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Hydrodynamical interpretation of angular momentum and energy transfer in atomic processes
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Through the description of several simple atomic-scale systems for illustration, the hydrodynamical
interpretation of results of solving the time-dependent Schrödinger equation is used to elucidate the fundamental
processes of angular momentum and energy transfer. Connections are made between the hydrodynamical
interpretation and conventional views such as interference of superpositions of states. Along with previous
theoretical and experimental demonstration of the existence of the hydrodynamical signatures born in atomic-scale
interactions and remaining in the asymptotic observables, these illustrations show the complementarity of the
hydrodynamical and conventional pictures as well as additional insight provided by the former.
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I. INTRODUCTION

The connection between hydrodynamics and the evolution
of quantum mechanical entities was made very early on. In
fact, Madelung [1] gave the first hydrodynamical interpretation
of quantum mechanics less than a year after the appearance
of Schrödinger’s equation and just five years later Dirac [2]
was the first to state the possibility of zeros occurring in
the wave function associated with vortices. Then, in 1952,
Takabayashi [3] showed that solutions of the time-dependent
Schrödinger equation (TDSE) represent flows of compressible
perfect fluids described by the Navier-Stokes equations. Much
later, Bialynicki-Birula and collaborators showed that vortices
are associated with singularities in the velocity field [4,5] and
a theoretical prediction was made by the present authors of
vortices that are created on the atomic scale and persist to
asymptotic distances in ion-atom collisions [6], later confirmed
by experiment [7], and in photon-atom interactions [8].

Furthermore, these recent results not only predicted the
existence and detectability of hydrodynamical effects in
atomic-scale interactions, but they began the elucidation of
how the hydrodynamical interpretation could complement,
and significantly add to, a more conventional interpretation
of atomic-scale dynamics. Here we illustrate in more detail
how hydrodynamics complements and extends interpretations
based on interference of superpositions of states in atomic
processes and provide a fuller understanding of angular
momentum transfer in atomic collisions and energy transfer in
photoionization.

II. ANGULAR MOMENTUM TRANSFER
IN ION-ATOM COLLISIONS

The conventional view of how angular momentum is
transferred from the external motion of the projectile to the
target in ion-atom collisions involves the setting into rotation
of the electronic probability density (in both bound and
continuum states) and as the interference of the excited states
populated in the collision (see Ref. [9] and a large portion of
the literature interpreting alignment and orientation parameters
in ion-atom collisions as coherent superpositions of states,
e.g., Refs. [10–12]). To illustrate how the hydrodynamical
interpretation adds to this picture, we consider a particularly

simple system, the collision of an antiproton with atomic
hydrogen. This system has no bound electronic states of
the antiproton due to its charge sign. Therefore, it allows
us to avoid complications of the interpretation involving the
so-called two-center quasimolecular and continuum states in
positive-ion impact and final states of the projectile (that is, the
charge-transfer channel). In addition, there are no transitions
on the incoming phase of the collision involving antiproton
impact.

We accomplish this demonstration by solving the TDSE
using lattice-based methods [13,14]. This approach provides
a very accurate description, necessary to resolve clearly the
zeros of the wave function associated with the formation and
evolution of the vortices not as readily accomplished using
other methods, for example, basis set expansion. Also, the
lattice TDSE solutions are directly amenable to displaying the
wave function as a function of time to allow elucidation of the
origin and evolution of the hydrodynamical effects. In particu-
lar, we consider 5-keV antiproton impact of atomic hydrogen
with an impact parameter b = 1 a.u. The resulting electronic
probability density at several internuclear separations past the
distance of closest approach (R = 3, 7.2, 33, and 167 a.u.) is
shown in Fig. 1. This calculation is essentially a contemporary
version of that which we carried out in 1996 to elucidate the
mechanisms leading to the behavior of ionization of atoms
by antiproton impact [15,16], for example, the dynamical
exceeding of the Fermi-Teller limit at low energies, and which
was confirmed by other authors (see, e.g., Ref. [17]).

Figure 1 shows the expected evolution of the wave function
based on these previous works in which the antiproton excites
the target electronic probability density, which expands in a
roughly spherical distribution (as opposed to the shape formed
by the two-center states, dominantly the σ -π distribution
shown for positive-ion impact [18–22]), with a deep minimum
surrounding the antiproton owing to the repulsion of the
electronic probability density. We note that the dynamics
displayed in Fig. 1 are quite similar over a relatively wide
range of impact parameters, for example, b = 0.4–2 a.u. (as
shown in previous work [16]).

To measure the angular momentum transfer in the collision,
we compute the y projection of the expectation value of angular
momentum Ly = (�r × �p)y = −i�(�r × �∇)y and display it in
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FIG. 1. (Color online) Two-dimensional slice of the electronic
probability density for four internuclear distances (in a.u.) after
the distance of closest approach in 5-keV antiproton impact of
atomic hydrogen with b = 1 a.u. The impact parameter is in the −x

direction and the antiproton moves from −z to +z and is located at
(z,x) = (

√
1 − 1/R2, − 1/R), at the center of the white circle with a

dashed line. The proton is located at (z,x) = (0,0) at the center of the
white circle with a solid line and the antiproton follows a trajectory
in the scaled coordinates along a semicircle, centered at (0,0), with
radius 1. The contours ranging from violet to red represent probability
density from 10−4 to 10−1 for R = 3 a.u., 10−3.5 to 100.5 for R = 7.2,
10−4 to 101 for R = 33, and 10−3.5 to 1 for R = 167.

Fig. 2 as a function of distance along the antiproton trajectory
(i.e., vt , where v is the antiproton velocity and t is time in
a.u.). In addition, we decompose the curve into components
owing to the angular momentum either about the origin of
coordinates at the target nucleus or about the vortex centers.
The former is accomplished by computing the center of mass
of the electronic probability density and its angular velocity.
Subtracting this rotation component from the total is the
amount due to the vortices. As the figure illustrates, soon after
the distance of closest approach, the dominant contribution
comes from rotation of the electronic probability density;
however, this overall rotation stops quickly and the subsequent
increase in Ly comes from the vortices.

This can be seen by examination of the time evolution
of not only the probability density but also the electronic
probability current, as shown in Fig. 3. In particular, the panel
showing these quantities at R = 3 a.u. shows that soon after
the distance of closest approach there is a general expansion of
the electronic probability density, owing to the reduced
effective attraction of the electron by the target proton by the
presence of the oppositely charged projectile, and a general
rotation of the distribution set in motion by the repulsive push
from the antiproton with a finite lever arm b. Then, as shown
in the next panel, by R = 7.2 a.u., the general rotation has
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FIG. 2. (Color online) The y projection of angular momentum
as a function of the distance vt along the antiproton trajectory in
5-keV antiproton impact of atomic hydrogen with b = 1 a.u. The
red (short-dashed) curve is the portion of Ly due to rotation of
the electronic probability density, the blue (solid) curve is that due
to the rotation about the centers of vortices, and the black (dashed)
curve is the total. The arrows indicate positions at which the electronic
probability density and current are displayed in Fig. 3.

stopped and a ring vortex has formed. It occurs when there
is a sufficient population of excited states built up (recall
that we have noted that, unlike in positive-ion impact, there
are no transitions on the incoming phase of the collision).
This buildup results in an interference of the superposition of
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FIG. 3. (Color online) Electronic probability density (color con-
tours) and probability current (arrows) for R = 1 a.u. and the three
antiproton positions indicated in Fig. 2, showing the expansion
with no vortices (R = 1,3 a.u.), rotation of the probability density
as a whole and the presence of vortices (R = 7.2 a.u.), and the
lack of rotation but continued creation and evolution of vortices
(R = 33 a.u.). The position of the proton is at the center of the white
circle and that of the antiproton is at the center of the red (dashed)
circle. The contours represent the same levels as in Fig. 1.
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the ground and excited states, corresponding as well to the
region of low pressure. Specifically, the first vortex forms at
R ≈ 4.5 a.u., followed by another ring vortex at R ≈ 6.8 a.u.,
with several more appearing at larger R. Again, we note that
the dynamics of this system only weakly depend on impact
parameter.

At R ∼ 7 a.u. or more, the dominant contribution to the
transfer of angular momentum for antiproton impact shifts
from owing to rotation about the target nucleus to rotation
about the vortex centers. The subsequent appearance of
additional vortices, as shown for R = 33 a.u. in the figure, adds
to the circulation of the electronic probability current about
their centers. As time progresses, vortices interact, merging for
example, and migrate to smaller radial distances from the target
nucleus, leading to a further increase in angular momentum
transfer until an asymptotic value is reached.

For positive-ion impact, we found [6] that on the outgoing
phase of the collision formation of ring vortices corresponded
to internuclear distances at which hidden crossings occurs.
Hidden crossings are points in the complex plane of the
adiabatic quasimolecular electronic potential energy surfaces
corresponding to strong localized transitions (connections of
one surface to another corresponding to different excited bound
and continuum states). That is, we found a concurrence of
the interference picture in which angular momentum transfer
occurs when a sufficient population of excited states build up
in order to interfere, corresponding to the hidden crossings
distances, and the hydrodynamical picture in which the
angular momentum transfer takes place when regions of low-
pressure accrete vortices (at zeros of the wave function) with
corresponding rotation of the electronic probability current
around the vortex centers. For antiproton impact, there are no
hidden crossings and the transitions are nonadiabatic.

III. MODEL SYSTEM FOR THE HYDRODYNAMICAL
INTERPRETATION

The mechanism of angular momentum transfer through
vortex creation and subsequent dynamical evolution, as well as
the complementarity of the hydrodynamical interpretation and
the picture involving interference of the superposition of states,
can be further illustrated using a very simple model. Consider
the time-dependent superposition of two atomic states H(1s0)
and H(2p+), that is, ψ(t) = Aϕ1se

−iE1s t + Bϕ2p+e−iE2p+ t ,
shown in Fig. 4 for four times t = 0, π/2, π , and 3π/2,
representing one cycle of the rotation of the deep minima
about the nucleus seen in the figure. In terms of the interference
picture, the superposition of the two states leads to the pattern
of maxima and minima of the electronic probability density
and the rotation of the distribution.

Next, consider the hydrodynamical interpretation in which
the fluid is described by the TDSE as a limiting case
of the Navier-Stokes equations. In particular, for an ideal,
compressible fluid, if the viscosity vanishes and we assume
that the equation of state (connecting the density ρ = |�|2
and the pressure p) for a compressible fluid is

�∇p = − 1
4ρ �∇[

(∇2ρ)/ρ − 1
2 ( �∇ρ)2/ρ2

]
,

then the Navier-Stokes equations reduce to the TDSE. (While
the pressure is, in general, a tensor, a more convenient measure
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FIG. 4. (Color online) Model system displaying the presence
of a vortex in the simple time-dependent superposition of two
atomic states of hydrogen Aϕ1se

−iE1s t + Bϕ2p+e−iE2p+ t , where A =√
1 − |B|2 = 0.39 and B = 0.92 with z = 0, Ly = 0.84, and rv =

1.58 a.u., where rv is the radial distance from the origin to the vortex.
The contours ranging from blue to red represent probability density
from 0 to 0.3.

for graphical display is the mean pressure [3] p̄ = − ρ

12∇2 ln ρ,
which we utilize in the figures below.) The fluid flow equation
(Euler’s equation in this case) has vortex solutions when
Re(�) = 0 = Im(�), such that two nodal surfaces intersect
along a curve and can result in zeros where the velocity
field �v = Im �∇(ln�) diverges. Furthermore, the circulation is
quantized, with

∮ �v · d�l = 2π . Important to note is the fact
that for the wave function to vanish at a point as described
here, it must carry some angular momentum, thus the intimate
connection of the hydrodynamical interpretation and angular
momentum transfer. Also important to note is the connection
of the velocity field with the phase. In particular, the electronic
probability current, which does not depend on the phase,
related to the velocity by �j = ρ�v, does not diverge at the
vortex centers since there the density goes to zero (i.e., at the
vortex center ρ → 0, j → 0, v → ∞).

As illustrated in Fig. 5 for the simple model, the deep
minimum is formed at the resulting region of low pressure
and moves to maintain its position in the low pressure. At
the center of the minima is a zero of the wave function, with
Reψ = 0 = Imψ , and the velocity field, illustrated in Fig. 5 by
the electronic probability current, circulates about this point,
constituting a vortex, and thus a rotation about a point away
from the nucleus. That is, in contrast to the conventional
picture in which the interference from the time-dependent
superposition of the two states yields a rotation about the
nucleus, the hydrodynamical interpretation shows that there
is in addition a rotation about the vortex at the minima.

We can also relate the position of the vortex with the
amount of angular momentum contributed by the rotation
both about the vortex center and about the center of force.
By varying the ratio A/B in the model wave function ψ(t) =
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FIG. 5. (Color online) Pressure (top) and probability current
(bottom) for the model system illustrating the location of the vortex
at the minimum of pressure and the circulation about the center of
the vortex. The color contours in the top panel represent levels from
−0.03 to 0.7 from green to red and in the bottom panel from 0 to 0.3
for blue to red.

Aϕ1se
−iE1s t + Bϕ2p+e−iE2p+ t , we can vary the radial distance

from the nucleus of the vortex. In particular, normalization
of the wave function requires that |A| =

√
1 − |B|2 and

�z = 〈ψ |Lz|ψ〉 = |B|2 (since Lzψ1s0 = 0). Simple algebra
then yields

�z = 1

1 + dz

, dz = 1

64
	2erv ,

where rv is the radial position of the vortex center, ψ(rv) = 0,
and 	 =

√
x2 + y2, so that when z = 0, 	 = r. Figure 6

displays �z as a function of rv , showing that the smaller
the radial position of the vortex, the greater the angular
momentum, being greatest when A = 0, B = 1, and thus
ψ = ϕ2p+ . Likewise, when rv is large, the angular momentum
is smallest, that is, when A → 1 and B → 0 corresponding
to ψ(t) = ϕ1s . The two components of �z, the rotation about
the force center and the rotation about the vortex center, have
opposite signs. As illustrated in the figure, the contribution
from rotation about the force center, entering with a negative
sign, is zero when rv is zero, yielding �z = 1 with the entire
contribution from rotation about the vortex.

This simple model informs our interpretation of the richer
dynamics present in the antiproton-hydrogen interaction. In
particular, in that case, the initial state [H(1s)] has zero
angular momentum, but gains some rotation as the repulsive
interaction of the electronic cloud with the antiproton occurs as
it approaches. However, the rotation stops once the antiproton
has receded a short distance from the target and excitation
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FIG. 6. Behavior of the y projection of angular momentum in the
model system as a function of the distance from the nucleus to the
center of the vortex rv .

has built up sufficiently that a low-pressure region is created
(corresponding to minima in the interference of the superposed
states) so that a series of vortices form. Circulation about
the vortices (as in the simple model) adds to the angular
momentum, providing the dominant mechanism of angular
momentum transfer from external motion of the antiproton
relative to the target to internal electronic angular momentum.
As the antiproton moves further away from the target as
the ionized flux also moves away, the region of lower pressure
becomes closer to the target center and the vortices migrate
along with the motion of the low-pressure region closer to the
target and (as in the simple model) the lower rv drive the final
increase of angular momentum asymptotically.

IV. HYDRODYNAMICAL INTERPRETATION
OF ANGULAR MOMENTUM TRANSFER

IN THE BORN APPROXIMATION

Another simple model that can be used to illustrate the
formation of vortices in ion-atom collisions is the well-
known Born approximation, specifically, the first-order Born
approximation with incoming and outgoing plane waves. Valid
at relatively high impact energies, the Born approximation
has been a workhorse for computing excitation and ionization
cross sections for many decades, yet, even when used to
predict differential cross sections, for example, the ejected
electron momentum distributions found using the reaction
microscope [23,24] technique, typical Born approximation
results do not display features readily attributable to vortex
formation. One may therefore wonder if the hydrodynamical
interpretation is not relevant for the high-energy collisions for
which the Born approximation (or perturbation theory more
generally) is presumably valid or if vortex formation is not as
ubiquitous as we have suggested.

Remarkably, the Born approximation, found in standard
textbooks (e.g., Refs. [25,26]), has no points at which the
corresponding wave function vanishes, and thus can display
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FIG. 7. (Color online) Two variants of the Born approximation
for the ejected electron spectra in 400-keV proton impact of atomic
hydrogen. The abscissa is the electron momentum in the z direction
relative to k0 = mev, where me is the electron mass and v is the
projectile velocity, and the ordinate is the electron momentum in
the x direction, similarly normalized by k0. The left panels display
the Born approximation for a proton scattering angle of 0.004°, with
the top panel showing the electronic probability density and the
bottom panel the pressure (color contours) and the probability current
(arrows). The right panels display the impact-parameter-dependent
Born approximation for b = 1 a.u., illustrating that this variant has
sufficient detail to display the presence of vortex formation and
evolution. The contours ranging from blue to red represent probability
density from 10−5 to 101 for the left-hand panels and from 10−6 to
100 for the right-hand panels.

no vortices, and consequently there is no net transfer of angular
momentum in this approximation. This is illustrated in the left-
hand panels of Fig. 7, which display the electronic probability
density in the top panel and the electronic probability current
in the bottom panel for 400-keV proton impact of atomic
hydrogen in the first-order plane-wave Born approximation.

Evidently, the Born approximation does not contain a rich
enough description of the electronic dynamics to include
these hydrodynamical features, which occurs since it does
not correspond to a solution of the TDSE. To capture more
of the dynamics that would be present in full solution of
the TDSE, the Born approximation can be improved by
including treatment of the impact parameter dependence of the
ionization amplitude [27]. In particular, the well-known first-
order Born B approximation of the ionization transition matrix
element T B(�q) as a function of the momentum transfer �q, can
be transformed to the impact-parameter-dependent transition
amplitude by a two-dimensional Fourier transformation

aB(�b,q‖) = −i
2π

v

∫
d2 �q⊥e−i �q·�bT B(�q),

where v is the projectile velocity. The resulting ejected
electron momentum distribution for this impact-parameter-
dependent Born approximation, displayed for b = 1 a.u. in
the right-hand panels of Fig. 7, shows the presence of vortices,
indicated by the minimum of the electronic probability

density seen there (which corresponds to a zero of the wave
function) and the circulation about this point indicated by the
electronic probability current. Thus, the sufficiently physically
complete Born approximate does indeed manifest vortices that
can persist to asymptotic distances and thus be potentially
observable in experiments. Having predicted such surviving
vortices for lower-energy ion-atom collisions [6] and extend-
ing the prediction for a more experimentally tractable, two-
electron system He+ + He [28], we subsequently found that
their position in the longitudinal ejected electron momentum
distribution observable with finite scattering angle (and thus
impact parameter) resolution can average out when summed
over a range of impact parameters. Fortunately, we found that
they are less sensitive to the sum over impact parameters in the
transverse momentum distribution, enabling them to be found
experimentally [7].

That is, when the vortex positions are reasonably insensitive
to the range of impact parameters resolved, the reaction
microscope technique is ideal for capturing images of the
vortices that survive to asymptotic distances since they provide
what amounts to an image of quasimolecular states formed
in the ion-atom collision projected to asymptotic distances
according to the imaging theorem. This theorem [27] states
that when the wave function, initially localized in some region
of space (i.e., after the accretion and near-collision evolution
of the pressure and vortices), moves in the absence of forces,
then it evolves linearly with time, implying that the probability
density becomes proportional to the momentum distribution
observed asymptotically.

Thus the reaction microscope technique images the σ -π
distribution formed in one-electron (or effective one-electron)
collisions in the top-of-barrier region [18–21] or the recently
observed [7] σ -π -δ distribution when two-electron transitions
are also important. We also point out, as has been previously
noted [29], that vortex formation has been overlooked in
electron-atom collisions as well, even when the corresponding
deep minima in the angle and energy distribution of ejected
electrons have been found experimentally [30] or theoreti-
cally [31–34]. In fact, it may be stated that the presence of
vortices and the relevance of the hydrodynamical interpretation
of atomic processes may have been noticed considerably
earlier but that their presence has been obscured in previous
methodology, for example, by insufficiently dynamically rich
perturbation theory or in solution of the TDSE via basis
set expansion with insufficiently high resolution of the deep
minima. Vortices are thus likely ubiquitous in atomic processes
but generally not recognized.

V. ENERGY TRANSFER IN PHOTOEXCITATION
AND PHOTOIONIZATION OF ATOMS

The hydrodynamical interpretation of another important
fundamental process, energy transfer, can be illustrated by
considering the excitation and ionization of atoms by short
laser pulses. In previous work [8], we considered a model
system, a ∼ 300 attosecond half-cycle electric-field pulse,
and showed that its interaction with a target hydrogen atom
displayed characteristics much like wind striking a building.
That is, once the pulse had excited a significant population of
n = 2 states, these interfered with the remaining ground-state
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FIG. 8. (Color online) Ejected electron spectrum (bottom panel)
resulting from photoionization of atomic hydrogen by the laser pulse
illustrated in the top panel. The pulse has duration T = 110.2 a.u.,
an intensity of 1014 W/cm2, and a laser wavelength of 800 nm. The
contours in the bottom panel ranging from blue to red represent
probability density from 10−2 to 5.

population, accreting a ring vortex in the layer of low pressure
created by the pulse on one side of the atom, which was then
shed by the atom, moving off downstream much as a vortex
created by the wind would be shed by a building or airfoil.
Here we consider the extension of this to a full-cycle pulse,
identical to that treated by other authors for comparison of the
final results. Specifically, we have again used the regularized,
scaled lattice TDSE method [14] to describe the time evolution
of the wave function for a linearly polarized pulse of ∼100-a.u.
duration as depicted in the top panel of Fig. 8, which has also
been considered by Chen et al. [35].

The resulting electronic momentum distribution for pho-
toionization, as would be observed in a reaction microscope
experiment, is shown in the bottom panel of Fig. 8 and is
in accord with the results of Chen et al. What is seen is
a complicated pattern of minima and maxima that are often
interpreted as arising from interference of the states excited by
the pulse. This is certainly true, but what we find by examining
the time sequence of TDSE solutions is that just as in the
case of the half-cycle pulse, they come about as a series of
vortices accreted and driven by the pressure field. Specifically,
the first rise of the field during the pulse begins to create
an excited-state population that superposes with the ground
state to accrete a series of ring vortices in the layer of low
pressure that are successively shed from the atom and move
downstream. As the field reverses sign during the continuation
of the pulse, the vortices are driven back in the opposite
direction simultaneous to the creation of another series of
vortices on the opposite side of the atom that are shed in the

kz (a.u.)

k x
(a

.u
.)

0.30
0

0.3

FIG. 9. (Color online) Illustration of the hydrodynamic character
of the ejected electron spectrum in an enlarged area of that shown in
Fig. 8. The bottom panel shows the electronic probability density, with
minima (blue) at the positions of the vortex centers as demonstrated
by the circulation of the probability current (arrows). The top panel
further shows that the vortices are associated with low pressure (blue)
and connected by filaments of tension (red). The contours ranging
from blue to red represent probability density from 10−2 to 5 (bottom)
and pressure from −0.3 to 0.15 (top).

new downstream direction. The number of vortices created on
each rising or falling field segment of the pulse is proportional
to the magnitude of the field in that segment, being proportional
to the level of excitation produced.

To illustrate the complicated result of this process of vortex
creation on either side of the atom and their subsequent evolu-
tion being driven in one direction and then the other, interacting
with one another via mergers and annihilations, we display in
Fig. 9 an enlarged portion of the final electronic momentum
distribution. The bottom panel shows the electronic probability
density as color contours, indicating the minima and maxima of
density, along with the electronic current density, indicating the
circulation about the zeros at the center of the minima. Thus,
the minima in the full, complex ejected electron distribution
not only are the resulting interference pattern of the excited
states created by the pulse, but are vortices. It is important
to note that sufficient accuracy of the numerical treatment is
necessary to resolve the centers of the minima as being actual
zeros to demonstrate that these are vortices.

The top panel of Fig. 9 displays the pressure field, with the
colors indicating positive and negative values corresponding to
pressure or tension. The minima of pressure correspond to the
vortex positions, which are seen to be connected via a web of
high and low pressure, the high-pressure regions correspond-
ing to confluences of the electronic probability current.
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FIG. 10. Evolution of the electronic energy (dash–double-dotted
curve, left scale) during the laser pulse and afterward to asymptotic
time showing the mediation of the energy transfer from the pulse to
the atom mediated by the creation and evolution of the vorticity (solid
curve, right scale).

To illustrate the role vortex formation and evolution play
in energy transfer, we have computed the energy (as given
by the expectation of the electronic Hamiltonian 〈H〉) and
the vorticity [defined as �ω = �∇ × �v, where �v = Im �∇(ln�) is
again the velocity field] as a function of time. The result,
shown in Fig. 10 for the early portion of the laser pulse,
shows the correlation of the change in energy with the
sequential appearance of vortices (i.e., quantized increases in
the vorticity). Thus, quantification of the vorticity provides a
measure of the energy transfer, hydrodynamics associated with
vortices acting as a vehicle for transferring energy of the laser
field to the electronic states.

It is again worth mentioning that by recognizing that the
pattern of minima and maxima seen in typical ejected electron
spectra produced by photoexcitation and photoionization
results not only via interference of the excited states populated
but in accordance with the hydrodynamical view of the
interaction. This allows additional insight into the mechanism
of energy transfer and shows that production and evolution
of vortices is likely a ubiquitous feature of atomic-scale
interactions.

VI. CONCLUSION

As we have noted, the foundation of the hydrodynamical
interpretation of quantum mechanics has been laid out over
many years through pioneering work from Madelung to
Bialynicki-Birula et al. [1–5]. Then, more recently, we
uncovered the presence of vortices, born at the atomic scale,
for systems of both fundamental and practical interest [6,8],
and found clues to the roles such hydrodynamical entities play.
We have also shown that certain of the vortices can persist to
asymptotic distances where they can be observed, providing
confirmation of these findings [7]. Extending these works, the
present study has begun elucidation at a more detailed level
of fundamental processes present in atomic-scale dynamics
such as ion- and photon-atom interactions.

In particular, several specific observations have been
made linking the hydrodynamical and conventional views of

processes such as angular momentum and energy transfer
and showing how additional insight can be derived from
the hydrodynamical interpretation. To begin with, we have
shown that there is a direct connection of the buildup of
excitation during the atomic-scale interaction (e.g., a collision
or interaction with a laser pulse) with the appearance of
vortices. This links the conventional view of the origin of
the deep minima of observed ejected electron spectra as
originating from interference of the superposition of ground
and excited states with the hydrodynamical interpretation of
the accretion of vortices at nodal surfaces created in regions
of low pressure. The hydrodynamical view further indicates
that at these points the complex wave function has a zero
and consequently there must be a vortex at that point. This
fundamental result shows that apart from the conventional
view of angular momentum transfer occurring through rotation
about the centers of force, significant angular momentum is
transferred (and in some instances the dominant contribution)
from rotation about the vortex centers.

We have also shown that the vortices created move,
sometimes merging or annihilating, following paths along
low pressure. The contribution of the rotation about the
moving vortices to the total angular momentum is inversely
proportional to their distances from the centers of force, the
rotation about each vortex being quantized. As they move
following the lows of pressure, they may migrate towards the
centers of force, yielding greater angular momentum even after
vortex formation is complete. We have also found that creation
of vortices helps mediate energy transfer and that the vorticity
as a function of time is a measure of the energy transfer.

The role of the pressure, not ordinarily considered in
atomic-scale dynamics, is, perhaps surprisingly, seen to play
a central role. That is, the quantity most conventionally
displayed and discussed, the electronic probability density,
say, a time slice from the solution of the TDSE, does not alone
indicated the future evolution of the system. Instead, a slice in
time of the pressure field indicates how the system will evolve
in the near future, for example, with lines of low pressure
conducting the vortices and regions of high pressure accreting
greater probability density, somewhat in analogy to the use of
pressure maps in the forecasting of weather.

It is also worth reiterating that the present and previous work
indicate that vortex formation is likely ubiquitous in atomic-
scale dynamics and yet has been largely overlooked. Taking
note of this is important because it means that the opportunity
to utilize the hydrodynamical interpretation of atomic-scale
processes exists and can provide both complementary and
additional insight, as we have begun to illustrate here. As we
have shown, some vortices survive to asymptotic distances and
are observable in measurements. In instances in which they are
present they certainly contribute to the dynamics, for example,
being vehicles for angular momentum and energy transfer.
Greater understanding of these fundamental processes can be
of practical importance as well as fundamental interest since
they underlie the dynamics in larger-scale systems such as
how photons interact with molecules and how electrons are
transported in materials. Beyond the greater understanding
that the hydrodynamical view gives, it may also afford
opportunities for new types of manipulation or control of
elementary or complex systems.
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