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Analysis of density effects in plasmas and their influence on electron-impact cross sections
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Density effects in plasmas are analyzed using a Thomas-Fermi approach for free electrons. First, scaling
properties are determined for the free-electron potential and density. For hydrogen-like ions, the first two
terms of an analytical expansion of this potential as a function of the plasma coupling parameter are obtained.
In such ions, from these properties and numerical calculations, a simple analytical fit is proposed for the
plasma potential, which holds for any electron density, temperature, and atomic number, at least assuming that
Maxwell-Boltzmann statistics is applicable. This allows one to analyze perturbatively the influence of the plasma
potential on energies, wave functions, transition rates, and electron-impact collision rates for single-electron
ions. Second, plasmas with an arbitrary charge state are considered, using a modified version of the Flexible
Atomic Code (FAC) package with a plasma potential based on a Thomas-Fermi approach. Various methods for
the collision cross-section calculations are reviewed. The influence of plasma density on these cross sections is
analyzed in detail. Moreover, it is demonstrated that, in a given transition, the radiative and collisional-excitation
rates are differently affected by the plasma density. Some analytical expressions are proposed for hydrogen-like
ions in the limit where the Born or Lotz approximation applies and are compared to the numerical results from
the FAC.
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I. INTRODUCTION

In a number of cases such as in inertial confinement devices
and in stellar interiors the ions in plasmas cannot be considered
isolated. The environment in plasmas plays a significant role
at high density, leading to level polarization, pressure-induced
ionization, and changes in absorption or emission spectra and
in the equation of state [1–3]. To model such effects the first
attempts were done using the Debye-Hückel theory [4], but
its perturbative nature limits its applicability to low-density or
high-temperature plasmas. A series of other approaches has
been developed, most of them based on the ion-sphere model
for plasma, which assumes spherical symmetry and neutrality
inside the Wigner sphere [5], and define a local free-electron
density from self-consistency equations. These theories may
be based on Thomas-Fermi (TF) [6], relativistic TF [7],
hypernetted chain networks [8], and, more generally, density
functional theories [9]. Some approaches provide a fully
quantum mechanical description of the free electrons [10–12].
A very popular model for level shifts which makes the
connection between low and high densities has been developed
by Stewart and Pyatt [13]. However this model assumes
thermal equilibrium for ions as well as electrons and, therefore,
is not directly usable in the analysis of plasmas out of local
thermal equilibrium. A simplified form of the ion-sphere
model, valid at high temperatures, is the uniform electron
gas model (UEGM), which assumes a uniform free-electron
density inside the Wigner sphere [14]. At variance with
the previous approach, this model does not rely on thermal
equilibrium conditions.

In a previous paper [15], we have shown that we may
use a formalism based on the UEGM to describe the plasma
environment effect on energies and wave functions. This has
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been done first in the hydrogenic case, leading to analytical
energies and radial matrix elements at first perturbation order.
Then such effects have been included in a more realistic way
by including a plasma potential contribution in the Flexible
Atomic Code (FAC) [16], which is widely used in the commu-
nity of atomic physics in plasmas. Conversely, many analyses
of plasma effects on atomic structure available in the literature
use a Hartree-Fock formalism [17] or, in simpler cases, a
hydrogen-like framework [18,19]. In Ref. [15] we limited
the analysis to the high-temperature case and to the analysis
of energies and radiative rates. However, collisional cross
sections deserve special interest for at least two reasons. First,
in order to describe plasmas out of local thermodynamical
equilibrium, it is necessary to solve kinetic equations which
involve the radiative and collisional transition rates. Second,
the lineshape determination, particularly important for spectral
opacity calculation, requires a detailed analysis of collisional
rates (see, e.g., [20]). Most of the available literature on plasma
effects on excitation cross sections rely on the Debye-Hückel
potential [21–25] or on the UEGM [24]. Ionization impact
cross sections are also dealt with in a series of papers, based on
the Debye-Hückel hypothesis [23,25,26] or TF approach [27].
But to our knowledge, such an analysis has not yet been
performed using a relativistic parametric potential code such
as the FAC.

This paper is organized as follows. First, we review the
TF theory for free electrons, for which we formulate scaling
properties with respect to density, temperature, and charge,
and provide the first two terms in the plasma-coupling-
parameter expansion in the case of hydrogen-like ions. For
such ions, we then mention a simple analytical expression of
the plasma potential valid for a wide range of temperatures
and densities. Next, we propose comparisons between the
UEGM and the TF theory regarding energies and radiative
rates. Then we analyze the plasma influence on excitation
and ionization cross sections for complex ions. To confirm
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the numerical predictions of plasma effects obtained with the
FAC, semiempirical calculations using an analytical approach
for hydrogenic ions are compared to numeric calculations.
Concluding remarks are finally given.

II. DETERMINATION OF THE PLASMA POTENTIAL

A. Theory

The self-consistent equations defining the free-electron
density and the plasma potential in a semiclassical picture—TF
restricted to free electrons—has been discussed in a series
of papers [18,28]. In the ion-sphere theory [5], neutrality is
assumed inside a Wigner sphere with radius R0 defined by

4πR3
0Ne/3 = Zf = Z − Nb, (1)

where Ne is the average electron density, Z is the nuclear
charge, Nb the number of bound electrons, and Zf the ionic net
charge. The free-electron and other-ion background densities
are supposed to neutralize ne(r) = 0 for r � R0. In order to
comply with the definition of the average density Ne, one
imposes

4π

∫ R0

0
dr r2ne(r) = Zf . (2)

Assuming Maxwell-Boltzmann statistics, the free-electron
density follows

ne(r) ∝
∫ ∞

p0(r)
dp p2 exp

(
−

(
p2

2m
+ V (r)

)/
kTe

)
, (3)

where m and Te are the electron mass and temperature,
respectively, k is the Boltzmann constant, and p0(r) is the
minimal momentum value making the total electron energy
positive; i.e., p0(r) = (−2mV (r))1/2 if V (r) � 0 or 0 if
V (r) > 0. Here we assume thermal equilibrium for electrons
but not necessarily for ions. The quantity V (r) is the energy
associated with the electrostatic interaction with all the charges
included in the Wigner sphere, namely, the nucleus, bound
electrons, and free electrons:

V (r) = −Ze2

r
+ Vb(r) + Vpl(r). (4)

Hereafter we use the word “potential,” which implies “po-
tential energy,” not electrostatic potential, the former be-
ing −e times the latter. For multielectron ions, one must
note that the bound-free interaction Vb(r) depends on the
ion bound-electron wave function and, therefore, changes
as the ion excitation changes. The term Vpl(r) describing
the interaction with free electrons is the so-called plasma
potential. Fermi-Dirac statistics is usually not necessary as
shown by the analysis proposed in the Appendix. We also
assume that free electrons are not relativistic, which holds for
temperatures kTe � 511 keV, which is always fulfilled in the
cases considered here. Starting in Sec. V, we consider the
general case of multielectron ions where Vb(r) is derived from
an atomic model. In this part, to derive general properties of
the plasma potential, we mainly consider hydrogen-like ions
where the Vb term is absent.

The last equation required to obtain the plasma potential
and the electron density is the Poisson equation, which can be

written in integral form:

Vpl(r) = 4πe2

(
1

r

∫ r

0
ds s2ne(s) +

∫ R0

r

ds sne(s)

)
. (5)

This expression ensures that Vpl(r) and its derivative are
continuous at r = R0, knowing that Vpl(r) = Zf e2/r if r �
R0, according to the ion-sphere hypothesis.

Assuming an attractive potential V (r) < 0, the Maxwell-
Boltzmann equation, (3), leads to

ne(r) = K

2
e−V (r)/kTe (2mkTe)3/2�

(
3

2
, − V (r)

kTe

)
(6a)

= K

2
(2mkTe)3/2

[(
−V (r)

kTe

)1/2

+ π1/2

2
e−V (r)/kTe erfc

((
−V (r)

kTe

)1/2
)]

, (6b)

the constant K being derived from the neutrality condition, (2).
We have introduced the incomplete � function �(a,x) =∫ ∞
x

dt ta−1e−t and the complementary error function erfc(x) =
(2/π1/2)

∫ ∞
x

du e−u2
[29].

B. Numerical method

The plasma potential and free-electron density are numeri-
cally obtained from an efficient iterative scheme. Starting from
the UEGM solution

ne(r) = Ne, (7a)

VUEGM = Zf e2

2R0

(
3 − r2

R2
0

)
(7b)

for r � R0, one obtains a first iteration for the density using
the Maxwell-Boltzmann equation, (6a)—where the overall
constant is determined by the neutrality condition—and a
first-order iterated potential using the Poisson equation, (5).
One next obtains the second-order electron density and plasma
potential. The convergence is controlled by monitoring the
variation of the density on the Wigner sphere |n(i+1)

e (R0) −
n(i)

e (R0)|, ending iteration when this difference falls below a
given ε. We found that ε = 10−8 in atomic units gave the
self-consistent potential with a fair accuracy and that the
procedure converged in most cases in fewer than 12 iterations.

C. Calculations of free-electron density and plasma
potential in H-like ions

In Fig. 1 is plotted the free-electron density in units of
the average value Ne using Maxwell-Boltzmann statistics in
H-like helium Z = 2, Zf = 1. From bottom to top the curves
correspond to Te = 500, 5000, 5, and 0.005 eV, respectively.
The free-electron density is 1012 per cm3 for the lowest curve
and 1021 cm−3 for the three others. Defining a radius connected
to the electron temperature (up to a 1/π factor, this is the
closest-approach distance),

R1 = Zf e2

πkTe

, (8)
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FIG. 1. (Color online) Self-consistent free-electron density in H-
like helium for various densities and temperatures. The local free-
electron density ne(r) in units of the average density Ne = 3Zf /4πR3

0

is plotted versus r in units of the Wigner radius R0 for various plasma-
coupling parameters. See text for details.

the ratio R1/R0 is proportional to the plasma-coupling param-
eter

R1/R0 = Zf e2

πkTeR0
, (9)

with a definition different by a factor of 1/(πZf ) from the most
common one, which is based on ion-ion and not electron-ion
interaction [9,14]. In this figure, the parameter R1/R0 is equal
to 1.477×10−6, 1.477×10−4, 0.1477, and 147.7, respectively.
Computations performed for R1/R0 = 1.477×104 have shown
that the curve ne(r)/Ne as a function of r/R0 is the same as that
for R1/R0 = 147.7 at the drawing accuracy. However, then the
use of Fermi-Dirac statistics is required, as discussed in the
Appendix. One notes that for R1/R0 � 1 the density varies as
r−1/2 for small r and stays almost constant for r � R0. This
is close to the behavior predicted by Rosmej et al. [28]. For
R1/R0 = 0.148, the electron density varies as r−1/2 in almost
the whole 0–R0 region, though one observes a small upward
deviation for r � R0. For R1/R0 = 147.7 the reduced density
behaves similarly. Its dependence is again r−1/2 in most of
the 0–R0 interval, but for r � R0 there is now a downward
deviation.

The radial dependence of the free-electron density is
qualitatively similar for higher Z, the main difference being a
stronger variation of ne(r) in the r = R0 region.

Examples of self-consistent calculations of the plasma
potential are given in Fig. 2 in H-like aluminum for coupling
parameters R1/R0 = 0.01, 1, and 100. In the numerical
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FIG. 2. (Color online) Radial dependence of the self-consistent
plasma potential in H-like aluminum, for three values of the coupling
parameter, R1/R0 = 0.01, 1, and 100. The abscissa is the radius in R0

units; the ordinate is the potential in Zf e2/R0 units. The solid line is
the numerically obtained self-consistent potential; the circles, crosses,
and dashed line are quartic polynomial approximations obtained at
three successive steps of the fit discussed in Sec. IV.

integration of the Poisson equation, an integration step
h = 10−3 was found to provide acceptable accuracy whatever
the parameters. For the lowest coupling parameter, the reduced
potential almost follows the UEGM law, (7b). We observe that
the plasma potential in reduced units R0Vpl(r)/Zf e2 changes
close to the nucleus by about one-third when the coupling
parameter R1/R0 increases by 4 orders of magnitude. The
three steps in the numerical approximations are described in
Sec. IV. Finally, we note that the TF potential in reduced units
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is larger than the UEGM potential, as shown by comparison
of the upper and lower graphs in Fig. 2.

III. ANALYTICAL PROPERTIES OF
THE PLASMA POTENTIAL

A. Scaling laws

From the neutrality, Maxwell-Boltzmann, and Poisson
equations, one may easily assert that the reduced potential
and free-electron density obey the scaling laws

ne(R0,R1,Z,Zf ,r) = Zf R−3
0 f (R1/R0,Z,Zf ,r/R0), (10a)

Vpl(R0,R1,Z,Zf ,r) = Zf R−1
0 g(R1/R0,Z,Zf ,r/R0). (10b)

If one further assumes that the potential is purely Coulombic,
−Z/r , these laws even simplify, ne and Vpl, depending not
independently on Z and Zf but on the ratio Z/Zf .

These properties are of interest because they establish
that the plots presented in the previous section for the
reduced electron density and plasma potential are “universal.”
Namely, for a given element and charge state, the plots
versus the reduced coordinate r/R0 are the same whatever
the temperature and density, provided the parameter R1/R0 is
conserved.

B. Limit of weakly coupled plasmas

In the limit of infinite temperature or zero density
R1/R0 → 0, the electron density is constant inside the Wigner
sphere and the potential is obtained straightforwardly from the
Poisson equation, (7b). This well-known UEGM solution may,
however, be usefully refined by considering the first correction
in an R1/R0 expansion. Starting from the Maxwell-Boltzmann
equation, (6a), and the expansion of the incomplete � function,

exp(X)�(3/2,X) =
√

π

2
+

√
πX

2
− 2X3/2

3
+

√
πX2

4

+O(X5/2), (11)

where the first two terms are kept, one gets, Nht being a
normalization constant,

ne(r) = Nht

{
1 + e2

kT

[
Z

r
− Zf

2R0

(
3 − r2

R2
0

)]}
(12)

up to (R1/R0)3/2 corrections, and the neutrality condition, (2),
provides the value of the constant

Nht = 3Zf

4πR3
0

1

1 + 3e2

2kTeR0

(
Z − 4

5Zf

) . (13)

From the Poisson integral equation, (5), we write the high-
temperature plasma potential

V ht
pl (r) = 3Zf e2

/
R3

0

1 + 3e2

2kTeR0

(
Z − 4

5Zf

)
×

[
R2

0

2
− r2

6
+ Zf e2R0

kTe

(
Z

Zf

− 5

8
− Zr

2Zf R0

+ r2

4R2
0

− r4

40R4
0

)]
(14)
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FIG. 3. (Color online) Variation of the reduced plasma poten-
tial divided by the coupling parameter R1/R0 in H-like helium.
The scaled variation δV

(sc)
pl (x) = (R0/Zf e2)[Vpl(r) − V UEGM

pl (r)]/
(R1/R0) is plotted versus x = r/R0 for various R1/R0 and is
compared to the analytical form y = (3π/10)(1 − x)2[5 − x − (1 −
x)2/4] as given by (15b). From bottom to top the various curves
correspond to decreasing values of R1/R0, the topmost curve being
the analytical form.

up to T
−3/2
e R

−5/2
0 terms. Letting

u = 1 − r/R0, (15a)

one gets, using the closest-approach distance R1, (8), the low-
density form of the plasma potential, (14):

R0V
ht

pl (r)/Zf e2

= 1 + u − u2

2
+ 3πR1

10R0

[(
5Z

2Zf

− 1

)
u2 + u3 − u4

4

]

+O((R1/R0)3/2). (15b)

This expression only depends on Z/Zf , R1/R0, and r/R0 as
expected.

The convergence of the numerical solution towards this
analytical form when the coupling parameter tends to 0
is illustrated in Fig. 3, where we have plotted the radial
dependence of the potential variation (R0/Zf e2)[Vpl(r) −
V UEGM

pl (r)]/(R1/R0) for various small values of R1/R0 and its
analytical limit, (14). It turns out that the numerical solution
does converge towards this limit but rather slowly with the
parameter R1/R0, as expected since the first omitted term is of
order (R1/R0)3/2: for instance, if R1/R0 = 10−3, the analyzed
ratio is 3.70, i.e., 17% below the analytical result equal to 4.48.

IV. ANALYTICAL APPROXIMATION FOR
THE PLASMA POTENTIAL

The method used to obtain simple analytical approxima-
tions of the plasma potential in H-like ions as shown in Fig. 2
will be presented elsewhere, along with an application to
energy and rate calculations. Here we only summarize the
main results and mention what their usefulness may be in
plasma environment studies.
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In this work, we focus our attention on the plasma potential
and not on the electron density because rather accurate
polynomial approximations have been found for the potential,
while the electron density behaves close to the nucleus as
r−1/2. Furthermore, the physical quantities analyzed below,
namely, energies, wave functions, transition probabilities, or
collisional cross sections, directly depend on this potential and
not on the electron density.

An extensive numerical study in H-like ions has shown that
that the reduced plasma potential can be rather accurately fitted
to the form

vpl(r) = R0Vpl/Zf e2 = 2 − r/R0 +
nc∑

i=1

ai(1 − r/R0)i+1.

(16)

This expression ensures that the potential is continuous at
r = R0 and that the electric field φ(r) = (1/e)dVpl/dr has
the correct value on the Wigner sphere φ(R0) = −Zf e/R2

0 ,
in agreement with the Gauss theorem and electric neutrality
condition. The value nc = 3 was checked to provide a good
compromise between accuracy and tractability.

Three determinations have been provided for the coeffi-
cients ai . The first one is based on their direct numerical
determination by a linear regression done on the numerically
obtained Vpl(r). At this step the coefficients ai depend on the
net charge Zf and on the radii R0 and R1, i.e., electronic
density and temperature. As mentioned above one considers
here only H-like ions, for which Zf = Z − 1. Furthermore, the
analysis in the previous section shows that such coefficients
are only functions of the “coupling parameter” R1/R0 and of
the ratio Zf /Z. Then extensive computations have proven that
these coefficients may be reasonably approximated by

aj (step2) = −δj1

2
+ R1/R0

MjR1/R0 + Pj

, (17)

where δij is the Kronecker symbol and the Mj coefficients are
determined by linear regression, looking at the dependence
of ρ/(aj + δj1

2 ) versus ρ. The Pj coefficients may be derived
from the above low-density analysis, (15b):

P1 = 10/3π

5Z/2Zf − 1
, P2 = 10

3π
, P3 = − 40

3π
. (18)

The Mj coefficients have to be determined for each Zf , i.e.,
for every element, but the above expression holds for any
temperature and density. The third step in the fit consists in
giving an expression for the Mj coefficients valid for any
element. Again, a series of tests leads us to state that a harmonic
dependence,

Mj = AjZf + Bj

CjZf + 1
, (19)

provides an acceptable approximation of the numerically
derived Mj coefficients. This numerical procedure has led us
to the determination

A1 = 0.297 002, B1 = 4.217 15, C1 = 0.309 115, (20a)

A2 = 1.345 74, B2 = 10.917, C2 = 0.903 015, (20b)

A3 = −0.714 927, B3 = −7.189 77, C3 = 0.601 471,

(20c)

where the nonlinear fit was performed using a standard
Mathematica routine.

An example of the calculation of the plasma potential and of
the three steps in the numerical fit is given in Fig. 2. It appears
that the first step in the procedure is always very accurate.
The second and third steps are in very good agreement and
differ significantly—but by less than 30% and, in most cases,
less than 15%—from the self-consistent TF potential in the
intermediate case R1/R0 � 1. In conclusion, the proposed
approximations are fair whatever the coupling parameter is,
the only exception being when this parameter is close to 1 in
the second and third steps of the fit.

V. ENERGIES AND RADIATIVE RATES

When the plasma potential analyzed in the previous sections
is included in the Hamiltonian, the ion energies and wave
functions are modified. In a previous paper [15], we have
shown how to include this potential in the UEGM limit in
the FAC [16]. The same procedure may be applied with the
TF potential. This refined potential may also be included in
analytical calculations for H-like ions.

In Fig. 4, the binding energy of Al XIII for the 1s1/2 level
is plotted versus the temperature. We compare in that graph
the binding energy of the isolated ion, the UEGM, and the
TF approach, which is the only model dependent on the
temperature. Here and in the following we consider a specific
charge state without consideration of the real ionization degree
that would be reached under these thermodynamic conditions.
We clearly see that the binding energy increases with the
temperature in the TF case. We also verify that, as expected,
at high temperatures, the TF approach converges with the
UEGM.

As the above analysis of the plasma potential has shown,
the TF potential is always greater than the UEGM potential.
Therefore one expects that the binding energy will be lower
with the TF model than with the UEGM. Indeed, Fig. 5
confirms this prediction. An important point to highlight in
Figs. 4 and 5 is that the most important effect on the level
shift originates from the density and not the temperature. Our
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FIG. 4. (Color online) Influence of temperature on the binding
energy of Al XIII for the 1s1/2 level with an average density
Ne = 1023 cm−3.
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FIG. 5. (Color online) Influence of density on the binding energy
of Al XIII and XII for the 1s1/2 (upper group) and 1s2 1S0 (lower group)
levels.

results are at variance with Salzmann and Szichman’s [17],
who obtained, in some cases, a UEGM shift greater than the
TF shift.

Generally speaking, we cannot assert whether dipolar radia-
tive rates are decreasing or increasing with density. Such be-
havior has been mentioned previously by Li and Rosmej [30].
This is because such rates depend on transition energies and
dipolar matrix elements, and as may be seen, for instance, in
Fig. 6, the transition energy may increase or decrease with the
density. Specifically, the transition energy decreases with the
density between the triplet 3P0,1 and the singlet 1S0—at least
before the level crossing at ∼3×1022 cm−3—and increases
between the triplet 3P0,1 and the triplet 3S1. Thus radiative rates
may exhibit different behaviors with respect to the density.
In a similar way, Fig. 7 shows that radiative rates between
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FIG. 6. (Color online) Energy of helium-like Al relative to the
level 1s4s 3S1 versus density for various levels of the configuration
1s4l. Plasma density effects are accounted for using a Thomas-Fermi
potential at 100 eV. The three curves associated with the 3D term
are almost identical, with similar overlapping for the two curves
associated with the 3P0 and 3P1 levels.
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FIG. 7. (Color online) Dipolar radiative rates 1s4p 3PJ →
1s4s 3S1 in Al XII versus the average electron density at Te = 100 eV.
Gray (red) lines correspond to J = 1; black lines, to J = 0.

the triplet 3P0,1 and the singlet 1S0 of Al XII increase with the
density. However, as shown in Fig. 8 the 1s–2pj rates decrease
in the case of hydrogen-like Al. In both cases the UEGM leads
to a qualitatively similar behavior but a smaller change in the
radiative rates.

VI. EXCITATION CROSS SECTIONS

As mentioned previously, there exists an abundant literature
on density effects on collisional cross sections. However, a
series of papers uses the Debye-Hückel theory, which, as stated
by Nguyen et al. [18], is not well suited for strongly coupled
plasmas. Besides, as mentioned by Whitten et al. [24], in some
cases even the zero-density cross sections are not correct: in
Ref. [21], the cross sections are multiplied by the initial level
degeneracy.

We use two methods to study excitation cross sec-
tions: the Born approximation and distorted waves (DWs)
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FIG. 8. (Color online) Dipolar radiative rates in Al XIII versus the
average electron density at Te = 500 eV. Gray (red) curves represent
the 2p3/2 → 1s rates; black curves, the 2p1/2 → 1s rates.
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FIG. 9. (Color online) Comparison of excitation cross sections
for the 1s–2p1/2 transition for Al XIII at several densities and
T = 100 eV.

(see Chap. 3 in [31]). The selection of the proper method
requires consideration of which asymptotic behavior these
formalisms assume for the long-range potential. Both of
them are perturbative theories and valid only in the case
of a weak interaction potential between the target and the
incident electrons. The differences, however, are important.
The DW method takes into account the long-range form of the
potential, contrary to the Born approximation. The form of the
incident particle wave function is a plane wave for the Born
approximation and Coulombic for DWs. These differences
mean that the distorted wave method should give good results
for an ion, whereas the Born approximation should give good
results for neutral atoms or for an incident particle at high
energy. So, the DW model is not relevant when density effects
in the ion-sphere model are considered, because the asymptotic
potential is not Coulombic.

We must emphasize a difficulty met when one tries to
observe the influence of the plasma on cross sections. Indeed,
the effect of the plasma will change the long-range behavior
of the potential. Without plasma the asymptotic potential is
that of an ion, and with plasma, due to neutrality inside the
Wigner-Seitz sphere, that of a neutral atom. However, at high
energies the DW and Born approximation converge, meaning
that we can then isolate the influence of plasma.

In order to compare the Born approximation to DW results
we have plotted in Fig. 9 the e-impact excitation cross sections
for the 1s–2p1/2 transition in Al XIII. Since, as mentioned
above, the DW theory is not adapted when density effects are
accounted for, such effects have been included in the Born
theory only.

The behavior of the cross sections from both methods is
different near threshold due to the way they treat long-range
interactions. Nevertheless, at high energies, cross sections
show the same behavior. In Fig. 9 we note that the plasma
effect lowers this excitation cross section, though this variation
is minor. To observe a significant change, we have to reach a
high density such as Ne = 1025 cm−3. Then one has for the
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FIG. 10. (Color online) Comparison of excitation cross sections
for the transition between 1s4d 1D2 and 1s4p 1P1 for Al XII at several
densities.

Wigner radius R0 = 1.25a0, which is much larger than the
wave-function extension, and the “plasma coupling parameter”
Zf e2/kT R0 = 2.62. This means that our formalism assuming
nonoverlap conditions of ion wave functions [15] is applicable,
while non-negligible density effects occur.

As seen in Sec. V, the radiative rates may increase or
decrease depending on the studied transition, and the same
behavior applies to excitation cross sections. Indeed excitation
cross sections may increase as shown in the Al XII case
presented in Fig. 10. In that case the transition energy from
1s4p 1P1 to 1s4d 1D2 first decreases with density, and at the
density Ne � 1.2×1022 cm−3 these levels cross. We observe
in Fig. 10 that the cross section increases until this critical
density is reached. After the crossing the emission occurs from
1D2 to 1P1 and the cross section decreases with the density. The
increase in the cross section is stronger around the peak, but we
have to keep in mind that the Born calculation overestimates
the cross section in this area. Thus we must only rely on the
high-energy results where the cross-section shift is small.

We use the Van Regemorter formula [32] to confirm
our observations. This formula is valid under the Born
approximation and Bethe assumption (high energy and dipolar
transition),

σij = 8π√
3

R2
y

ei

fij

	Eij

ḡ(ei/	Eij )πa2
0, (21)

where 	Eij is the transition energy from level i to level j ,
a0 the Bohr radius, Ry the Rydberg energy, ei the energy of
the incident electron, ḡ the Gaunt factor determined through
empirical observations, and fij the oscillator strength. We
choose the Gaunt factor as suggested by Mewe [33]:

ḡ = 0.15 + 0.28 ln

(
ei

	Eij

)
. (22)

We compare numerical cross sections and the Van Rege-
morter formula in Fig. 11. We note that the shift of cross sec-
tions is similar. In order to provide analytical expressions for
the cross sections in the simplest case, we use a development
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FIG. 11. (Color online) Excitation cross sections for the transi-
tion 1s1/2–2p1/2 in Al XIII: comparison between the Born approxima-
tion and the Van Regemorter formula. Top: Cross sections. Bottom:
Variations σ (Ne = 0) − σ (Ne > 0) for both approximations. The
plasma effect is accounted for within the UEGM. The Born data
are shown in black; the Van Regemorter data, in gray (red).

based on Eq. (21). In that equation, the density effects modify
the transition energy 	Eij and the oscillator strength fij . The
Gaunt factor is also modified but we neglect it because of
its slow variation with 	Eij . Thus the magnitude of the cross
section mainly depends on the ratio fij /	Eij . Up to numerical
constants this ratio is the square of a matrix element,

fij

	Eij

∝ 〈nili |r| nj lj 〉2. (23)

In a previous work [15], we have developed analytical formulas
for hydrogen-like ions in the UEGM framework. Thanks to
this, we are able to isolate the contribution of the plasma
potential by decomposing the matrix element at the zeroth and
first orders of perturbation:

〈nili |r|nj lj 〉 = 〈nili |r|nj lj 〉0 + ˜〈nili |r|nj lj 〉. (24)

We calculate the matrix element under the UEGM for the
nonrelativistic transition 1s–2p and obtain, for a hydrogen-like
ion, in atomic units

〈1s |r| 2p〉 = 128

243

√
6

Z

(
1 − 3059

36

Zf

Z4R3
0

)
. (25)

In the case of hydrogen-like Al, we get

〈1s |r| 2p〉0 = 9.925×10−2, (26)

and for an average free-electron density Ne = 1024 cm−3,

˜〈1s |r| 2p〉 = −1.8329×10−4. (27)

At such a density the matrix-element perturbation is very
small. Equations (26) and (27) confirm that the excitation cross
section is not notably modified.

Forbidden and allowed transitions are differently affected
by the plasma potential. This comparison is illustrated in
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FIG. 12. (Color online) Comparison of excitation cross sections
for the transitions 1s–2p1/2 (dashed lines) and 1s1/2–2s1/2 (solid line)
for Al XIII using the Born approximation. When density effects are
included, the Thomas-Fermi model is used, with a temperature of
500 eV. Top: Black (upper) curves represent cross sections without
density effects, while gray (red; lower) curves represent cross sections
at Ne = 1025 cm−3. Bottom: Variations σ (Ne = 0) − σ (Ne > 0) for
both transitions.

Fig. 12, where cross sections are calculated via the Born
approximation. The plot clearly shows that the allowed
transition 1s − 2p1/2 is more sensitive to the plasma potential
than the forbidden transition 1s − 2s. This result was first
observed and explained by Hatton et al. [22], who used a
different plasma potential (Debye potential).

As shown in Figs. 9–11, usually the cross sections decrease
with the plasma density. This can be checked directly with
the Van Regemorter formula, (21), since the ratio fij /	Eij

is proportional to the squared radial matrix element, which
usually decreases with density. Accordingly, in the cases
considered in [15], hydrogenic radiative rates decrease with
the plasma density, while the present Fig. 7 provides a specific
example where rates increase with density. Here we may check
quantitatively that the variation of the excitation cross sections
and of the radiative rates are of the same sign and that the
latter is usually greater in magnitude. This is illustrated in
the H-like Al case at Ne = 1025 cm−3 in Tables I and II for
the Born cross sections and the rates, respectively.

However, the collisional excitation rates are affected
differently by the plasma environment. Assuming a

TABLE I. Relative variation of the collisional excitation cross
section for the 1s–2p1/2 transition in Al XIII using the Born approxi-
mation. The difference σ (Ne,Ef )/σ (Ne = 0,Ef ) − 1 is detailed for
various outgoing electron energies Ef and various plasma-density
models assuming Ne = 1025 cm−3.

Thomas-Fermi

Ef (eV) Te = 100 eV Te = 500 eV Te = 2000 eV UEGM

500 −0.085 −0.060 −0.0489 −0.0426
2000 −0.086 −0.061 −0.0494 −0.0430
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TABLE II. Relative variation X(Ne)/X(Ne = 0) − 1 of the ra-
diative (A) and collisional-excitation rates (R) for the 1s–2p1/2

transition in Al XIII. Collisional rates are computed using the
Born approximation. The electronic density is Ne = 1025 cm−3. The
collisional-excitation rate variation within the UEGM is computed at
Te = 100 eV; at Te = 2000 eV this variation would be −0.040.

Thomas-Fermi

Te = 100 eV Te = 2000 eV UEGM

	A/A −0.147 −0.080 −0.066
	R/R +0.324 −0.045 +0.095

Maxwell-Boltzmann distribution for the free electrons, the
collisional excitation rate for the i → j transition is

Rij = (2π )1/2�2Ne

gi(mekTe)3/2

× exp

(
−	Eij

kTe

) ∫ ∞

0

ij (ef ) exp(−ef /kTe) def ,

(28)

where ef is the scattered electron energy and 
ij (ef ) the
collision strength,


ij (ef ) = 2megi

π�2
(ef + 	Eij )σij . (29)

For low Te, the integral over ef in the rate, (28), tends to
kTe
ij (0), simply proportional to the collision strength at
threshold. Therefore, the ratio of the excitation rates with and
without the plasma effect is

R
pl
ij

/
R

(0)
ij = exp

(
−	Eij − 	E

(0)
ij

kTe

)

ij (0)

/



(0)
ij (0)

if kTe � 	Eij . (30)

Since, as we have seen, the difference 	Eij − 	E
(0)
ij is, in

most cases, negative, the first factor in the ratio, (30), is
greater than 1 and increases with 1/Te, while the ratio of
the collision strengths at threshold, though less than 1, does
not depend on Te within the UEGM or slowly varies with Te in
the TF hypothesis. Therefore for low enough Te the collisional
excitation rate increases when the plasma effect is accounted
for. One should note that the above analysis does not rely on
any approximation on atomic structure or scattering theory
but on the general behavior of the plasma effect on transition
energies and collision strengths. The opposite case of large Te

can be investigated using the Van Regemorter formula, (21),
from which one gets the rate

Rij |VR = 16π
√

2R2
yπ

2a2
0Nefij

(3πmekTe)1/2	Eij

ḡ

(
	Eij

kTe

)
exp

(
−	Eij

kTe

)
.

(31)

Since the variation of the Gaunt factor with the plasma effect
can usually be neglected, the effect of the plasma environment
for large Te is measured by the ratio

R
pl
ij

/
R

(0)
ij

∣∣
VR = exp

(
−	Eij − 	E

(0)
ij

kTe

)
fij

/
	Eij

f
(0)
ij

/
	E

(0)
ij

if kTe � 	Eij . (32)

TABLE III. Relative variation X(Ne)/X(Ne = 0) − 1 of the
radiative (A) and Born collisional-excitation rates (R) for the
1s4d 1D2–1s4p 1P1 transition in Al XII. The electronic density is
Ne = 1021 cm−3. The collisional-excitation rate variation within the
UEGM is computed at Te = 5 eV; at Te = 100 eV this variation
would be −0.0059.

Thomas-Fermi

Te = 5 eV Te = 100 eV UEGM

	A/A −0.39 −0.16 −0.086
	R/R +0.044 +0.0116 +0.0082

As mentioned above, (23), the ratio fij /	Eij is proportional
to a squared dipolar matrix element and usually decreases
when the plasma effect is accounted for—though we have
seen previously [15] that the opposite may be true. Con-
versely, as mentioned when discussing Eq. (30), the ratio of
the Boltzmann factors increases when the plasma effect is
included. Therefore the ratio, (32), may be less than or greater
than 1 and usually increases with 1/Te. These considerations
are illustrated in the last row in Table II, where we may
verify that for the 1s–2p transition in H-like aluminum the
plasma environment effect increases the collisional excitation
rates at low temperatures, while it lowers these rates at high
temperatures. In the considered case this behavior is at variance
with the plasma effect on the radiative rate.

The rates for the 1s4d 1D2-to-1s4p 1P1 transition in He-
like aluminum are analyzed in Table III. Once again, the
radiative rate decreases when the density effect is included:
this arises from the decrease in the transition energy, which
is particularly strong here since the levels cross at Ne �
1.2×1022 cm−3. At the density considered in this table, the
collisional rates increase when the environment effect is
accounted for, whatever the temperature: this behavior is
related to the above-mentioned increase in the cross sections
(Fig. 10).

VII. IONIZATION CROSS SECTIONS

Several works have considered the influence of the plasma
environment on electron-impact ionization cross sections.
Some use the Debye-Hückel theory (e.g., [23]); others, theTF
approach [27]. Both the cited works use the Hartree-Fock-
Slater theory with cross sections computed using DWs. Here
we have adopted the TF formalism for the plasma effect, but the
collision formalism used, instead of DWs, is the more relevant
binary encounter dipole (BED) theory [34] implemented in the
FAC. This method combines the Mott semiclassical calculation
of the cross section [35] for the scattering of two free electrons
(valid for close collisions, i.e., at large momentum transfer)
and the Bethe theory [36], which is the Born plane-wave
approximation (valid at high energy and small momentum
transfer) with only the dipolar term kept. This theory is of
great interest due to its applicability for both ions and neutral
atoms. Contrary to the case of excitation, we do not need to
change our calculation approach when the plasma effect is
included.
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FIG. 13. (Color online) Comparison of ionization cross sections
for the transition 1s2 to 1s for Al XII at T = 200 eV (and 50 eV)
for Ne = 1023 cm−3. The free-electron density is obtained from the
Thomas-Fermi model, and for the scattering process the BED and
Lotz formalisms are compared. Grayscale version: the curves are in
the same order in the graph and in the legend.

We plot the electron-impact-ionization cross sections from
state 1s2 to state 1s in Al, at several densities, in Fig. 13. A
comparison is done with the empirical Lotz formula [37]

σij = Cπa2
0Ry2 wn

ei	Eij

ln

(
ei

	Eij

)
, (33)

where C = 2.77 and wn is the initial number of electrons
concerned by the ionization process in the shell.

Our purpose is not to discuss the accuracy of the Lotz
formula compared to the BED method, but to characterize the
plasma effect. The cross section increases with the density,
as shown in Fig. 13. We can explain this increase by the
decrease in the transition energy, which in turn leads to a larger
collisional ionization. When we compare the cross-section
variation due to the plasma effect at Ne = 1023 cm−3 and
Te = 200 eV for the BED and Lotz formulas in Fig. 14,
we note that they are quite similar. We also see in this plot
that the cross-section variation increases with the energy of
scattered electrons and then slowly decreases after the peak.
The temperature has an effect opposite to that of the density:
when it increases the cross section decreases.

We can support these results using a formalism based on the
Lotz formula and a perturbative approach within the UEGM.
As mentioned above, in the UEGM, the first-order energy
correction for a hydrogen-like ion is, in atomic units,

E
(1)
plasma = Zf

R0

(
3

2
− 〈r2〉nl

2R2
0

)
, (34)

with

〈r2〉nl = n2

2Z2
(5n2 − 3l(l + 1) + 1). (35)

For example, for the ionization of a hydrogen-like ion in
the nl state to a fully stripped ion, the transition energy is

	E = Z2

2n2
− Zf

R0

(
3

2
− 〈r2〉nl

2R2
0

)
, (36)
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FIG. 14. (Color online) Modification of the ionization cross sec-
tion due to the density effect for the transition 1s2 to 1s in Al XII

obtained using the BED theory or Lotz formula. The plotted quantities
are the cross sections at Ne = 1023 cm−3 and T = 200 eV minus the
cross sections at Ne = 0 cm−3.

which shows that the energy decreases with the density. The
cross section increases with density due to its dependence on
the energy transition 1/	Eij , as shown in Fig. 13. The study
on other elements leads to the same results.

Our results agree with those of Wu et al. [27] in the
increase in the ionization cross section with density, though
their work relies on DW theory. As mentioned by Pindzola
et al. [23], we checked that their cross sections in Ge-like gold
are underestimated by a factor of 2. But the cross sections
from [23] decrease with the density. These authors explain that
this behavior is linked to the Debye screening of interelectronic
interaction. However, their work, since it is based on Debye
theory, is applicable only at low coupling parameters, while we
do not believe that the same restriction applies to the present
work. Additional results from theory and experiment would
be useful to clarify this point.

VIII. SUMMARY AND CONCLUSIONS

Using a TF approach for free electrons, we have investigated
the effect of the plasma environment on the atomic structure. It
has been shown that this formalism, valid at finite temperature,
leads to a larger plasma potential than the UEGM previously
used. In most cases the inclusion of density effects results
in level shifts and changes in rates, which are stronger with
the TF model than with the UEGM. This is related to the
magnitude of the plasma potential, which is larger in the
TF model than in the UEGM. This self-consistent plasma
potential has been included in the FAC, allowing us to obtain
an accurate atomic description for opacity calculations or
collisional-radiative models. The results obtained here show
that no general behavior for the perturbation of bound-bound
processes can be predicted. As a spectroscopic analysis by
Li and Rosmej [30] has shown, transition energies may
increase or decrease with the electron density. Using the
FAC we have been able to confirm this observation and have
generalized it to radiative rates and e-impact excitation rates.
The situation is usually simpler for H-like ions, as stated
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previously [15]. In the case of the 1s4l configuration of
helium-like aluminum, we obtained ionization cross sections
increasing with density, a fact which we explained by the
decrease in the transition energy. Furthermore, it has been
shown that, at low temperatures, the collisional-excitation
rates usually increase when the plasma environment effect is
accounted for, while the radiative rates usually decrease. This
should have important consequences for population kinetics
in plasmas out of local thermodynamical equilibrium.

This work represents a first important step in the investiga-
tion of density effects in a collisional-radiative code. Indeed,
a previous study [38] using a plasma potential based on
quasiparticle energies and effective interaction argues that
the plasma environment has a minor impact on parameters
such as the average charge. However, this work clearly shows
that atomic processes are perturbed in a non-negligible way.
Therefore it is highly desirable to investigate environment
effects on plasma kinetics, as well as on absorption and
emission spectra.
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APPENDIX: PLASMA POTENTIAL IN THE CASE
OF DEGENERATE ELECTRONS

Defining the thermal wavelength as λth = h/(2πmkBTe)1/2,
the nondegeneracy condition is written

g = Neλ
3
th = 3π2

(2Zf )1/2

(a0R1)3/2

R3
0

� 1 (A1)

using the Wigner radius and closest-distance approach, (8).
The difference between Maxwell-Boltzmann and Fermi-Dirac
statistics is illustrated in Fig. 15, where we have plotted the
numerical results for the free-electron density and plasma
potential in the case of H-like aluminum at 1 eV and 1024

e/cm3. In this case the degeneracy factor g = Neλ
3
th is 331 and

the plasma coupling parameter is � = πR1/R0 = 121.7, mak-
ing the free electrons degenerate. However, one notes in this
figure that the relative variation between Maxwell-Boltzmann
and Fermi-Dirac statistics is about 0.2 for the density and
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FIG. 15. (Color online) Influence of statistics on the self-
consistent free-electron density and plasma potential for H-like alu-
minum at Te = 1 eV and Ne = 1024 cm−3 or 0.148 a−3

0 . The density
is in units of the average free-electron density Ne = 3Zf /4πR3

0 ,
the potential energy is in units of Zf e2/R0, and the electronic
distance to nucleus r is in units of the Wigner sphere radius
R0 = 2.684 a0.

0.1 for the potential. If one considers the relative variation of
the potential versus the UEGM limit, the modification due to
quantum statistics is again 0.2.

Accordingly, in Fig. 5, the most degenerate case considered
was Te = 50 eV, Ne = 1025 cm−3, for which the degeneracy
factor is g ∼ 9.36, therefore suggesting that Fermi-Dirac
statistics should be used. An analysis similar to the one above
has shown that the difference in the plasma potential is also
below 10%, and this corresponds to the maximum degeneracy
parameter. Indeed Ne = 1025 cm−3 is well above solid density,
so the approximation done using the ion-sphere model is much
cruder than that on the statistics. This is why we only consider
Maxwell-Boltzmann statistics in this work.
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