representing

the amplitudes and phase of the transition dipole, which are
defined as

A
(2n±1)
± =

∑
i,f

∣∣M̃ (2n)
(f,i,±)

∣∣2
, (15)

A
(2n)
atom = 2

∣∣∣∣∣∣
∑
i,f

M̃
(2n)
(f,i,+)

(
M̃

(2n)
(f,i,−)

)∗
∣∣∣∣∣∣ , (16)

�φ
(2n)
atom = arg

⎛
⎝∑

i,f

M̃
(2n)
(f,i,+)

(
M̃

(2n)
(f,i,−)

)∗
⎞
⎠, (17)

where

M̃
(2n)
(f,i,±) ≡ M

(2n∓1)
(f,i) + M

(±1)
(f,i) , (18)

M
(q)
(f,i) ≡

∑∫
m

〈f |z|m〉 〈m|z|i〉
E0

i + qω0 − E0
m

. (19)

In Eq. (19), the intermediate state |m〉 runs all of the eigenstate
of the atom, and

∑∫
m

means sum if |m〉 is a bound state

and integral if |m〉 is a continuum state. The term �φ
(2n)
atom

in Eq. (14), called an “atomic phase,” can be calculated by
using the method reported in Ref. [27]. When we neglect
the dispersion of the medium gases for high-order-harmonic
generation and the optical path difference between high-order
harmonics and the probe pulse, the phase of the (2n ± 1)th
harmonics 


(2n±1)
HH and that of the probe pulse 
probe at the

detection point are related to the phase of the (2n ± 1)th
harmonics φ

(2n±1)
HH and that of the probe pulse φprobe at the

generation point as



(2n±1)
HH = φ

(2n±1)
HH + (2n ± 1)ω0

c
z, (20)


probe = φprobe + ω0

c
z, (21)

respectively. The phase of the probe pulse φprobe at the
generation point can be controlled by changing the delay of
the probe pulse �t :

φprobe = ω0�t. (22)

Substituting Eqs. (20)–(22) into Eq. (14), we obtain

S2n = A2
IA

(2n−1)
X

2
A

(2n+1)
+ + A2

IA
(2n+1)
X

2
A

(2n−1)
−

+AI
2A(2n−1)

X A(2n+1)
X A

(2n)
atom

× cos
[
2ω0�t − �φ

(2n)
HH + �φ

(2n)
atom

]
. (23)

Thus we can directly get �φ
(2n)
HH ≡ φ

(2n+1)
HH − φ

(2n−1)
HH by ob-

serving the dependence of the sideband intensity S2n on �t .

III. EXPERIMENTAL SETUP

Figure 3 shows the schematic diagram of our experimental
setup. An output from a Ti:sapphire based chirped-pulse
amplification system (FEMTOLASERS Produktions GmbH,
FEMTOPOWER PRO V CEP) is spatially divided by a drilled
mirror 1 into an outer annular beam and an inner small beam.
The outer beam (8 mm diam. with a hole of 4 mm diam.) is
used as a “driving pulse” for high-order-harmonic generation.
The inner beam is further spatially confined by an iris to 2 mm
diam., and used as a probe pulse of the RABBIT method.
The pulse energies of the driving and the probe pulses are
∼0.2 and ∼0.02 mJ, respectively. The peak intensity of the
driving pulse is estimated to be >1014 W/cm2 at the focus,
and that of the probe pulse is to be on the order of 1012 W/cm2

because at the focus the beam radius of the probe pulse is larger
than that of the driving pulse by a factor of 2. The delay �t

between the driving and the probe pulses is controlled by a
closed-loop piezoelectric positioning stage with resolution of
10 nm [SIGMA KOKI Co. Ltd., SFS-H60X(CL)]. The two
pulses are combined collinearly by another drilled mirror 2,
and are then introduced into the vacuum chamber and focused
by a concave mirror into a supersonic atomic or molecular
gas jet, in which high-order harmonics are generated. The
gas jet for generating high-order harmonics is introduced
through a pulsed valve (Parker-Hannifin, 009-1670-900) with
the orifice diameter of 0.1 mm. The position of the focus
is set before the gas jet to select the contribution from the
short trajectories [20]. An aperture is located ∼400 mm after
the focus, which blocks the outer annular beam, while the
generated XUV harmonics and the inner probe pulse pass
through the aperture [28]. The harmonics and the probe
pulses are refocused into the supersonic gas jet of Ar by a
gold-coated toroidal mirror to ionize the Ar atom by an XUV
photon or by two photons of one XUV photon and one IR
photon. The kinetic energy and the angular distribution of the
produced photoelectrons are measured by using the velocity-
map imaging technique [29]: The produced photoelectrons are
accelerated toward the two-dimensional detector (Hamamatsu
Photonics, F2226-24PF132) by the static electric field formed
by the three electrodes, which is adjusted so that electrons with
the same initial momenta are imaged onto almost the same
position of the screen, irrespective of their initial positions.
The light blobs on the phosphor screen are focused by a
50-mm-focal-length lens on a charge-coupled device (CCD)
camera (Basler, avA2300-30km). The image is transferred

FIG. 3. (Color online) Schematic diagram of the experimental
setup. See text for the details.
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to a personal computer through a frame grabber (Euresys,
GrabLink Base). The three-dimensional velocity distribution
is reconstructed by the BASEX method [30]. In addition to
the photoelectron measurement, we also observe the intensity
spectra of high-order harmonics with an XUV spectrometer
with a CCD camera. With the spectrometer we detected
the harmonics up to 43rd generated both in N2 and in Ar,
from which we estimate the intensity of the driving pulse as
∼2.7 × 1014 W/cm2.

IV. RESULTS

The left panel of Fig. 4 shows the reconstructed image of
photoelectron velocity distribution produced by single-photon
ionization of Ar with high-order harmonics generated in N2

molecules. The concentric rings reflect single-photon ioniza-
tion by the respective orders of harmonics. The innermost ring
corresponds to the 11th harmonics and the ring corresponding
to the 19th harmonics is observed in our setup. In the right panel
of Fig. 4, the reconstructed image of photoelectrons is shown
when the probe pulse is introduced together with the XUV
pulses. Additional rings in between single-photon ionization
signals are attributed to the signals of two-color two-photon
ionization.

We observe the velocity distribution at each delay �t and
obtain the intensities of the sidebands as a function of �t . From
Eq. (23) it is expected that the sideband intensities S2n show
the cos (2ω0�t + φ)-shape variation. In practice, however, the
cos (2ω0�t + φ)-shape variation in the sideband is subject to
the cos (ω0�t)-like modulation of the harmonic amplitude
A(2n±1)

X . This modulation comes from the interference of
the driving pulse and the probe pulse focused into the Ar
and N2 gas jet to generate high-order harmonics. Although
the intensity of the probe pulses (∼1012 W/cm2) is lower
by two orders of magnitude than that of the driving pulse
(∼1014 W/cm2), the magnitude of the electric field is lower
by only one order and their interference causes a modulation
in harmonic intensities due to the high nonlinearity of the
high-order-harmonic generation process. In Refs. [21,22], the
effect of the modulation in harmonic intensities is removed
simply by dividing the sideband intensity at each �t by the
total photoelectron signal at this delay. Here we normalize S2n

by using a physically meaningful method based on Eq. (23),
which is derived by considering the production process of
photoelectrons. When both sides of Eq. (23) are divided by

FIG. 4. (Color online) Velocity distributions of photoelectrons
produced by single-photon ionization of Ar with high-order har-
monics from N2 (left panel) and by two-color photoionization
with high-order harmonics from N2 and the probe pulses (right
panel).

A(2n−1)
X A(2n+1)

X [the factor before the cos (2ω0�t + φ) term],
we get

S̃2n ≡ S2n

/(
A(2n−1)

X A(2n+1)
X

)
= A2

I

[
A(2n−1)

X

A(2n+1)
X

A
(2n+1)
+ + A(2n+1)

X

A(2n−1)
X

A
(2n−1)
−

+A
(2n)
atom cos

(
2ω0�t − �φ

(2n)
HH + �φ

(2n)
atom

)]
. (24)

This normalized sideband intensity S̃2n is robust against
the modulation in harmonic intensities because before the
cos (2ω0�t + φ) term there are no factors about the harmonic
intensities. In addition, the effect of the harmonic intensity
modulation on the two terms (A(2n−1)

X /A(2n+1)
X )A(2n+1)

+ and
(A(2n+1)

X /A(2n−1)
X )A(2n−1)

− is opposite and cancel each other
out. The normalizing factor A(2n−1)

X A(2n+1)
X is estimated from

the signals of single-photon ionization: The probability of
single-photon ionization is proportional to the intensity of the
light, and thus to the square of the amplitude of the electric
field. Therefore, the normalizing factor A(2n−1)

X A(2n+1)
X is pro-

portional to the square root of the product of the single-photon
ionization signals by (2n − 1)th and (2n + 1)th harmonics.

The normalized intensities S̃2n’s of the 12th–18th sidebands
for Ar and for N2 are shown as a function of �t in Figs. 5(a) and
5(b), respectively. By comparing Eqs. (2) and (22), we define
the origin of the horizontal axis �t = 0 as the point where
the electric field of the driving pulse and that of the probe
pulse are in phase. Here we determine �t = 0 by choosing
the delay so that the driving and the probe pulses interfere
constructively in the same way as used in Refs. [15,23]. The
cos (2ω0�t + φ)-shape modulations clearly appear in Fig. 5,
but there still remain small components with the frequency ω0.
Equation (24) suggests that the remaining components come
from the change in the probe intensity A2

I as a function of �t .
Reference [22] pointed out the possibility that some part of the
driving pulse is scattered by the gaseous medium and is focused
on the gas for detection without being blocked by the aperture
(see Fig. 3). Another plausible reason is the coupling between
the driving pulse and the probe pulse through the change
of the nonlinear refractive index induced by the two pulses
[31, §11.6]. We assume that the probe intensity A2

I varies
like cos (ω0�t + η) plus a constant, and fit the normalized
sideband by a function

A[1 + B cos (ω0�t + η)][1 + C cos (2ω0�t + φ)], (25)

with A, B, C, η, and φ the fitting parameters.
The phase difference �φ

(2n)
HH is obtained from the fitting

parameter φ by subtracting the atomic phase �φ
(2n)
atom [see

Eq. (24)]. The resuts for Ar and N2 are shown in Fig. 6
by squares and triangles, respectively. We calculate �φ

(2n)
atom

within the second-order perturbation theory and the single-
active-electron approximation with the one-electron potential
proposed in Refs. [27,32] by using the method of Toma
and Muller [27]. The calculated �φ

(2n)
atom’s are shown in the

inset of Fig. 6. We determine �φ
(2n)
HH within the range of

0 < �φ
(2n)
HH � 2π . The error bars represent those associated
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FIG. 5. (Color online) The intensities of 12th–18th sidebands for
Ar (a) and for N2 (b) as a function of �t . To remove the undesired
modulation in harmonic intensities, the (2n)th sideband intensity is
normalized by the square root of the product of the single-photon
ionization signals from (2n − 1)th and (2n + 1)th harmonics.

with the least-squares fitting. To check the validity of our
analysis, we also compute the discrete Fourier transform of
the data in Fig. 5 and compare the phases of the component
at 2ω0 with those obtained by the fitting. We confirm that
all the results obtained by Fourier analysis fall in the fitting
results well within the fitting errors. As described in Sec. II A,
the times te when the harmonics are emitted are related to
the phase differences as te � �φ

(2n)
HH /2ω0 [Eq. (3)]. Shown

by the right vertical axis in Fig. 6 are te’s corresponding to the
observed phase differences.

V. DISCUSSIONS

The phase differences �φ
(2n)
HH monotonically increase as a

function of the sideband order. As shown by Mairesse et al.
[15], this feature is considered to come from the tendency that
the recombination time tr of the short trajectory becomes larger
for higher photon energy. We show in Fig. 6 the recombination

FIG. 6. (Color online) Points with error bars: �φ
(2n)
HH for Ar

(squares) and N2 (triangles), obtained by fitting the modulation
of sideband intensities shown in Fig. 5. The emission time te of
each harmonic calculated by Eq. (3) is read by the right vertical
axis. Curves: the recombination time tr calculated by using the
saddle-point method within the strong-field approximation [15,18],
at the laser intensity of 2.7 × 1014 W/cm2. Inset: the atomic phase
�φ

(2n)
atom calculated by the second-order perturbation theory [27] with

a one-electron potential given in Refs. [27,32].

time tr calculated by using the saddle-point method within
the strong-field approximation [17–19] (see Sec. II A). The
calculation is done for short trajectories at the laser intensity
of 2.7 × 1014 W/cm2 and for IP = 15.76 eV (solid line) and
15.58 eV (dashed line), which corresponds to Ar and N2, re-
spectively [33]. In Fig. 6 the recombination times tr are related
to the phase differences �φ

(2n)
HH by Eq. (11) with the assumption

that the phase of the F (ω) [Eq. (5)] is independent of the photon
energy ω and thus tr � te � �φ

(2n)
HH /2ω0. Though the results

of the model calculation reproduce the increase of the phase
differences as a function of the harmonic order, we find that this
calculation cannot reproduce the following point found in our
observations: From the calculated result it is expected that the
phase differences �φ

(2n)
HH for Ar and those for N2 are almost the

same at each sideband order. However, at the 12th sideband,
nearest to the ionization thresholds, a remarkable difference
appears between the experimental result of Ar and that of N2.
In the case of Ar, �φ

(12)
HH is almost the same as �φ

(14)
HH , which

deviates from the increasing tendency of tr’s predicted by the
model calculation. This characteristic behavior is also found
in the results by Aseyev et al. [23]. On the other hand, for N2,
the value of �φ

(2n)
HH increases monotonically over the entire

sideband orders observed and �φ
(12)
HH is considerably lower

than �φ
(14)
HH . In the following we discuss the reason for the

difference in �φ
(12)
HH between Ar and N2.

First we check up on the possibility that the difference
between Ar and N2 is caused by the change in the experimental
condition. A possible effect to be considered is the difference
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in the medium dispersion, the importance of which is pointed
out by Dinu et al. [22]. To take the dispersion into account,
we consider a simple model in which Eqs. (20) and (21) are
replaced by



(2n±1)
HH = φ

(2n±1)
HH + (2n ± 1)ω0

c
(z − �z)

+ n [(2n ± 1)ω0]
(2n ± 1)ω0

c
�z, (26)


probe = φprobe + ω0

c
(z − �z) + n(ω0)

ω0

c
�z, (27)

where n(ω) is the refractive index of the medium at the angular
frequency ω and �z is the effective interaction length of the
medium. Then, the argument of the cosine term in the intensity
modulation of the sideband [Eq. (24)] is changed into

2ω0�t − �φ
(2n)
HH + �φ

(2n)
atom

→ 2ω0�t − �φ
(2n)
HH + �φ

(2n)
atom

−{(2n + 1)n[(2n + 1)ω0] − 2n(ω0)

− (2n − 1)n [(2n − 1)ω0]}ω0�z

c
. (28)

To estimate the degree of the dispersion effect on the phase
differences, let us assume that the gas produces one free
electron per atom, as assumed in Ref. [22]. Then, the dielectric
constant is given by ε(ω)/ε0 = 1 − ω2

P/ω
2, where ωP is

the plasma frequency defined by ω2
P = Ne2/(ε0m) [34, §7.5].

The refractive index becomes

n(ω) �
√

ε(ω)/ε0 =
√

1 − ωP
2

ω2
� 1 − NA

1

ω2
, (29)

where A = e2/(2ε0m) is a constant. Then, the correction term
in Eq. (28) is estimated as follows:

{(2n + 1)n [(2n + 1)ω0] − 2n(ω0)

− (2n − 1)n[(2n − 1)ω0]}ω0�z

c

� N
(2n)2 − 3

(2n)2 − 1

A

cω0
�z. (30)

This shows that the �φ
(2n)
HH has a correction term which

linearly depends on the plasma density N . Figure 7 shows
the correction term N (2n)2−3

(2n)2−1
A

cω0
�z given by Eq. (30) as a

function of the sideband order. Based on our experimental
condition, we choose the parameters as N = 1 × 1018 cm−3

and �z = 0.1 mm. Although the correction brought by the
dispersion effect is monotonically increased as a function of
the sideband order, its contribution to the phase difference is
very small (<2 × 10−3 rad) over the observed sideband order.

Another factor which can affect the experimental results
is the optical path difference between high-order harmonics
and the probe pulse due to the slight change of the alignment.
When the optical path length from the generation point to
the detection point is z for high-order harmonics, and that
for the probe pulse is larger than z by δz, Eq. (21) is

Sideband order
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n 

te
rm

 (
ra

d)

12 14 16 18
0.221

0.222

0.223

0.224

0.225

FIG. 7. The correction term N (2n)2−3
(2n)2−1

A

cω0
�z given by Eq. (30)

with N = 1 × 1018 cm−3 and �z = 0.1 mm.

replaced by


probe = ω0�t + ω0

c
(z + δz) . (31)

In this case, the argument of the cosine term in the intensity
modulation of the sideband [Eq. (24)] is changed into

2ω0�t − �φ
(2n)
HH + �φ

(2n)
atom

→ 2ω0�t − �φ
(2n)
HH + �φ

(2n)
atom + 2

ω0

c
δz. (32)

Since the magnitude of the correction (2ω0/c)δz does not
depend on the sideband order, the misalignment of the probe
pulse simply leads to the overall shift in the phase differences.

The change in the intensity of the driving pulse can also vary
the phase differences because it changes the recombination
time tr of the electron. Figure 8 compares the results of
the same model calculations as those used in Fig. 6 done
at three laser intensities of 2.7 × 1014 W/cm2 (solid curve),
2.0 × 1014 W/cm2 (dashed curve), and 1.5 × 1014 W/cm2

(dot-dashed curve). The ionization potential IP is 15.76 eV.
As the intensity of the driving pulse decreases, the curve of the
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FIG. 8. (Color online) The results of the model calculation at
three laser intensities of 2.7 × 1014 W/cm2 (solid curve), 2.0 ×
1014 W/cm2 (dashed curve), and 1.5 × 1014 W/cm2 (dot-dashed
curve). The ionization potential IP is set at 15.76 eV.
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FIG. 9. (Color online) The experimental results observed four
months after the observation leading to the results shown in
Fig. 6.

recombination time tr shifts upward. The shape of the curve,
however, is almost unchanged.

All of the three effects discussed above can cause the
overall shift of �φ

(2n)
HH ’s, but the amount of the shift is little

or not dependent on the sideband order. In fact, when we
measured the �φ

(2n)
HH ’s of the high-order harmonics generated

in Ar and N2 four months after the observation leading to
the results shown in Fig. 6, the shift of the absolute values
of �φ

(2n)
HH ’s are observed (Fig. 9), which is considered to

be due to the slight changes in the density of the medium,
in the optical path difference between high-order harmonics
and the probe pulse, and in the driving pulse intensity.
However, the behavior of �φ

(2n)
HH as a function of the sideband

order is very similar to that of Fig. 6, and the difference in
�φ

(12)
HH between Ar and N2 is clearly reproduced. Therefore,

we conclude the difference in �φ
(12)
HH between Ar and N2 comes

from the intrinsic property of the medium in which high-order
harmonics are generated. Since the ionization potentials IP

of Ar and N2 are 15.76 and 15.58 eV, respectively, and the
photon energy of the driving pulses is ∼1.55 eV, the ionization
threshold of Ar and N2 corresponds to �10th harmonics and
the 12th sideband is very near the ionization threshold. As
discussed in Sec. I, several phenomena are reported that cannot
be explained by the strong-field approximation [12–14]. In the
following, we investigate the plausible causes of the anomaly
in �φ

(12)
HH by considering the corrections of the strong-field

approximation.
To investigate the physical origin of the difference between

Ar and N2, we focus on Eq. (11) which relates the recombi-
nation time tr of the electron to the phase difference �φ

(2n)
HH .

Equation (11) can be rewritten as

�φ
(2n)
HH = 2ω0tr + (

φ
(2n+1)
F − φ

(2n−1)
F

)
. (33)

This equation suggests the following two possibilities: (1) the
recombination time tr is different between Ar and N2, and

(2) the second term of the right-hand side (φ(2n+1)
F − φ

(2n−1)
F )

in Eq. (33) is different between Ar and N2.
First we consider the recombination time tr. In the model

calculation of tr presented in Fig. 6 the shape of the potential
created by the parent ion is neglected, but it is natural to think
that the difference in the potential shape between Ar and N2

will influence tr. To investigate the effect of the potential of the
parent ion, we calculate tr with the classical trajectory Monte
Carlo method [14,35]. We consider one-dimensional classical
trajectories of a single active electron driven by the laser field
in the soft-core potential

V (x) = −Ze/
√

x2 + α2, (34)

and calculate the time when an electron with a positive
energy (corresponding to the ionization) returns to the origin
x = 0 (corresponding to the recombination). As the initial
distribution of the position x and momentum p we use the
truncated Wigner distribution [35]: that is, we first calculate
the quantum ground state, and based on this ground state
we obtain the (x,p) distribution which can be allowed in
the classical mechanics. Figure 10(b) shows the calculated
recombination times for three different potentials [Fig. 10(a)]
with the same ionization energy IP = 15.58 eV but different
parameters Ze and α in Eq. (34). The intensity of the driving
pulse is set at 2.7 × 1014 W/cm2. By the right vertical axis
we show the phase differences �φ

(2n)
HH calculated by Eq. (33)

assuming φ
(2n+1)
F − φ

(2n−1)
F = 0. Depending on the parameters

of the soft-core potential, the slope slightly changes over all
the harmonic energy range rather than only around the 12th
sideband. Moreover, the change in the tr is small compared
to that resulting from the experimentally observed difference
in �φ

(12)
HH between Ar and N2. Thus the effect of the potential

shape on the recombination time of the returning electron does
not seem to be a major cause for the observed difference in
�φ

(12)
HH . If, on the other hand, at the near-threshold region the

multiphoton ionization dominates in the first step of the high-
order-harmonic generation process as pointed out in Ref. [14],
the difference in the structure of the excited states between
Ar and N2 largely affects the ionization process, which will
change the recombination time tr of the returning electron.

Next we consider the term (φ(2n+1)
F − φ

(2n−1)
F ) in Eq. (33).

We recall that φ
(2n+1)
F is defined in Sec. II A as the phase

of F [(2n + 1)ω0], and F (ω) is the spectrum of the harmonics
defined in Eq. (5). Equation (5) shows that F (ω) is proportional
to the recombination dipole d∗( pst(ti; tr) + A(tr)). In Sec. II A,
under the strong-field approximation, the continuum state in
the transition dipole moment d is expressed by a plane wave
e−i p·x [Eq. (8)] without considering the effects of the Coulomb
potential. However, it is well known in the scattering theory
that the Coulomb potential can influence a charged particle in a
faraway place due to its slow falloff [36, §14]. Moreover, in the
recombination process the electron must return to the parent
ion and the effect of the Coulomb interaction is inevitable.
Therefore it is natural to include the effect of the potential
in the recombination dipole moment. In Fig. 11 we show by
the solid line the phase of the photorecombination transition
dipole moment for Ar calculated by reference to Ref. [16],
with the one-electron potential presented in Refs. [27,32]. The
phase changes rapidly toward the ionization threshold due
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(a)

(b)

FIG. 10. (Color online) (a) Three different one-dimensional soft-
core potentials [Eq. (34)] used in the classical trajectory Monte
Carlo calculations. (b) The recombination times calculated with
the classical trajectory Monte Carlo method in three different soft-
core potentials. The parameters for the soft-core potentials are given
in the legends. The intensity of the driving pulse is 2.7 × 1014 W/cm2.

to the Coulomb potential made by the parent ion. This rapid
phase change can provide a large (φ(2n+1)

F − φ
(2n−1)
F ) in Eq. (33)

around the photon energy of the 12th sideband order, which
makes the �φ

(12)
HH deviate from the value predicted from the tr

calculated with the simple assumption of φ
(2n+1)
F − φ

(2n−1)
F =

0. We also show by the broken line in Fig. 11 the phase
of the dipole moment calculated by using the returning
electron wave packet uninfluenced by the potential, i.e., the
plane-wave approximation. Its large difference from the result
including the effect of the potential means that the potential
made by the parent ion actually can play a crucial role in
the harmonic phase around the near-threshold energy range.
The difference in the shape of the potential between Ar and
N2 will make (φ(13)

F − φ
(11)
F ) different from each other and

accordingly cause the difference in �φ
(12)
HH between them. Note

that the phase of F (ω) can also be affected by the shape of
the valence orbital with which the electron recombines [25].
For example, in the high-order-harmonic spectrum of Ar
the harmonic phase jumps around 40–50 eV [16] associated
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ha
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ra
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Harmonic order

Potential included
plane−wave approximation

18 20 22 24 26 28

−3
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−1

0

1
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FIG. 11. (Color online) Calculated phase of the photorecombina-
tion transition dipole moment for Ar with the one-electron potential
presented in Refs. [27,32] (solid line) and with the plane-wave
approximation (broken line).

with the Cooper minimum [37,38]. However, the position
of the harmonic phase jump resulting from the structure of
the valence orbital is also affected by the potential of the
parent ion. The importance of the potential on the position
of the phase jump can be seen in Fig. 11: The phase jump
associated with the Cooper minimum, which should appear
around 40–50 eV as stated above, occurs unphysically at
∼21 eV when calculated with the Coulomb potential neglected
[16]. Since the effect of the Coulomb potential of the parent ion
on the harmonic phase is so complicated, further investigations
will be needed for quantitative discussions about the phase
difference we found in the present experiment.

VI. CONCLUSION AND OUTLOOK

We observed the phase differences �φ
(2n)
HH of high-order

harmonics generated from Ar atoms and N2 molecules.
Although the behavior of �φ

(2n)
HH above the 14th sideband

order is well described by the strong-field approximation,
we found that �φ

(12)
HH is significantly different between Ar

and N2. After carefully considering some possible reasons
which may cause the difference in �φ

(12)
HH between them, we

conclude that this difference comes from the particularity
of high-order harmonics near the ionization potential IP, or
more specifically, mainly from the difference in the shape
of the Coulomb potential made by the parent ion, though
a deeper understanding of the underlying physics of near-
threshold high-order harmonics is still required. Therefore
the present study demonstrates that the observation of the
phase differences of near-threshold high-order harmonics can
become a new probe of the shape of the potentials or the
structure of the excited states. This new probe will surely add
further to the advantages of imaging of atomic and molecular
orbitals based on high-order-harmonic generation [39].

We point out two future directions along the present
study. One is to observe the phase differences with a longer-
wavelength driving pulse. In the present experiment we used
the output from a femtosecond Ti:sapphire laser with the
center wavelength of ∼800 nm as a driving pulse. Then
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high-order harmonics are generated at the energy interval of
∼3.1 eV, which is rather sparse for detailed investigations
of the high-order-harmonic generation process around the
near-threshold region. In fact, the deviation from the model
calculation appears only at the 12th sideband �φ

(12)
HH in the

present observation. When a longer-wavelength driving pulse
is employed, the spectra of high-order harmonics become
denser and provide us with richer information about the high-
order-harmonic generation process. The other is to observe
the phase differences of near-threshold high-order harmonics
generated in well aligned or oriented molecules, which will
serve to reveal the effect of the anisotropy of the potential
created by the parent molecular ions.
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