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Effect of a vortex in the triply differential cross section for electron-impact
K -shell ionization of carbon
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Vortices are an inherent property of the velocity fields of complex, time-dependent, Schrödinger wave functions
ψ occurring where both the real and the imaginary parts of ψ vanish. They have been known since the early work
of Dirac on magnetic monopoles and have frequently been studied theoretically. The possibility of observing
them by exploiting an “imaging theorem” that relates atomic wave functions to measured electron momentum
distributions has recently been proposed. Using the Coulomb-Born approximation, we examine ionization of a
K-shell electron of a model carbon atom by fast electron impact. For an incident electron energy of 1801.2 eV
and a scattering angle of 4◦, we find a vortex in the velocity field associated with a zero in the ionization T-matrix
element and hence in the triply differential cross section, and we obtain a segment of the vortex line. Angular
momentum transfer is essential to produce the vortex in the velocity field and the corresponding zero in the
ionization T-matrix element and in the triply differential cross section.
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I. INTRODUCTION

High-energy limits of atomic scattering processes are of
interest because the theory of such processes is often amenable
to quantitative, even closed-form, treatments. Indeed, the
high-energy theories of atomic collisions and energy loss in
matter are based on the first Born (B1) approximations [1–3].
The Born and higher-order approximations have also been
used extensively to interpret structures in the electron mo-
mentum distributions produced in ion and electron impact
on neutral atoms [2,4]. It was speculated that all structures
seen in such distributions arise from the first or second
Born terms in the ionization T-matrix element [4]. It was
later recognized that certain minima found by Murray and
Read [5,6] in (e,2e) electron distributions did not follow the
usual pattern of structures in momentum distributions. Usually,
a two-dimensional slice through a three-dimensional electron
momentum distribution will exhibit minima in the form of
nodal lines, whereas the minima in Refs. [5] and [6] were
found at isolated points on a two-dimensional surface [7,8].
It was later found that these isolated zeros relate to vortices
in the velocity field of atomic wave functions for the (e,2e)
process [9]. Accurate values for these zeros were computed
by Colgan et al. [10] and were discussed by Feagin [11]. A
sharp minimum in the triply differential cross section (TDCS)
has been predicted by Colgan et al. [10] for electron-impact
ionization of molecular hydrogen with a specific orientation.
Vortices have been considered for ionization by proton impact
in a number of places [12–21], including Ref. [14], which
connects time-dependent theory with time-independent theory.
Vortices have also been obtained in ionization by He2+

ions [22] and by antiproton impact [21] as well as in photoion-
ization [21]. A vortex recently obtained for positron-impact
ionization of hydrogen [23,24] provided an explanation of a
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deep minimum in a fully differential cross section previously
obtained [25]. The creation of vortices has been demonstrated
in the electronic probability density of an atom subject to short
electric field pulses [20,26]. Vortices are also of interest in other
area of physics, such as in exciton-polariton condensates [27].

For ionization of a K-shell electron of a model carbon atom
by fast electron impact using the Coulomb-Born approxima-
tion given by Botero and Macek [28], we find a zero in the
ionization T-matrix element and in the TDCS [29]. The zero
corresponds to a vortex in the velocity field associated with
the T-matrix element for ionization. In Sec. II we review
and discuss vortices in velocity fields. In Sec. III we give
the position of the zero we find in the T-matrix element and
give a segment of the vortex line. For ionization by a charged
particle, transfer of the vector angular momentum is associated
with an isolated zero in the time-dependent wave function of
an ejected electron at an asymptotic distance [9,13,21,25]. The
connection between a simple analytic property of an atomic
wave function and the transfer of angular momentum has been
previously discussed [9,13–15,17,18,21,22,26,30].

Isolated zeros can occur in pairs. In this case the net angular
momentum transfer may be zero. Bialynicki-Birula et al. [31]
considered a vortex pair where the two lines have opposite
circulation and they also considered ring vortices. We note that,
using the time-dependent Schrödinger equation, Bialynicki-
Birula et al. obtained a rectilinear vortex for a particle in a uni-
form magnetic field. In our work we do not consider magnetic
fields. Using both the time-dependent Schrödinger equation
and the Klein-Gordon equation, Bialynicki-Birula et al. also
obtained a rectilinear vortex for a free particle. Previously,
Fetter [32] obtained a single vortex for a one-particle wave
function that satisfies a time-dependent nonlinear equation.

The B1, distorted-wave Born (DWB), and Coulomb-Born
approximations are considered valid when the relative veloc-
ities v of the colliding particles are high compared with the
mean velocities of the active electrons [3]. This high-velocity
requirement is well established but must be understood in
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the correct sense, usually in the sense that the momentum K
transferred from relative to internal motion is held constant.
Derivations, originating with Henneberg [33] and Livingston
and Bethe [34], have articulated a wider application of the
B1 theory based on an expansion of transition amplitudes in
terms of ratios of the charge of the projectile ZP relative to
the charge of the target ZT [3,28,35–39]. Such expansions are
less well known than expansions in velocity ratios, however,
they are related to the B1 theory by standard approximations.

Some of these approximations apply to high-energy limits
taken holding the scattering angle θf fixed [40,41]. In that case,
amplitudes for inelastic transitions are given by some sort of
distorted-wave approximation which allows for the scattering
of the incident projectile P from the target T . For fixed scat-
tering angle θf and definite energy loss, the momentum K lost
by the projectile increases without limit so that the scattering
is mainly between the atomic nuclei and the projectile as in
Rutherford’s measurements. Indeed, the amplitude for elastic
scattering becomes just the Rutherford scattering amplitude.
For inelastic transitions the change of state of the electrons is
a small perturbation to the Coulomb scattering from the target
nucleus. In this case the Coulomb-Born approximation is a
logical limit, comparable to the Born approximation relevant
at fixed momentum transfer. For the Coulomb-Born approxi-
mation, not only is linear momentum transfer relevant, but also
angular momentum transfer occurs [39], something that does
happen when the limit is taken holding K constant. We use the
theory given in Ref. [28], which shows how Coulomb waves
moving in arbitrary point charge potentials can be employed
in a consistent perturbation expansion so that all orders in the
perturbation expansion are finite. The Coulomb-Born theory
describes excitation and ionization at high energies when the
limit is taken holding the scattering angle constant. In this
limit the excited states could also be oriented. Indeed, this was
shown in Ref. [39] for the excitation of p states in collisions
of electrons with ground-state He+ ions.

The interpretation of angular momentum transfer is usually
given in terms of the alignment and orientation anisotropy
parameters of Fano and Macek [42–45]. The orientation
parameter, given by the mean value of the angular momentum
〈Jz〉, is known to be relevant for excitation of bound states [45].
It has recently been discovered that orientation of continuum
states by atomic collisions leads to zeros in the angular
distribution of ionized electrons [12,13,15]. Since these are
also zeros in the wave function at large values of the electron
coordinate, they also correspond to vortices in the velocity
field. In essence, it is found that transfer of angular momentum
involves two rotations [14]. One rotation is the normal classical
picture of orbiting about a charge center or, in the language
of quantum mechanics, the rotation of a bound electron’s
probability distribution as a whole about a charge center.
A second rotation is a rotation about a zero of the electron
wave function [13,14,21]. It has been shown that if a complex
one-electron wave function has an isolated zero, the zero
corresponds to vortex in the velocity field [31,46,47]. This
implies that the probability current circulates about the isolated
zero and becomes infinite exactly at the vortex. The integral
of the current around the vortex is some integer multiple of
2π [31]. It is established for proton impact ionization that
vortices corresponding to zeros in the time-dependent electron

wave function show up as zeros in the electron momentum
distribution of the ejected electrons k [13,14].

In Sec. III we show that a vortex occurs for inner-
shell ionization by electron impact using the Coulomb-Born
approximation given by Botero and Macek [28]. We review the
Coulomb-Born approximation that was applied in Ref. [28]
to ionization of a K-shell electron of a carbon atom by fast
electron impact and which uses an effective charge Zeff not
equal to the charge of the target nucleus. For the process
of electron K-shell ionization of a model carbon atom, we
give the kinematics for a vortex in the velocity field that
manifests itself as a deep minimum in the TDCS and we also
provide verification of the vortex [29]. We also give a multipole
expansion of the Coulomb-Born ionization T-matrix element
for the kinematics of the vortex and analyze the multipoles to
determine the most important components necessary to obtain
a vortex. We also give in Sec. III the loci of points where a
vortex appears in the velocity field when the electron is ejected
out of the scattering plane. Previously, minima in the TDCS
for inner-shell ionization of carbon [28] have been attributed
to vortices and an analysis had been made using the multipole
components [9,14,17,18] computed by Botero and Macek [28].
The kinematics for the minima in the TDCS in Ref. [28], how-
ever, are generally close to the kinematics for a vortex in the
velocity field rather than exactly at the kinematics for a vortex.

We present a summary in Sec. IV and in the Appendix
we give the corrected analytic expression for the multipole
components of the ionization T-matrix element for the Born
approximation that were given in Ref. [28], but apparently
with some errors.

Atomic units are used throughout unless explicitly stated
otherwise.

II. VORTICES IN VELOCITY FIELDS
OF ATOMIC WAVE FUNCTIONS

Vortices in the velocity fields of atomic wave functions
have been discussed generally by Bialynicki-Birula et al. [31],
where they have been related to local rotational properties near
isolated zeros of one-electron atomic wave functions. In this
section we review some central features of vortices of velocity
fields given in Ref. [31].

Consider a complex function f (x,y) in two dimensions
whose Cartesian coordinates are denoted x,y. This function
may vanish at the point x0, y0, where the real and imaginary
parts of f both vanish. The function is assumed to be analytic in
a region including the zero. The squared magnitude |f (x,y)|2
defines the probability density, and the expression

v(x,y) = Re[f ∗(x,y)(−i)∇f (x,y)]

|f (x,y)|2 = Im∇[ln f (x,y)] (1)

defines the velocity field [31]. In the absence of external fields,
the velocity field is irrotational ∇ × v(x,y) = 0 except at the
zero of the function f (x,y), i.e., at (x0,y0). The function
f (x,y) near its zero can be taken to have the form

f (x,y) ≈ a[(x − x0) + b(y − y0)], (2)

where b is a complex number which may be time dependent
and in which Im[b] �= 0 [9,30,31,46,48,49]. The velocity field
v near the zero of this function f can be closely approximated
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by its dominant term:

v ≈ −Im[b]
[x̂(y − y0) − ŷ(x − x0)]

(x − x0)2 + |b|2(y − y0)2 + 2Re[b](x − x0)(y − y0)
. (3)

The dominant term is orthogonal to the vector r − r0.
The magnitude of the velocity field has a 1/r singu-
larity at the zero of the function (x0,y0), where r =√

(x − x0)2 + (y − y0)2 [46]. Using the right-hand side of
Eq. (3) and taking a circular contour c of small radius of
counterclockwise orientation, enclosing the point (x0,y0), one
can show that [9,14,30–32,46–54]∫

c

v · d� = 2π. (4)

This result, that the line integral of the velocity field v equals
2π , is true for any contour of counterclockwise orientation
enclosing the first-order zero of f (x,y) at (x0,y0), provided,
of course, that there are no other zeros of the function f (x,y)
enclosed in the contour.

For a function f (x,y) with a first-order zero, the equation
Re[f (x,y)] = 0 in general defines a nodal line. The vanishing
of Im[f (x,y)] = 0 similarly defines a second, generally
different, nodal line. If these two nodal lines do not coincide,
then where they cross defines an isolated first-order zero of
the complex function f (x,y) [31]. We use this procedure to
locate a zero in the T-matrix element for fast electron-impact
ionization of a K-shell electron of carbon. We give the position
of the zero in Sec. III.

Equation (4) shows that the velocity field circulates around
the zero of the function f (x,y), suggesting that the velocity
field carries angular momentum. Using Eq. (2) for the function
f (x,y) in the vicinity of the zero and averaging the z

component of the angular momentum vector Lz over a small
region A including the zero, one obtains [30]

〈Lz〉 =
∫
A

f ∗(x,y)Lzf (x,y)dxdy∫
A

|f (x,y)|2dxdy
≈ i(b∗ − b)

|1|2 + |b|2 , (5)

which is nonzero since Im[b] �= 0. Thus, there is some angular
momentum associated with the zero of the function f (x,y)
given by Eq. (2).

The general theory of Ref. [31] discussed situations where
the vortices occur in pairs with opposite and presumably equal
magnitude currents so that the total angular momentum carried
by the function f vanishes. Those situations are applicable
to time-dependent wave functions prepared by processes
that transfer no net vector angular momentum, like atomic
excitation by linearly polarized light [26]. For ionization of a
K-shell electron of carbon by fast electron impact, transfer
of angular momentum is associated with the zero in the
T-matrix element we obtain and present in Sec. III. We show in
Sec. III that the m = 1 dipole component of a multipole
expansion of the ionization T-matrix element is necessary to
obtain the zero.

That vortices, even in “fluids” that are generally irrotational
such as those appropriate for time-dependent atomic wave
functions [13,31,47,55,56], should have observable conse-
quences is an important point introduced in Ref. [31]. The con-
sequences have proved experimentally elusive, mainly since

direct observation of wave functions is seldom considered
as a goal for experimental or theoretical investigation. For
time-dependent processes one can use that the wave function

ψ(r,t) =
∫

K(r,t ; r ′,t ′)ψ(r ′,t ′)d3r ′, (6)

where K is the propagator or time-dependent Green’s function.
Upon setting r = kt [13] and taking the limit as t → ∞ one
has that all bound-state components vanish since r → ∞,
leaving only continuum components. For sufficiently large r ′
the propagator can be taken to be the free particle propagator
to the extent that continuum components can be represented
by plane waves. In this case the propagator becomes

K(r,t ; r ′,t ′) =
(

1

2π |t − t ′|
)3/2

exp

[
− i

(r − r ′)2

2|t − t ′|
]
. (7)

Upon setting r = kt in Eq. (7) and taking the limit as t → ∞
one obtains

K(kt,t ; r ′,t ′) =
(

1

2πt

)3/2

exp

[
− i

(kt − r ′)2

2|t − t ′|
]

→
(

1

2πt

)3/2

e−ik2t/2eik·r ′
. (8)

It follows that in the limit of large t one has

[|ψ(r,t)|2d3r]r=kt

∼
∣∣∣∣d3k e−ik2t/2(2π )−3/2

∫
eik·r ′

ψ(r ′,t ′)d3r ′
∣∣∣∣
2

= |ψ̃(k,t ′)|2d3k ∝ |Tk(t)|2d3k, (9)

which identifies the time-dependent wave function with the
momentum distribution of the ejected electron. Equation (9)
is referred to as the “imaging theorem” but the identifica-
tion [9,14,17,18,57–61] is usually implicitly assumed when
needed. Reference [58] gives the relation Tk(t) ∝ ψ̃(k,t),
where Tk(t) is the time-dependent transition matrix element.
We can therefore use the ionization T-matrix element to
compute the velocity field. Since the imaging theorem relates
an electron momentum distribution to an electron wave
function, one can identify an isolated zero in an ionization
T-matrix element with a vortex in a velocity field. The vortex
indicates transfer of angular momentum.

It is somewhat remarkable that an analytic feature of a
wave function, namely, an isolated zero, relates closely to the
transfer of angular momentum. In essence, while an isolated
zero of a time-dependent atomic wave function seems to be
a simple analytic feature expected to be present for general
functions, that is not actually the case.

In the next section we obtain a vortex for the particular
process of ionization of a K-shell electron of a carbon atom by
fast electron impact using the Coulomb-Born approximation
given in Ref. [28] and a hydrogenic wave function for the
K-shell electron as done in Ref. [28].
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III. COULOMB-BORN CALCULATIONS
OF ELECTRON-IMPACT IONIZATION OF

THE K SHELL OF A MODEL CARBON ATOM

A. Coulomb-Born ionization T-matrix element

The Coulomb-Born (CB1) limit was studied by Botero
and Macek [28] for the special case of inner-shell ionization
of a carbon atom by electron impact, where Rutherford
scattering by the carbon nuclei played an important role.
A simple screened charge model gave an ejected electron
distribution [28] in moderately good agreement with mea-
surement [62] for the kinematics of an incident electron Ei of
1801.2 eV, a scattering angle θf of 4◦, and an ejected electron
energy Ek of 9.6 eV. In Refs. [9,14,17] and [18] some of
the minima in the CB1 TDCSs of Botero and Macek [28]
for different kinematical conditions are interpreted in terms
of vortices. In this paper we discuss that the minimum in the
CB1 TDCS at 240◦ computed by Botero and Macek for the
kinematics Ei = 1801.2 eV, θf = 4◦, and Ek = 9.6 eV is due
to the kinematics being close to that to obtain a vortex in
the velocity field rather than the kinematics for a vortex. By
varying the energy of the ejected electron, we obtain a deep
minimum in the CB1 TDCS which is due to a vortex.

For K-shell ionization of carbon by electron impact where
a one-electron model is taken to represent the inner 1s electron
in the initial state, the CB1 ionization T-matrix element has
the form [28]

T CB1
f i = 〈ψ−

K f
(r)ψ−

k (r ′)
∣∣∣∣ 1

|r − r ′|
∣∣∣∣ϕi(r ′)ψ+

K i
(r)〉. (10)

In this equation, r and r ′ are, respectively, the position vectors
of the incident (or scattered) electron and of the atomic (or
ejected) electron relative to the target nucleus. In the treatment
in Ref. [28] and followed here, the inner 1s electron in the
initial state is approximated by a ground-state hydrogenic wave
function ϕi(r ′) = (1/

√
π )Z3/2

T e−ZT r ′
, with the screened target

charge ZT chosen so that it gives the binding energy of the 1s
electron. In our calculations we take ZT = 4.6717, obtained
using the relaxed-orbital total binding energy of −10.912347
a.u. of the electron in the level 1S 1

2
of carbon [63]. The ±

sign on the Coulomb wave functions ψ−
K f

(r), ψ−
k (r ′), and

ψ+
K i

(r) refer to incoming (−) and outgoing (+) boundary
conditions [64], and K i , K f , and k denote the momentum of
the incident, scattered, and ejected electrons, respectively. We
use the normalization of the Coulomb waves on the momentum
scale [28,64]. As done by Botero and Macek [28], we set the
effective charge Zeff in the Coulomb wave functions for the
incident and scattered electron to equal ZT .

Following through the analysis in Ref. [28] enables the
CB1 ionization T-matrix element to be expressed as a two-
dimensional integral,

T CB1
k,1s = 2π

N
(+)
K i

N
(−)∗
K f

N
(−)∗
k

�(1 − c)�(c)

(
Z3

T

π

)1/2∫ 1

0
dt tc−1(1 − t)−c

×
∫ 1

0
dx

[
−μ(1 − x)

y3

∂Iab

∂y
+ 1

y

∂2Iab

∂y∂μ

]
, (11)

where N+
K i

, N−
K f

, and N−
k are the normalization of the Coulomb

wave functions ψ+
K i

(r), ψ−
K f

(r), and ψ−
k (r ′), respectively. In

Eq. (11), a = i Zeff
Ki

, b = i Zeff
Kf

, c = i ZT

k
, μ = ZT − ikt , p =

(1 − x)(1 − t), and y = [(1 − x)(μ2 + xp2
1)]1/2, where p1 =

k(t − 1). As defined in Ref. [39], Iab is given by

Iab = 4πCa+b−1

AbBa 2F1(a,b,1; z), (12)

where

A = (y − iKf )2 + (pk − K i)
2,

B = (y − iKi)
2 + (pk + K f )2,

C = y2 + (pk − K i + K f )2, (13)

D = [y − i(Ki + Kf )]2 + p2k2,

z = 1 − CD

AB
.

Equations (11) and (13) correct minor mistakes in Eqs. (54)
and (53) in Ref. [28], respectively.

It is useful to note the invariance of T CB1
k,1s under reflection

in the plane of K i and K f called the scattering plane. Since
the vectors K i ,K f have no components perpendicular to the
scattering plane, it follows that none of the parameters in
Eq. (13) depend on the sign of ky in a frame where the
y axis is perpendicular to the scattering plane. The CB1
T-matrix element has the reflection symmetry with respect
to the scattering plane given by

T CB1
k,1s (θk,ϕk) = T CB1

k,1s (θk,2π − ϕk). (14)

B. Vortex obtained using the CB1 approximation

We compute the TDCS, in fact a quintuple differential cross
section, for inner-shell ionization of carbon according to

d5σ

d	f dEkd	k
= (2π )4 2Kf k

Ki

|Tk,1s |2, (15)

where d	k is the solid angle for the ejected electron and d	f

is the solid angle for the scattered electron. The factor of two
on the right-hand side of this equation is because there are
two 1s electrons in the K shell of carbon. We consider only
the direct ionization T-matrix element, which is a reasonable
approximation since we consider the kinematics where the
energy of the ejected electron is much lower than the energy
of the incident electron.

In the CB1 TDCS for inner-shell ionization of carbon
by electron impact reported by Botero and Macek [28],
a minimum is seen at about θk = 240◦ for the kinematic
conditions Ei = 1801.2 eV, θf = 4◦, and Ek = 9.6 eV. We
compute the CB1 T-matrix element for these kinematics and
find that while Im[T CB1

k,1s ] is 0 at 240◦, Re[T CB1
k,1s ] is 0 not at

this angle, but at 242◦. Therefore, the minimum in the TDCS
does not occur exactly at the position of a vortex because
there is a small part of Re[T CB1

k,1s ] where Im[T CB1
k,1s ] vanishes.

Since Re[T CB1
k,1s ] = 0 at an angle close to the angle, where

Im[T CB1
k,1s ] = 0 and where there is a minimum in the CB1

TDCS, the minimum in the CB1 TDCS could be explained
as being due to a vortex for kinematics close to those where
the minimum is obtained. In all the calculations that we
report in this section, the energy of the incident electron Ei is
1801.2 eV and the angle of the scattering electron θf is 4◦.
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FIG. 1. (Color online) Plot of angular distributions of the TDCS
computed in the CB1 [solid (blue) curve] and the B1 [dashed (red)
curve] for electron-impact ionization of the K shell of carbon for the
kinematic conditions Ei = 1801.2 eV, θf = 4◦, and Ek = 5.5 eV.

We systematically vary the energy of the ejected electron
Ek to search for where Re[T CB1

k,1s ] = 0 at the same angle that
Im[T CB1

k,1s ] = 0. We find that for Ek = 5.5 eV a deep minimum
occurs in the CB1 TDCS at the angle of the ejected electron
θk of 239◦, and at this angle Re[T CB1

k,1s ] = Im[T CB1
k,1s ] = 0. The

deep minimum in the CB1 TDCS is due to a vortex in the
velocity field. We also compute the B1 TDCS using Eq. (15)
and the closed-form expression of the B1 approximation of
Mott and Massey [3]. In Fig. 1, we show the TDCS computed
in the CB1 and B1 approximations for Ek = 5.5 eV. The deep
minimum in the CB1 TDCS is close to the minimum in the B1
TDCS, which is at 236◦. This minimum in the B1 TDCS is not
deep and does not correspond to a vortex. In Fig. 2 we show
the real and imaginary parts of the CB1 ionization T-matrix
element for these kinematics.

We show in Fig. 3 a density plot of ln |T CB1
k,1s | as a function

of the x and z components, kx and kz, of the momentum of
the ejected electron k, where the z axis is taken to be the
direction of the incident electron. The x − z plane is taken
to be the scattering plane. The electron is ejected in the
scattering plane, so that the y component of the momentum
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FIG. 2. (Color online) Real [solid (blue) curve] and imaginary
[dashed (red) curve] parts of the Coulomb-Born (CB1) ionization
T-matrix element for electron-impact ionization of the K shell of
carbon under the kinematic conditions Ei = 1801.2 eV, θf = 4◦, and
Ek = 5.5 eV.
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FIG. 3. (Color online) Density plot of ln |T CB1
k,1s | as a function of

the x and z components (kx,kz) of momentum k of the ejected electron
for electron-impact ionization of the K shell of carbon. The nodal lines
where Re[T CB1

k,1s ] = 0 and Im[T CB1
k,1s ] = 0 are shown by solid blue and

green curves, respectively. Arrows show the direction of the velocity
field v = ∇kIm[ln T CB1

k,1s ].

of the ejected electron, ky , is 0. In obtaining Fig. 3, we fix
the incident energy Ei and the scattering angle θf , while we
vary the energies of the ejected and scattered electrons to
maintain energy conservation. Also, we show in Fig. 3 the
nodal lines of Re[T CB1

k,1s ] and Im[T CB1
k,1s ]. The position where the

nodal lines cross is the position of the vortex. This position is
k = (−0.547,0, − 0.326), which corresponds to Ek = 5.5 eV
and θk = 239◦. We also show by arrows in Fig. 3 the
direction of the velocity field v = ∇kIm[ln T CB1

k,1s ]. Note that
the velocity field circulates around the position of the zero
of |T CB1

k,1s (kx,0,kz)|. The circulation � = ∫
c
v · d�, where the

contour c is a closed loop around the zero taken in the
counterclockwise direction, does not vanish. We verify that it
equals 2π (to numerical accuracy). We conclude that the deep
minimum in the CB1 TDCS at θk = 239◦ for Ek = 5.5 eV
is due to a vortex in the velocity field.

C. Multipole expansion of the ionization T-matrix element

It is insightful to examine the multipole components in
an expansion of the CB1 ionization T-matrix element to
investigate the vortex in more detail. We perform a multipole
expansion of both the CB1 and the B1 ionization T-matrix
elements relative to an axis parallel to the momentum transfer
vector K = K i − K f for the kinematics of where the vortex
is obtained in the CB1 approximation. We follow the treatment
of Botero and Macek [28] in obtaining the CB1 and B1
multipole components of the T-matrix element, correcting for
some apparent mistakes in the equation given in Ref. [28] for
the B1 multipole components. Botero and Macek computed
multipole components of the CB1 and B1 T-matrix elements
for a number of kinematics including the kinematics where
measurements were made of the TDCS [62].

The multipole expansion of the T-matrix element relative
to the z′ axis parallel to the momentum transfer vector K is
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TABLE I. Coulomb-Born (CB1) and Born (B1) multipole components of the T-matrix element for electron-impact ionization of the K shell
of carbon for the kinematics that give a vortex (Ei = 1801.2 eV, θf = 4◦, and Ek = 5.5 eV). The z′ axis is taken parallel to the momentum
transfer vector. The phases of the multipole components T m


 are ϕ
m, and ϕ′

m are the phases of the multipole components T m


 relative to the
phase ϕ10. Phases are given in degrees.


 m (2π )4 2Kf k

Ki
|T m (CB1)


 |2 ϕCB1

m ϕ′CB1


m (2π )4 2Kf k

Ki
|T 0 (B1)


 |2 ϕB1

m ϕ′B1


m

0 0 3.3×10−4 25.8 146 3.25×10−4 −101.2 −277.8
1 0 1.06×10−2 −120.0 0 1.35×10−2 176.6 0
1 1 3.24×10−4 150.6 270.6
2 0 8.74×10−4 140.4 260.4 9.09×10−4 101.9 −74.7
2 1 2.50×10−6 −45.6 74.4
2 2 2.94×10−6 74.0 194.0
3 0 1.67×10−5 56.7 176.7 1.66×10−5 34.1 −142.5
3 1 1.27×10−6 −169.3 −49.3
3 2 6.27×10−7 7.7 127.7
3 3 3.30×10−8 −160 −40.1
4 0 1.61×10−7 −18.3 101.7 1.49×10−7 −27.3 −203.9
4 1 1.05×10−8 103.9 −223.9
4 2 1.73×10−9 −79.7 40.3
4 3 3.9×10−11 −65 55
4 4 3×10−11 120.8 241

given by

Tf i(θ
′
k,ϕ

′
k) =

∞∑

=0


∑
m=−


T m

 Ym


 (θ ′
k,ϕ

′
k), (16)

where θ ′
k and ϕ′

k are, respectively, the polar and azimuthal
angles for this z′ axis and for the x ′ − z′ plane as the scattering
plane. The Ym


 (θ ′
k,ϕ

′
k) are the usual complex spherical harmon-

ics. We use the definition of the spherical harmonics given in
Ref. [65], which includes the (−1)m Condon-Shortley factor.
The coefficients T m


 are for an expansion of the T matrix in
terms of Ym


 (θ ′
k,ϕ

′
k).

Using the orthonormality condition of the spherical har-
monics and the property that Tf i(θ ′

k,ϕ
′
k) is symmetric with

respect to ϕ′
k , one can write

T m

 = 2

∫ π

0

∫ π

0
Re[Ym


 (θ ′
k,ϕ

′
k)]Tf i(θ

′
k,ϕ

′
k) sin θ ′

kdθ ′
kdϕ′

k. (17)

Since T −m

 = (−1)mT m


 , the multipole expansion, Eq. (16),
can be written as

Tf i(θ
′
k,ϕ

′
k) =

∞∑

=0

(
T 0


 Y 0

 (θ ′

k,ϕ
′
k) +


∑
m=1

T m



(
Ym


 (θ ′
k,ϕ

′
k)

+ (−1)mY−m

 (θ ′

k,ϕ
′
k)

))
. (18)

In the Appendix we give equations for the B1 ionization T-
matrix element and its multipole components. The components
given in Ref. [28] apparently have errors. We list in Table I, for
the CB1 and B1 approximations, the phases of the components
of the T-matrix element for the kinematics of a vortex and the
quantity (2π )4 2Kf k

Ki
|T m


 |2. The values of the relative phases ϕ′
20

and ϕ′
11 are important to get a deep minimum in the TDCS, as

we discuss following Eq. (20).
In Fig. 4, we compare the TDCS computed using different

CB1 multipole components in the expansion of the CB1

ionization T-matrix element for the kinematics of a vortex
(Ek = 5.5 eV). The various TDCSs are plotted versus the angle
of the ejected electron measured relative to the incident beam
direction. We consider the electron ejected in the scattering
plane. The TDCS we compute with 
max = 3 CB1 components
(not shown) and the TDCS we compute with 
max = 4 CB1
components (shown) are virtually indistinguishable in the
figure and agree very well with the CB1 TDCS we compute
with the full CB1 T-matrix element (not shown in Fig. 4). As
with the CB1 TDCS, the TDCS we compute with the CB1
components up to 
max = 4 and all allowed m values has a
deep minimum at 239◦.

Figure 5 shows the angular distributions of the TDCS for
the kinematics of a vortex computed with different multipole
components. The z axis shown is parallel to the incident beam
direction. The figure illustrates the importance of the CB1

0 50 100 150 200 250 300 350
0.000

0.001

0.002

0.003

0.004

0.005

Angle of Ejection Θk deg

T
D
C
S

a
.
u
.

FIG. 4. (Color online) TDCS for K-shell ionization of carbon by
electron impact computed using different multipole components in
the expansion of the CB1 ionization T-matrix element. Kinematic
conditions are Ei = 1801.2 eV, θf = 4◦, and Ek = 5.5 eV. The
TDCS we compute with 
max = 1 is shown by the dotted (red curve);
that with 
max = 2, by the dashed (blue) curve; and that with 
max = 4,
by the solid (green) curve.
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0.003 0.002 0.001 0.001 0.002 0.003
Z

0.002

0.001
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FIG. 5. (Color online) Angular distributions of the TDCS for
K-shell ionization of carbon by electron impact. The z axis is parallel
to the incident beam direction. The kinematic conditions (Ei =
1801.2 eV, θf = 4◦, and Ek = 5.5 eV) are for a vortex. The TDCS
computed with the CB1 
 = 0 → 4, − 
 � m � 
 components is
shown by the solid (red) curve; the TDCS computed with the
CB1 
max = 4, m = 0 plus 
 = 1, m = ±1 components, by the
long-dashed (green) curve; and the TDCS computed with the CB1

 = 0 → 4, m = 0 components, by the dotted (magenta) curve. The
TDCS computed with the B1 multipole components 
 = 0 → 4,

m = 0 [dot-dashed (blue) curve] is also shown.

m = ±1 dipole components in obtaining a deep minimum. It
shows the TDCS computed with just the CB1 
max = 4, m = 0
components, the TDCS computed with CB1 m = ±1 dipole
components added to the CB1 
max = 4, m = 0 components of
the T-matrix element, and the TDCS computed with the CB1
components with 
max = 4 and all allowed m values, which
is essentially the complete CB1 TDCS. The figure also shows
the TDCS computed with the B1 
max = 4 components. The
TDCS with the B1 
max = 4 components is indistinguishable
in the figure from the complete B1 TDCS (not shown).

The TDCS we compute with the B1 
max = 4 components
has a minimum at 236◦, close to the deep minimum in the
TDCS we compute with the CB1 
max = 4 components, which
is at 239◦. However, the value of the minimum in the TDCS
with 
max = 4 is about 3 × 10−7 smaller than the minimum in
the B1 TDCS. The real and imaginary parts of the T-matrix
element we compute with the B1 multipole components are
not zero at the same angle. The minimum in the B1 TDCS at
236◦ does not correspond to a vortex in the velocity field.

While there is a deep minimum in the CB1 TDCS, the TDCS
we compute using just the CB1 m = 0, 
max = 4 components
has a minimum, at about 239◦, which is not deep. In the
calculation of the T-matrix element using only the m = 0,

max = 4 components of the CB1 T-matrix element, the angle
where Re[Tk,1s] = 0 is separated quite significantly from the
angle where Im[Tk,1s] = 0. In this case, the minimum in the
corresponding TDCS does not correspond to a vortex.

Adding just the CB1 m = ±1 dipole components to the
CB1 
max = 4, m = 0 components of the T-matrix element
makes a huge difference in the shape and magnitude of the
TDCS. Adding the CB1 m = ±1 dipole components brings
the angles where Re[Tk,1s] = 0 and Im[Tk,1s] ≈ 0 close to one
another, resulting in a deep minimum in the TDCS at about
237◦. Remarkably, the addition of the m = ±1 CB1 dipole
components reduces the value of the minimum in the TDCS

0.06 0.04 0.02 0.02 0.04
Z'

0.03

0.02

0.01

0.01

0.02

0.03

FIG. 6. (Color online) Angular distributions of the TDCS for
K-shell ionization of carbon by electron impact. The z′ axis is
taken parallel to the momentum transfer vector. Kinematic conditions
are Ei = 1801.2 eV, θf = 4◦, and Ek = 5.5 eV. The TDCS we
compute with the CB1 
 = 0 → 4, −
 � m � 
 components is
shown by the solid (red) curve; the TDCS we compute with the
CB1 
 = 0 → 2, m = 0 plus 
 = 1, m = ±1 components, by the
long-dashed (green) curve; the TDCS we compute with the CB1

 = 0 → 2, m = 0 components only, by the dotted (brown) curve;
and the TDCS we compute with the CB1 
 = 1, m = ±1 components,
by the dashed (magenta) circles.

by about three orders of magnitude. The m = ±1 CB1 dipole
components are therefore extremely important in obtaining a
vortex. Interestingly, the effect of adding the CB1 m = ±1
dipole components is to increase the value of the minimum
that is almost in the opposite direction by a factor of 4. This
minimum in the TDCS computed with the CB1 
max = 4, m =
0 and 
 = 1, m = ±1 components is at about 47◦. In Fig. 5,
it is apparent that the angular distribution of the TDCSs we
compute using the CB1 
max = 4, m = 0 and 
 = 1, m = ±1
multipole components is similar to the angular distribution of
the TDCS we compute using the complete CB1 TDCS.

The importance of adding the CB1 m = ±1 dipole compo-
nents to the m = 0 components in reducing the value of one
minimum and increasing the value of the other minimum in
the TDCS has been presented in Ref. [18]. However, Ref. [18]
used different kinematics from those we use in the calculations
presented here. Furthermore, in the calculation discussed in
Ref. [18], the CB1 m = ±1 dipole components were added to
the B1 components rather than the CB1 m = 0 components.
Reference [18] commented on the difference in the phase of
the 
, m = 0 components relative to the phase of the m = 0
dipole component between the CB1 and the B1 calculations.

Figure 6 gives the angular distribution of the TDCS where
the z′ axis is parallel to the momentum transfer vector for
the kinematics of the vortex (Ek = 5.5 eV). For these
kinematics, the angle that the momentum transfer vector makes
relative to the incident beam direction is approximately 325◦.
The figure compares the angular distribution of the TDCS
that we compute with only the 
 = 0 → 2, m = 0 plus the

 = 1, m = ±1 CB1 components with that we compute with
all the 
 = 0 → 4, −
 � m � 
 CB1 components, which is
essentially the complete CB1 TDCS. It also shows the TDCS
that we compute with only the m = 0 monopole, dipole, and
quadrupole components of the T-matrix element and the TDCS
that we compute solely with the m = ±1 dipole components.
It can be seen that the angular distribution of the TDCS we
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compute with only the 
 = 0 → 2, m = 0 plus 
 = 1, m = ±1
CB1 components is very similar to the angular distribution
of the TDCS we compute with the 
 = 0 → 4, −
 � m � 


CB1 components. Both angular distributions have a deep
minimum at about 270◦ relative to the momentum transfer
axis and a minimum of enhanced magnitude in about the
opposite direction (≈90◦ relative to the momentum transfer
axis) compared to the TDCS that we compute with only the
m = 0 monopole, dipole, and quadrupole components. Thus,
from the figure it is evident that the m = ±1 dipole components
are important in obtaining a deep minimum in the TDCS.

It is easier to analyze the T-matrix element that has only
the 
 = 0 → 2, m = 0 plus the 
 = 1, m = ±1 components
rather than the T-matrix element with 
max = 4 and all allowed
m. This we do below.

D. Analysis of the vortex using the multipole expansion
of the ionization T-matrix element

The expansion of the CB1 ionization T-matrix element of
Eq. (18) retaining only the 
max = 2, m = 0 plus the 
 = 1,
m = ±1 multipole components can be written as

Tf i(θ
′
k,0) = eiϕ10T ′

f i(θ
′
k,0), (19)

where

T ′
f i(θ

′
k,0) = ∣∣T 0

0

∣∣eiϕ′
00Y 0

0 (θ ′
k,0) + ∣∣T 0

1

∣∣Y 0
1 (θ ′

k,0)

+ ∣∣T 0
2

∣∣eiϕ′
20Y 0

2 (θ ′
k,0) + 2

∣∣T 1
1

∣∣eiϕ′
11Y 1

1 (θ ′
k,0) (20)

and ϕ′

m are the phases of T m


 relative to the phase of the m = 0
dipole component, ϕ′


m = ϕ
m − ϕ10. Since the relative phases
ϕ′

20 and ϕ′
11 are almost 270◦, the m = 0 quadrupole and the

m = 1 dipole terms of T ′
f i(θ

′
k,0) are almost purely imaginary.

At θ ′
k = 90◦, the sum of the imaginary parts of the monopole

and m = 0 quadrupole terms almost equals the imaginary
part of the m = 1 dipole term (which has the factor of 2
because of the combining of both the m = 1 and the m = −1
terms). This means that for θ ′

k = 90◦, adding the m = ±1
dipole components to the m = 0 monopole and quadrupole
components almost doubles the magnitude of Im[T ′

f i(θ
′
k,0)]

and also of T ′
f i(θ

′
k,0) itself since Re[T ′

f i(θ
′
k,0)] ≈ 0 at θ ′

k =
90◦. Thus, at an angle of 90◦ relative to the momentum
transfer axis, the TDCS increases by almost a factor of 4 with
the inclusion of the m = ±1 dipole components. However,
at θ ′

k = 270◦, the m = ±1 dipole components almost cancel
with the m = 0 monopole and quadrupole components for
Im[T ′

f i(θ
′
k,0)], and because Re[T ′

f i(θ
′
k,0)] ≈ 0 at θ ′

k = 270◦,
T ′

f i(θ
′
k,0) and the TDCS are also almost zero at this angle.

More terms in the multipole expansion of the T-matrix element
are needed for a better cancellation of the T-matrix element
at θ ′

k ≈ 270◦, but this analysis illustrates the importance of
the m = 0 monopole and quadrupole components and the
m = ±1 dipole components for obtaining a deep minimum
in the TDCS.

In Ref. [30] a discussion is given of the importance of
adding a monopole term to the dipole term to shift the position
of the zero in the amplitude from the origin. It is explained in
Ref. [30] that an examination of the multipole components
of the CB1 T-matrix element determined by Botero and
Macek [28] shows that the x component of the ionization

kx
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kz
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FIG. 7. (Color online) A segment of the vortex line for the K-shell
ionization of carbon by electron impact for an incident energy Ei of
1801.2 eV and a scattering angle θf of 4◦. The positions of the vortex
for different values of the y component of the momentum of the
ejected electron, ky , are denoted by filled (red) circles. The loci of the
positions of the vortex form a segment of the vortex line.

amplitude is nearly 90◦ out of phase with the z component.
Reference [30] suggested that the continuum wave function
corresponding to the ionization amplitude carries some net
angular momentum.

E. Vortex line

In order to construct a segment of the vortex line for
the kinematics of an incident energy Ei = 1801.2 eV and
scattering angle θf = 4◦, we also consider the electron from
the inner shell of carbon to be ejected out of the scattering
plane. We consider a number of different but small values of
ky . For each value of ky , we vary the values of kx and kz,
while adjusting the magnitude of K f to compensate so that
the total energy of the system is conserved, and we locate an
intersection of the nodal lines of the real and imaginary parts of
the CB1 T-matrix element. A point of intersection is a position
of a vortex for that particular value of ky . We repeat this for
different fixed small values of ky . We plot the positions of the
vortex points we obtain for different ky values. The loci of
the vortex positions form a segment of the vortex line for the
kinematics Ei = 1801.2 eV and θf = 4◦ (see Fig. 7). So that
the vortex line is smooth, we use the data on the positions of the
vortex points to four significant figures, although we claim an
accuracy of the positions to ±0.001 only. The vortex line starts
off perpendicular to the scattering plane, the kx − kz plane, as
it must because of reflection symmetry [17]. However, the
vortex line quickly bends towards larger values of kx and kz

with increasing ky . The trend of the vortex line, namely, that it
appears to start perpendicular to the scattering plane but bends
quickly, is similar to that obtained in ion-atom collisions [66].

Expressing the CB1 T-matrix element in terms of the
components of the momentum of the ejected electron helps
with the understanding of the behavior of the vortex line. The
multipole components T m


 can be written in terms of slowly
varying functions a
m(k) of k for the energy ranges Ek in
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Figs. 3 and 7 according to

T
m (CB1)

 = (−1)m(N−

k )∗k


√
4π

2
 + 1
a
m(k). (21)

Substituting Eq. (21) into the multipole expansion, Eq. (16),
and retaining only the m = 0, 
 = 0, 1, and 2, and 
 = 1,m =
1 components, which are the most important components in
obtaining the vortex, leads to

T CB1
k,1s ≈ (N−

k )∗
[
a00 + a10k

′
z + a20

(
2k′2

z − k′2
x − k′2

y

)/
2

+
√

2a11k
′
x

]
. (22)

In Eq. (22) k′
x , k′

y , and k′
z are the components of the momentum

of the ejected electron in which the z′ axis is taken parallel to
the momentum transfer vector and the x ′ axis is in the scattering
plane.

Using Eq. (22) it can be seen that the vortex line where both
Re[T CB1

k,1s ] = 0 and Im[T CB1
k,1s ] = 0 is an even function of k′

y and
the vortex line is symmetric with respect to the scattering
plane. We note in connection with Eq, (22) that Feagin [11]
recently developed a threshold-like analytic expression for the
scattering amplitude using cylindrical partial waves for the two
outgoing electrons about the vortex.

IV. SUMMARY

Using the CB1 approximation, we show that there is a
vortex in the velocity field for K-shell ionization of carbon by
electron impact for the kinematic conditions Ei = 1801.2 eV,
θf = 4◦, Ek = 5.5 eV, and θk = 239◦. These kinematics are
close to the conditions where a minimum was found in
experiments [62] and in earlier calculations [28]. For this
process, we give a plot of the nodal lines of Re[T CB1

k,1s ] = 0
and Im[T CB1

k,1s ] = 0 showing the point where they cross, a plot
of the velocity field associated with T CB1

k,1s showing that the
velocity field circulates around the point where Re[T CB1

k,1s ] =
Im[T CB1

k,1s ] = 0, and verification that circulation along a closed
contour encircling this point cross gives 2π . Our work verifies
that there is a vortex in the velocity field associated with the
T-matrix element for electron ionization. We also determine a
segment of the vortex line for the kinematics Ei = 1801.2 eV
and θf = 4◦. The line starts off perpendicular to the scattering
plane due to reflection symmetry. Furthermore, we give a
detailed analysis of the partial-wave expansion of the CB1
ionization T-matrix element for the kinematics of the vortex
and demonstrate the importance of the m = ±1 dipole
components in producing the zero in T CB1

k,1s .
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APPENDIX: A MULTIPOLE EXPANSION OF THE BORN
IONIZATION T-MATRIX ELEMENT

We give the B1 approximation to the ionization T-matrix
element and its components in a multipole expansion. These
were given in Ref. [28], but there appears to be some mistakes
there.

The B1 approximation to the T-matrix element is given
by [28]

T B1
f i = 〈�K f

(r)ψ−
k (r ′)

∣∣∣∣ 1

|r − r ′|
∣∣∣∣ϕi(r ′)�K i

(r)〉, (A1)

where �K i
(r) and �K f

(r) are the plane waves for the
incident electron and the scattered electron normalized to the
momentum scale. The integration with respect to r , where r
is the position vector of the incident (scattered) electron, can
easily be performed, allowing T B1

f i to be written as

T B1
f i = 4π

(2π )3K2
〈ψ−

k (r ′)|ei K ·r ′
ϕi(r ′)〉, (A2)

where K = K i − K f is the momentum transfer vector.
Equation (A2) is in agreement with Eq. (B1) of Botero and
Macek [28]. Taking ϕi(r ′) for the inner 1s electron of carbon
to be a ground-state hydrogenic wave function and using the
function Iab given in Ref. [39] enables the B1 T-matrix element
to be expressed as

T B1
f i = − 1

(2π )3

4π

K2
(N−

k )∗
Z3/2

√
π

∂

∂x
I0c

∣∣∣∣
x=ZT

, (A3)

where

I0c=
∫

ei(K−k′)·r e−xr

r
1F1[c,1; i(k′r + k′ · r)]d r = 4πCc−1

Ac
,

(A4)

in which C = x2 + (K − k′)2 and A = (x − ik′)2 + K2.
Equation (A3) contains an extra factor of −(2π )−3/2 compared
to Eq. (B2) in Ref. [28].

In the B1 approximation, only the m = 0 multipole compo-
nents of the expansion of the T-matrix element Eq. (16), where
the z′ axis is taken parallel to K , are nonzero. They are given
by

T B1

 = (2π )

√
2
 + 1

4π

∫ 1

−1
Tf iP
(y)dy, (A5)

where y = cos θ . Using Eq. (A3) in Eq. (A5) gives, for the B1
m = 0 multipole components,

T B1

 = − 4(N−

k )∗Z5/2
√

2
 + 1

πK2[(Z − ik)2 + K2]c

×
[

(c − 1)f
(c − 2) − (c + 1)

[(Z − ik)2 + K2]
f
(c − 1))

]
,

(A6)

where f
(γ ), defined in Eq. (B5) in Ref. [28], is

f
(γ ) =
∫ 1

−1
(Z2 + q2 + k2 − 2qky)γ P
(y)dy. (A7)

Equation (A6) for T PBA

 corrects for mistakes found in

Eqs. (64) and (B4) in Ref. [28].
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Following the procedure given in Ref. [28], i.e., using Rodrigue’s formula for the Legendre polynomial and integration by
parts 
 times, gives

f
(γ ) = 
!�[1 + γ ]2
+1(Z2 + (K − k)2)γ−
(−2kK)


(2
 + 1)!�[1 + γ − 
]
2F1

[

 + 1,
 − γ ; 2
 + 2,

−4kK

Z2 + (K − k)2

]
. (A8)

This equation corrects mistakes in Eqs. (65) and (B5) in Ref. [28].
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