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We analyze a transfer ionization (TI) reaction in the fast proton-helium collision H+ + He → H0 + He2++ e−

by solving a time-dependent Schrödinger equation (TDSE) under the classical projectile motion approximation
in one-dimensional kinematics. In addition, we construct various time-independent analogs of our model using
lowest-order perturbation theory in the form of the Born series. By comparing various aspects of the TDSE
and the Born series calculations, we conclude that the recent discrepancies of experimental and theoretical data
may be attributed to deficiency of the Born models used by other authors. We demonstrate that the correct Born
series for TI should include the momentum-space overlap between the double-ionization amplitude and the wave
function of the transferred electron.
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I. INTRODUCTION

The transfer ionization (TI) reaction in a fast proton-
helium collision H+ + He → H0 + He2+ + e− has been stud-
ied thoroughly, both experimentally and theoretically, over
several decades. The initial studies have been performed by
coincident detection of various reaction fragments [1,2]. The
first systematic observation of the fully differential momentum
distribution of the ejected electron [3] revealed the potential of
this reaction to examine radial and angular correlations in the
helium-atom ground state. This potential was further explored
in Refs. [4,5]. Several reaction mechanisms were identified by
studying the recoil-ion momentum distribution [6]. Later on,
the experimental setup was improved to detect the complete
three-particle coincidence H − He2+ − e− and to map three-
dimensional ejected electron momentum distributions [7–9].
Along with proton-helium collisions, heavier ions were also
used as projectiles [10,11].

On the theoretical side, various calculations were performed
employing the lowest-order perturbation theory in the form of
the Born series. The initial first Born results [9,12] confirmed
that the fully differential cross sections for TI were indeed a
sensitive probe of the ground-state correlation in the helium-
atom ground state. By employing ground-state wave functions
of various levels of sophistication, better or worse agreement
with the experiment could be achieved. A more detailed
comparison with experimental data, in the form of the fully
differential cross sections, was not possible at the time. Indeed,
in the earlier experiments [3,4], the momentum distribution
of the ionized electron was derived from the momentum
and energy conservation with other collision partners, but
not directly measured as in the latest experiments [7,8].
Nevertheless, the authors of Ref. [12] continued their quest
and included the second Born corrections into their model in
the form of the closure term [13]. Improvement to the first
Born results was marginal in terms of their agreement with the
experimental data.

A similar first Born model of another group of authors [14]
was used to interpret three-dimensional electron-momentum

distributions in a series of joint experimental and theoretical
works [7,8]. Similarly to the initial studies by Godunov et al.
[9,12,13], a strong sensitivity of the calculated results was
demonstrated to the quality of the helium-atom ground-state
wave function. However, agreement with the experimental data
was qualitative at best. It was hoped that extension of the
theoretical model to the second Born treatment would have
improved this agreement. However, such an extension reported
earlier [13] was not very efficient. General utility of the second
Born corrections is discussed in Ref. [15].

In their perturbative treatment, both groups of authors
identified three terms in the first Born amplitude of the TI
reaction. These terms can be associated with various terms of
the interaction potential Vp1 + Vp2 + VNp when this amplitude
is expressed in its prior form. This potential describes the
interaction of the projectile proton with the two target electrons
and the nucleus.

The first term, associated with Vp1 and denoted by A1 in
Refs.[7,8,14] or termed “transfer first” in Refs. [9,12,13], is
shown to be identical to the Oppenheimer, Brinkmann, and
Kramers (OBK) amplitude and describes the collision between
the target electron labeled 1 and the proton followed by the
capture of this electron by the projectile. The second electron,
labeled 2, is released due to rearrangement in the helium
atom, known as the shakeoff (SO) process. In principle, in
the e − H+ interaction can be factored out from the OBK term
A1 [7]. The remaining SO amplitude provides a simplified
theoretical treatment of TI that was applied in Refs. [4,5].
The second term, associated with Vp2 and denoted by A2 or
termed as “ionization first,” describes the process in which
the proton knocks off a target electron 1 into the continuum,
followed by capturing the remaining electron 2 from the helium
atom. The third term, associated with VpN and denoted by A3

represents an initial interaction between the projectile and the
helium nucleus followed by the electron capture. Similarly
to A1, the second electron is also released due to the sudden
rearrangement in the helium ion.

Unlike the other authors, Voitkiv et al. [16–18] expressed
the first Born amplitude in the post form which contained a
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different interaction potential VN1 + Vp2 + V12 + VNp . They
identified an additional electron-electron Auger mechanism
of TI associated with the term V12. In this mechanism, the
electron to be transferred rids itself of the excess energy not
via the coupling to the radiation field, as in the radiative
capture process, but by interaction with the other electron.
Inclusion of this mechanism improved significantly agreement
with experimental data [10] even though some quantitative
discrepancies remained. In their comment on Voitkiv and Ma
[18], Popov et al. [19] argued that since both the prior and
post forms of the first Born amplitude should be identical, the
newly discovered electron-electron Auger mechanism was, in
fact, contained in the long-known OBK amplitude. In their
reply, Voitkiv and Ma [20] retorted this argument by pointing
to the shortcomings of the OBK approximation.

Outside the first Born treatment lies the process of repeated
interaction of the projectile with the target in which both
the target electrons are ejected in sequence. This sequential
process is known in the electron-impact ionization and double
photoionization as the two-step-2 process [21]. For the purpose
of this study we will call it binary encounter (BE). The
signatures of the SO and BE processes in TI can be found
in the momentum distribution of the ejected electron. In the
BE process, the ejected electron flies predominantly in the
forward direction (in the direction of the projectile), due to
the momentum transferred from the projectile. In the SO
process, the emitted electron flies predominantly backwards
because the instantaneous momenta of an electron pair in
the helium-atom ground state are aligned in the opposite
directions. The SO process is contained in the first Born
amplitude while the BE process can be only accommodated
by further terms in the Born series. At small velocities
of the projectile, the BE mechanism dominates, whereas
at large velocities it is the SO mechanism that becomes
dominant.

When the Born series calculations cannot reproduce the
experimental data on a quantitative level, an additional insight
into the TI reaction can be gained by a nonperturbative
approach based on solving the time-dependent Schrödinger
equation (TDSE). For a four-body Coulomb problem such as
TI, the TDSE cannot be solved in its full dimensionality and
additional approximations should be made. In the experiments
[3,7,8], the projectile proton had the velocity vp � 5 a.u.
and the momentum pp � 104 a.u. This corresponds to the
wavelength λp ∼ 10−3 a.u. which is much less than the atom
size. Due to this fact and because of a small relative change of
the projectile velocity, the classical projectile motion approxi-
mation (CPA) should be sufficiently accurate. The TI reaction
in this approximation is described by a six-dimensional TDSE
which can be solved, in principle, using modern computational
facilities. Nevertheless, for the purpose of this work, we further
simplify the problem and restrict the motion of all the particles
to one dimension (1D). We compare results of thus restricted
TDSE calculation with various perturbative Born calculations,
also reduced to 1D. By analyzing various aspects of the
TDSE and the Born series calculations, we conclude that the
recent discrepancies of experimental and theoretical data may
be explained by deficiency of theoretical approach used by
other authors. We demonstrate that the correct Born series for
TI should include the momentum-space overlap between the

ionization amplitude and the wave function of the transferred
electron.

II. THEORETICAL MODEL

Within the scope of the CPA, the full-dimensional TDSE
takes the form

i
∂�(r1,r2,t)

∂t

=
[
Ĥ0 − 1

|r1 − R(t)| − 1

|r2 − R(t)|
]
�(r1,r2,t), (1)

with the initial condition

�(r1,r2,t0) = �0(r1,r2) exp(−iE0t0); t0 → −∞. (2)

Here, R(t) = (b,0,vpt) is a current position of a proton, b

is an impact parameter, �0(r1,r2) is the target ground-state
function, and Ĥ0 is target Hamiltonian, which for the helium
atom has the form

Ĥ0 = −1

2
∇2

1 − 1

2
∇2

2 − 1

r1
− 1

r2
+ 1

|r2 − r1| . (3)

For a one-dimensional kinematics, Eq. (1) is reduced to two-
dimensional TDSE

i
∂ψ(x1,x2,t)

∂t

= [Ĥ0 + U1(x1 − vpt) + U1(x2 − vpt)]ψ(x1,x2,t) (4)

with the initial condition

ψ(x1,x2,t0) = ϕ0(x1,x2) exp(−iE0t0); t0 → −∞ (5)

and the Hamiltonian

Ĥ0 = −1

2

∂2

∂x2
1

− 1

2

∂2

∂x2
2

+ U2(x1) + U2(x2)

+U−1(x2 − x1). (6)

Here, the effective potentials UZ(x → ±∞) = −Z/|x| is
taken in the form of a shifted Coulomb potential

UZ(x) = − Z

|x| + |Z|−1
. (7)

With this potential, the hydrogenlike ion is described by a 1D
equation [

−1

2

∂2

∂x2
+ UZ(x)

]
ϕZ

n (x) = εZ
n ϕZ

n (x) (8)

with the ground-state energy εZ
0 = −Z2/2 being equal to the

ground-state energy of a conventional 3D ion. The ground-state
wave function

ϕZ
0 (x) =

√
2Z

5
(1 + Z|x|) exp(−Z|x|), (9)

when Fourier transformed to the momentum space

ϕZ
0 (x) = 1√

2π

∫ ∞

−∞
uZ

0 (
)ei
xd
 (10)

becomes

uZ
0 (p) = 4√

5πZ

1

[1 + (p/Z)2]2
. (11)
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This only differs by a normalization constant from a conven-
tional ground-state wave function of a hydrogenlike ion in the
momentum space

u100(p) = 2
√

2

πZ3/2

1

[1 + (p/Z)2]2
.

It is a useful property that allows one to maintain the correct
dependence of the TI cross section on vp which is determined
by the momentum-space overlap. The Fourier transform of the
potential (7)

VZ(q) =
∫ ∞

−∞
e−iqξUZ(ξ )dξ

= 2Z

(
sin

∣∣∣∣ q

Z

∣∣∣∣Ssi

∣∣∣∣ q

Z

∣∣∣∣ + cos

∣∣∣∣ q

Z

∣∣∣∣Ci

∣∣∣∣ q

Z

∣∣∣∣
)

(12)

can be expressed via the cosine integral Ci (x) and the shifted
sine integral Ssi (x).

For better readability, in the text following we will use
the notation εH ≡ ε1

0 for the hydrogen-atom energy, and
ϕH(x) ≡ ϕ1

0(x) and uH(p) ≡ u1
0(p) for the 1D hydrogen-atom

ground-state wave function in coordinate and momentum
space, respectively. The energy and ground-state wave function
of 1D He+ ion (Z = 2) are designated simply as ε0 ≡ εZ

0 ,
ϕ0(x) ≡ ϕZ

0 (x), and u(p) ≡ uZ
0 (p).

The wave function of the electron captured by the projectile
is

ψtr(x,t) = ϕH(x − vpt) exp

[
ivpx − i

(
v2

p

2
+ εH

)
t

]
. (13)

If the second electron is ejected with the momentum k, the
two-electron wave function of the final state can be written as

ψkH(x1,x2,t)

= 1√
2

[ψtr(x1,t)ϕ
(−)
k (x2) + ψtr(x2,t)ϕ

(−)
k (x1)]e−i k2

2 t , (14)

where ϕ
(−)
k (x) is the continuum state function for the ejected

electron with the energy ε = k2/2 in the field of a nucleus
with Z = 2. The amplitude of TI is given by the following
expression:

A(k) = lim
t→∞

∫ ∞

−∞

∫ ∞

−∞
ψ∗

kH(x1,x2,t)ψ(x1,x2,t)dx1dx2. (15)

In the 1D case, the role of differential cross section of TI is
assumed by the probability density

P (1)(k) = dP

dk
= |A(k)|2 . (16)

Using the exchange symmetry of the two-electron wave
function ψ(x2,x1,t) = ψ(x1,x2,t), we can split the integration
in Eq. (15) in two steps. First, we calculate the wave function
of the second electron when the first electron is transferred

χ (x2,t) =
√

2
∫ ∞

−∞
ψ∗

tr(x1,t)ψ(x1,x2,t)dx2 . (17)

Next, we calculate the amplitude of ejection of the second
electron

A(k) = lim
t→∞

∫ ∞

−∞
ϕ

(−)∗
k (x) exp

(
i
k2

2
t

)
χ (x,t)dx . (18)

In the second step, for extraction of the ionization amplitudes
from χ (x2,t), we used the E-SURFF method [22]. Equation (4)
was solved numerically using the simplest three-point finite
difference scheme for evaluation of the space derivatives, and
the split-step method for the time evolution. The target ground-
state function ϕ0(x1,x2) was calculated using the evolution in
the imaginary time providing the ground-state energy E0 =
−3.35 a.u.

To compare the role of the SO and BE processes, we
also performed calculations for the case of zero interelectron
potential. In such a case, the SO is absent and only the BE
contributes to TI. For that reason, we named this approximation
BECPA. In this approximation, Eq. (4) can be split in two
identical equations

i
∂ψ(x,t)

∂t
= [ĥ0 + U1(x − vpt)]ψ(x,t) (19)

with

ĥ0 = −1

2

∂2

∂x2
+ U2(x) (20)

and the initial condition

ψ(x,t0) = ϕ0(x)e−iε0t0 ; t0 → −∞. (21)

The wave function of a nontransferred electron in this
approximation is

χ (x,t) =
√

2Ctr[ψ(x,t) − Ctrψtr(x,t)], (22)

where the transfer amplitude is

Ctr = lim
t→∞

∫ ∞

−∞
ψ∗

tr(x,t)ψ(x,t)dx. (23)

III. RESULTS AND DISCUSSION

The probability density P (1)(k) (16) as a function of the ejected
electron momentum is shown in Fig. 1 for the three selected
proton velocities vp = 3 a.u. (top), 5 a.u. (middle), and 10 a.u.
(bottom). Results of the full CPA and BECPA are shown with
the black solid line and red dashed line, respectively. The
probability density displays two peaks near k = 0 and 2vp.
The origin of the second peak is clear if we consider TI in the
rest frame of the projectile. In this frame, the initial electron
wave packet is scattered on the proton and part of it is reflected
back. This reflected part of the wavepacket has velocity 2vp

in the laboratory frame. The peak near k = 0 is split by the
kinematic node at k = 0. This node is a characteristic feature
for 1D systems with attractive potentials.

The most essential feature of the experimental differential
cross sections reported by Schöffler et al. [7,8] is the shift of the
maximum of the ejected electron momentum distribution in the
direction opposite to the projectile motion. In the meantime,
the first Born cross sections, reported in the same works,
display the main peak which is largely centered around the
zero momentum.

It is clearly seen in Fig. 1 that the CPA results demonstrate
the same backward shift of the main peak, except for the case
of the smallest vp = 3 a.u. The BECPA results demonstrate the
forward shift for all vp. It is easy to explain this behavior by
the following qualitative arguments. In the BE process, both
the electrons are pushed by projectile, and ionization occurs
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FIG. 1. (Color online) The TI probability density P (1)(k) as a
function of the ejected electron momentum for the proton velocities
vp = 3 a.u. (top), 5 a.u. (middle), and 10 a.u. (bottom). Various
calculations are displayed with the following line styles: the full CPA
(black solid line), the BECPA (red dashed line), and the PWFBA
(green dotted line).

irrespective of transfer. Since the momentum transferred from
the projectile is directed forward, the main peak in the ioniza-
tion probability is also shifted forward. In the SO process, the
second electron is preferably ejected in the direction opposite
to the first electron motion which is captured by projectile. The
resulting preferable ejection direction depends on the relative
weighting of the BE and SO process. Since the SO appears

FIG. 2. (Color online) The TI probability P (top) and the mean
momentum of ejected electrons 〈k〉 (bottom) as functions of the
projectile velocity vp . Various calculations are shown as CPA (black
solid line), BECPA (red dashed line), and PWFBA (green dotted line).

in the first term of the Born series over the projectile-target
interaction, and the BE can only be accommodated by the
second and further terms, the SO is dominant at larger vp,
where the ejected electron should be emitted preferentially in
the direction opposite to the projectile motion.

To compare the relative contributions of the BE and SO pro-
cesses and the direction of the preferred emission of the ejected
electron depending on vp, we calculated the total probability
of TI and the mean momentum of the ejected electron

P =
∫ ∞

−∞
P (1)(k)dk, (24)

〈k〉 = 1

P

∫ ∞

−∞
kP (1)(k)dk. (25)

By comparing the CPA and BECPA results shown in Fig. 2,
it is clearly seen the the BE is dominant at vp < 4 while
for larger vp it is the SO that dominates. In about the same
momentum range, the mean momentum 〈k〉 changes its
sign. At larger vp, the mean momentum becomes large and
negative. This indicates that the present CPA results are
consistent with the experimental observations. One may
suggest that in the first Born approximation (FBA), this
preferred backward emission would be even more prominent
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feature. However, the plane-wave first Born approximation
(PWFBA) [14] strongly overestimates forward emission.

This implies that the deviations of the PWFBA calculations
from the experiment [7,8] may be attributed to the shortcom-
ings of this specific implementation.

A. Plane-wave first Born approximation

Let us construct a 1D analog of the PWFBA. In this
approximation, the transitional amplitude takes the form

A(k) = 〈pHf |U1(x1 − xp) + U1(x2 − xp) − 2U1(xp)|pp0〉,
(26)

where the initial-state wave function

〈x1,x2,xp|pp0〉 = 1√
vp

eippxpϕ0(x1,x2), (27)

where pp = mvp is the initial proton momentum, m is the
proton mass. Following [14], we express the final-state wave
function in its asymptotic form

〈x1,x2,xp|pHf 〉

= 1√
2vH

eipf xp [eivH x1ϕH(x1 − xp)ϕ(−)
k (x2)

+ eivH x2ϕH(x2 − xp)ϕ(−)
k (x1)]. (28)

Here, vH is the velocity of the neutral hydrogen atom,
pf = mvH is the proton momentum in the final state. The
continuum-state wave functions are normalized by the 1D
factors v

−1/2
p and v

−1/2
H . The continuum normalization for

various dimensionality is addressed in Ref. [23].
The momentum transfer from the projectile to the target

can be expressed as

q = pp − pf � 1

vp

[
v2

p

2
+ εH + k2

2
− E0

]
. (29)

Similarly to [14], we introduce the momentum difference of
the proton projectile and the neutral hydrogen atom

Q = pH − pp = (m + 1)vH − mvp = vH − q. (30)

We note that in Ref. [14] this quantity is denoted by q which
is reserved in this work to q = vH − Q. Following the cited
paper, we split Eq. (26) into the three distinct terms and express
them by using the Fourier transform of the functions ϕ∗

H(x −
xp) and U1(x):

A1(k) =
√

2

+∞∫∫∫
−∞

dx1dx2dxpeiqxp−ivH x1

×ϕ∗
H(x1 − xp)ϕ(−)∗

k (x2)U1(x1 − xp)ϕ0(x1,x2)

=
∫ ∞

−∞
u∗

H(
)V1(q − 
)Ik(vH − q,0)d
, (31)

A2(k) =
√

2

+∞∫∫∫
−∞

dx1dx2dxpeiqxp−ivH x1

×ϕ∗
H(x1 − xp)ϕ(−)∗

k (x2)U1(x2 − xp)ϕ0(x1,x2)

=
∫ ∞

−∞
u∗

H(
)V1(q−
)Ik(vH−
,−q + 
)d
, (32)

A3(k) = −2
√

2

+∞∫∫∫
−∞

dx1dx2dxpeiqxp−ivH x1

×ϕ∗
H(x1 − xp)ϕ(−)∗

k (x2)U1(xp)ϕ0(x1,x2)

= −2
∫ ∞

−∞
u∗

H(
)V1(q − 
)Ik(vH − 
,0)d
. (33)

Here, we introduced the notation

Ik(κ1,κ2) =
√

2

(2π )1/2

∫ ∞

−∞
ϕ

(−)∗
k (x2)e−iκ2x2

×
[∫ ∞

−∞
e−iκ1x1ϕ0(x1,x2)dx1

]
dx2. (34)

Finally, Eq. (26) takes the form

A(k) = 1√
vpvH

∫ ∞

−∞
d
 u∗

H(
)V1(vH − Q − 
)

× [Ik(Q,0) + Ik(vH − 
,−vH + Q + 
)

− 2Ik(vH − 
,0)], (35)

which, apart from notations, coincides with Eq. (2) of Houamer
et al. [14].

In Fig. 1, we display the probability density calculated with
the PWFBA. It is clear that this calculation deviates strongly
from the nonperturbative CPA calculation. In the PWFBA, the
probability density displays a peak at k > 0 which overshoots
strongly the CPA peak, both by the magnitude and the width.
As is seen on the bottom panel of Fig. 2, this overestimation
leads to the mean momentum 〈k〉 > 0 even at large vp. Hence,
the 1D implementation of the PWFBA displays the same
characteristic feature as the original implementation used in
Refs. [7,8].

In order to elucidate the origin of this behavior, we express
the PWFBA amplitude neglecting the interelectron interaction.
In this case, ϕ0(x1,x2) = ϕ0(x1)ϕ0(x2) and

Ik(κ1,κ2) =
√

2

(2π )1/2

∫ ∞

−∞
ϕ

(−)∗
k (x2)e−iκ2x2ϕ0(x2)dx2

×
∫ ∞

−∞
e−iκ1x1ϕ0(x1)dx1

=
√

2u0(κ1)Ik(κ2),

where

Ik(κ) =
∫ ∞

−∞
ϕ

(−)∗
k (x)e−iκxϕ0(x)dx.

Then, Eq. (36) takes the form

A(k) =
√

2√
vpvH

∫ ∞

−∞
u∗

H(
 − vH )V1(
 − Q)

× [u0(Q)Ik(0) + u0(
)Ik(Q − 
) − 2u0(
)Ik(0)]d
.

Since Ik(0) = 0, the only second term survives under the
integral sign, i.e.,

A(k) = A2(k)

=
√

2√
vpvH

∫ ∞

−∞
u∗

H(
−vH )V1(
−Q)Ik(Q−
)u0(
)d
.
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The authors of Refs. [7,8,14] claim that this term is responsible
for the BE process. However, BE should be zero in the FBA.
The projectile can only act on one of the target electrons and
the second electron makes no transition in the absence of the
interelectron interaction. The reason why the term A2 is not
zero becomes clear if we write it in its original form as the
coordinate integral

A2(k) =
√

2
∫ ∞

−∞
dxpeiqxp

∫ ∞

−∞
dx1e

−ivH x1ϕ∗
H(x1 − xp)ϕ0(x1)

×
∫ ∞

−∞
ϕ

(−)∗
k (x2)U1(x2 − xp)ϕ0(x2)dx2.

One can see that the projectile interaction causes ionization
(the integral over x2) and the transfer takes place due to the
nonorthogonality of the initial- and final-state wave functions

〈ϕ0(x)| eivH xϕH(x − xp)〉 �= 0.

Thus A2 is the artifact of the approximation employed in
[7,8,14].

Note that the term A3 appears due to proton-nucleus
interaction. In CPA, the proton-nucleus potential only adds
an overall time-dependent phase factor to the wave function,
and thus is unable to produce change of the electronic
state. In the Jackson-Schiff (JS) theory of a related process
of simple transfer, an introduction of the proton-nucleus
potential compensates a spurious term appearing due to the
nonorthogonality of the initial and final states [24,25]. For
transfer ionization, A3 plays an analogous role, but it does not
provide the full compensation.

It is possible to eliminate the spurious electron transfer
by orthogonalizing the single-particle initial and captured
electron states. For this purpose, in Eqs. (31), (32), and (33)
one shall replace ϕ0(x1,x2) by

ϕ̃0(x1,x2,xp) ≡ ϕ0(x1,x2) − 〈eivH x1ϕH(x1 − xp)|ϕ0(x1,x2)〉
× eivH x1ϕH(x1 − xp). (36)

It is easy to see that A2 ≡ 0 and A3 ≡ 0 after this replacement.
However, this operation does not assure that A1 gives the
correct result.

B. Other theoretical models of TI in 1D

For further insight, we examine pure ionization and pure
transfer separately for single electron. The FBA amplitude of
ionization can be expressed as

ASI1B(k) = 〈pf k|U1(x − xp)|pp0〉
= 1√

vpvf

〈k| exp(iqx)|0〉V1(q)

= 1√
vpvf

V1(q)Ik(−q), (37)

where the momentum transfer is q = pp − pf �
(k2/2 − ε0)/vp and the initial- and final-state wave functions
take the form

〈x,xp|pp0〉 = 1√
vp

eippxpϕ0(x); (38)

〈x,xp|pf k〉 = 1√
vf

eipf xpϕ
(−)
k (x). (39)

FIG. 3. (Color online) Ionization probability density P (1)(k) as
a function of the momentum of the ejected electron for the proton
velocities vp = 3 a.u. (top), 5 a.u. (middle), and 10 a.u. (bottom). The
following calculations are shown: CPA (black solid line) and FBA
(red dashed line).

One can see from Fig. 3 that the FBA and CPA results are
quite close except for the electron momenta k ≈ vp where the
FBA overshoots CPA rather strongly. For these momenta, the
electrons are captured by the protons quite efficiently which
is not accounted by FBA.
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FIG. 4. (Color online) Transfer probability as a function of the
proton velocity vp: CPA (black solid line), OBK (red dashed line),
JSB (green dotted line), TSI (blue dotted-dashed line).

Now let us consider capture. The OBK amplitude in 1D
kinematics has the form

COBK = 〈pf f |U1(x − xp)|pp0〉
= 1√

vpvH

u0(vH − q)
∫ ∞

−∞
u∗

H(η − q)V1(η)dη, (40)

where the momentum transfer q � (v2
p/2 + εH − ε0)/vp, and

the final-state wave function describes the hydrogen atom
flying away with the velocity vH :

〈x,xp|pHf 〉 = 1√
vH

eipf xp+ivH xϕH(x − xp). (41)

It is seen from Fig. 4 that the OBK overshoots CPA quite
considerably. Now let us check if we can improve the OBK
result by a simple orthogonalization of the initial- and final-
state wave functions

〈x,xp|fO〉 = eivH xϕH(x − xp)

−〈ϕ0(x)| eivH xϕH(x − xp)〉ϕ0(x). (42)

It is easy to show that the orthogonalization is equivalent
to the OBK formula with the original nonorthogonalized wave
functions modified by a perturbation potential

CJSB = 〈pf f |U1(x − xp) − Ū1(xp)|pp0〉, (43)

where the balancing potential

Ū1(xp) = 〈0|U1(x − xp)|0〉. (44)

The balancing potential Ū1(xp) ≈ U1(xp), where −U1(xp)
can be considered as proton-nucleus potential. Hence, for
transfer from the neutral hydrogen, Eq. (43) is close to the JS
approximation. Here, we consider transfer from the helium ion,
and a formal application of the JS approximation for this case
gives a perturbation potential U1(x − xp) − U2(xp). But, Bates
[24,25] and, lately, Lin et al. [26] have shown that advantage
of JS over OBK lie in the fact that the nuclear potential
compensates a spurious term from the nonorthogonality of
the initial-and final-state functions. The balancing potential
should be used instead of the nuclear potential in a general case
[26]. For these reasons, the approach given by Eq. (43) can be

considered as an improved JS approximation, and we named it
as Jackson-Schiff-Bates (JSB) approximation. It is clear from
Fig. 4 that the OBK and JSB results differ only at small vp, but
at large vp both calculations significantly overshoot the CPA.

Now, let us tackle the problem from another side. Suppose
that an ionization takes place and the ejected electron is then
captured whose momentum distribution coincides with the
momentum-space components of the electron bound to the
proton. In this case, the transfer amplitude will be equal to
the overlap integral

CtrSI =
∫ ∞

−∞
u∗

H(k − vH )ASI1B(k)dk. (45)

We call this approach the transfer via single ionization (TSI)
in the first Born approximation. By inspecting Fig. 4, one
can conclude that the TSI and CPA results are practically
coincident at large vp.

In the time-dependent formalism, the TSI is equivalent to
solving the following TDSE:

i
∂ψ1(x,t)

∂t
= ĥ0ψ1(x,t) + U1(x − vpt)ϕ0(x)e−iε0t (46)

and subsequent projection of the solution ψ1(x,t) to the
function

ψ̃tr(x,t) =
∫ ∞

−∞
uH(k − vH )ϕ(−)

k (x) exp

(
−i

k2

2
t

)
dk (47)

instead of the function (13). Since the proton potential in
Eq. (46) acts solely as a perturbation, the bound state of the
proton and electron cannot be described by this equation.
The function (47) describes the outgoing wavepacket, but
unlike Eq. (13) it is a solution of Eq. (46) at t → ∞. More
broadly, the major difference of TSI and OBK/JS is that the
Born matrix element is calculated in the former between the
eigenfunctions of the same Hamiltonian ĥ0, whereas in the
latter these functions belong to different Hamiltonians.

C. Transfer ionization via double ionization

Similar to TSI for simple transfer, we develop a method
to calculate TI via double ionization (TIDI). The double-
ionization amplitude in the FBA has the form

ADI1B(k1,k2) = 〈pf k1k2|U1(x1 − xp) + U1(x2 − xp)|pp0〉,
(48)

where the initial- and final-state wave functions

〈x1,x2,xp|pp0〉 = 1√
vp

eippxpϕ0(x1,x2); (49)

〈x1,x2,xp|pf k1k2〉 = 1√
vf

eipf xpϕ
(−)
k1k2

(x1,x2). (50)

After integration over xp we obtain

ADI1B(k1,k2) = 1√
vpvf

〈k1k2| exp(iqx1)

+ exp(iqx2)|0〉V1(q), (51)

where the momentum transfer

q = pp − pf � 1

vp

(
k2

1

2
+ k2

2

2
− E0

)
. (52)
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FIG. 5. (Color online) TI probability density P (1)(k) as a function
of the momentum of the transferred electron for the proton velocities
vp = 3 a.u. (top), 5 a.u. (middle), and 10 a.u. (bottom). Various
calculations are shown as CPA (black solid line), TIDI (red dotted
line), TIDIU (green dashed line).

The TI amplitude is calculated as

AtrDI(k) =
√

2
∫ ∞

−∞
u∗

H(k1 − vH )ADI1B(k1,k)dk1. (53)

From Fig. 5 it is obvious that at large vp and small k the TIDI
and CPA results are practically coincident. And from Fig. 6
it is clear that both the total TI probability P and the mean
elected electron momentum 〈k〉, are also very close between

FIG. 6. (Color online) The total TI probability P (top) and the
mean momentum of ejected electron 〈k〉 (bottom) as functions of vp .
Various calculations are shown as CPA (black solid line), TIDI (red
dotted line), TIDIU (green dashed line), BECPA (blue dashed-dotted
line).

the TIDI and CPA in the whole region of dominance of the
SO. On the top panel of Fig. 6, the crossover between the BE
and SO mechanisms is seen most graphically: at vp < 4 the
CPA curves is close to that of the BECPA, whereas at vp > 4
to that of the TIDI.

From Fig. 5 one can observe that for large k, the difference
between TIDI and CPA is much more prominent. This is
explained by a large contribution of the BE process to TI
at large k even at large vp. By comparing the bottom panels
of Figs. 1 and 5, one can discern some interesting details
explaining the origin of a double peak near k = 2vp. As we
mentioned before, this peak appears due to the reflection of the
ejected electrons by the proton potential. It is clearly seen on
the bottom panel of Fig. 1 the first half of this peak (at lower
momenta) is due to the BE process, and from the bottom panel
of Fig. 5 it is clear that the second half (at larger momenta) is
due to the SO. In the latter case, the sequence events giving
rise to TI are the following. First, the impinging proton reflects
the electron which flies away with the velocity k = 2vp, then
the second electron, emitted due to the SO, is captured by the
proton.

In 3D kinematics, TI can proceed via the nuclear or electron
Thomas processes [27]. In these processes, the electron
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scattered by the proton acquires a velocity vp or
√

2vp and,
then, in the secondary scattering from, respectively, the nucleus
or the second electron, receives a velocity vp to be captured
by the proton. The Thomas processes are not possible in
1D kinematics because the electron scattered on the proton
acquires either zero or 2vp velocity in this case.

To pinpoint the role of interelectron interaction in the final
state, we also performed calculations with uncorrelated wave
functions of the two-electron continuum orthogonalized to the
initial state

ϕ̃
(−)
k1k2

(x1,x2) = χ
(−)
k1k2

(x1,x2) − 〈
χ

(−)
k1k2

∣∣0〉
ϕ0(x1,x2), (54)

where

χ
(−)
k1k2

(x1,x2)= 1√
2

[
ϕ

(−)
k1

(x1)ϕ(−)
k2

(x2) + ϕ
(−)
k2

(x1)ϕ(−)
k1

(x2)
]
. (55)

This approximation is labeled as TIDIU.
From Fig. 6, it is clear that the TIDIU overestimates

significantly the value of P . The mean momentum 〈k〉 is rather
close to the exact solution, only slightly overestimated in the
negative region. It is seen in Fig. 5 that overestimated P is due
to a strong growth of the peak at small k < 0, whereas at small
k > 0 the TIDIU calculation is close to both the TIDI and
CPA. Thus, we can conclude that the interelectron correlation
in the final state suppresses partially the backward emission
and works out of sync with the correlation in the initial state.

IV. CONCLUSION

We have performed time-dependent calculations of transfer
ionization in the fast proton scattering on the helium atom.
We solved a time-dependent Schrödinger equation under the
classical projectile motion approximation in one-dimensional
kinematics. To gain deeper physical insight into specific
mechanisms of the TI reaction, we also performed various
perturbative 1D calculations which mimicked realistic first

Born calculations performed by other authors. We identified
a strong effect of the nonorthogonality of the initial and final
states which may lead to some spurious unphysical terms.
This term may be responsible for poor performance of the
FBA employed by other authors.

Among various approximate perturbative TI schemes,
the most accurate calculation is obtained by overlapping the
double-ionization amplitude with the momentum profile of the
final-state wave function. This indicates that the most probable
scenario of TI involves double ionization and subsequent
capture of those of the ionized electrons which fall into the
attractive potential well of the proton by matching its velocity.

Because both Godunov et al. [9,12,13] and Popov et al.
[7,8,14] employ a very similar formalism based on the Jackson-
Schiff approximation, our remarks on possible flaws of the
FBA concern both groups of authors. But, of course, our
conclusions can only be verified after a full 3D CPA and TIDI
calculations are performed and satisfactory agreement with
experiment is achieved. More broad is the question of using
nonorthogonal initial and final states belonging to different
Hamiltonians in perturbative calculations. This question goes
beyond the scope of this work. The same question was a
matter of discussion in theory of simple transfer much earlier
[24–26,28].

In the future, we intend to extend our 1D model to full
dimensionality under the same classical projectile motion
approximation.
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[2] J. Pálinkás, R. Schuch, H. Cederquist, and O. Gustafsson, Phys.
Rev. Lett. 63, 2464 (1989).

[3] V. Mergel, R. Dörner, K. Khayyat, M. Achler, T. Weber,
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