
PHYSICAL REVIEW A 90, 062516 (2014)

One-loop vacuum polarization at mα7 order for the two-center problem
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We present calculations of the one-loop vacuum polarization contribution (Uehling potential) for the two-center
problem in the nonrelativistic quantum electrodynamics formalism. The cases of hydrogen molecular ions
(Z1 = Z2 = 1) and antiprotonic helium (Z1 = 2, Z2 = −1) are considered. Numerical results for the vacuum
polarization contribution at mα7 order for the fundamental transitions (v = 0,L = 0) → (v′ = 1,L′ = 0) in H2

+

and HD+ are presented.
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I. INTRODUCTION

In Refs. [1,2] a complete set of mα7-order contributions
has been evaluated for the fundamental transitions of the
hydrogen molecular ions H2

+ and HD+ as well as for two-
photon transitions of antiprotonic helium. All calculations
at this order were performed in the nonrecoil limit by
evaluating the one-electron QED corrections in the two-center
approximation. The only exception is the Uehling potential
vacuum polarization contribution [3], which was computed
with a lower level of accuracy. Following the notations of
Eq. (46) in Ref. [4], the Uehling correction at mα7 order for a
two-center system can be written as

�E(7)
vp = α5

π

[
V61 ln(Zα)−2 + G

(1)
VP(R)

]〈Vδ〉, (1)

where R is the internuclear distance and

Vδ(r) = π
[
Z3

1δ(r1) + Z3
2δ(r2)

]
. (2)

The V61 coefficient is known analytically, while the nonloga-
rithmic term was calculated in [1,2] in the linear combination
of atomic orbitals (LCAO) approximation using the hydrogen-
atom ground-state value of G

(1)
VP. In this work we present a

complete account of the vacuum polarization contribution in
the two-Coulomb-center approximation.

We utilize the formalism of nonrelativistic quantum elec-
trodynamics (NRQED); a similar approach has been used
in [5] (see Sec. II B of that paper) for pionic hydrogen.
We start from the nonrelativistic wave function and then
obtain contributions due to the relativistic corrections to the
electron wave function and modification of the Coulomb vertex
function. This approach is first illustrated by calculating the
Uehling potential energy shift for S states of the hydrogen
atom in Sec. II.

Section III extends the formalism to the two-center case,
and the G

(1)
VP(R) function is calculated. More precisely, the cal-

culated terms include all higher-order contributions generated
by the Uehling potential and leading relativistic corrections.
Final results for the fundamental transitions in the H2

+ and
HD+ ions are presented and discussed in Sec. IV.

We use atomic units throughout.

II. HYDROGEN ATOM

In the NRQED formalism, the zero-order approximation is
the nonrelativistic (Schrödinger) wave function �0 with Pauli
spinors, defined by

(H0 − E0)�0 = 0, H0 = p2

2
+ V, V = −Z

r
. (3)

For higher-order terms the Rayleigh-Schrödinger perturbation
theory is used. If one wants to evaluate the one-loop vacuum
polarization contribution to the bound electron in the external
Coulomb field to the required mα7 order, one needs to
evaluate the first-order contribution, which is the Uehling
potential Uvp(r) [Fig. 1(a)]. The next term is the leading-order
relativistic correction to the wave function of the electron
[Fig. 1(b)], which produces a second-order contribution with
the Breit-Pauli Hamiltonian,

HB = −p4

8
+ 1

8
�V, (4)

as the perturbation. The last term is the vertex function
modification [Fig. 1(c)]. The only contribution at this order to
the vertex with the Coulomb photon interaction is the Darwin
term (see Fig. 3 in [6] or Eq. (7) of [7]).

In atomic units the Uehling potential is expressed as

Uvp(r) = −2

3

Zα

πr

∫ ∞

1
dt e− 2r

α
t

(
1

t2
+ 1

2t4

)
(t2 − 1)1/2. (5)

Evaluation of the first-order correction with the nonrela-
tivistic wave functions of the hydrogen S states is straightfor-
ward and results in the following expression:

�Ea
vp = 〈nl|Uvp|nl〉 = α(Zα)4

πn3

[
− 4

15
+ 5π

48
(Zα)

− 2

7

(
1 + 1

5n2

)
(Zα)2 + π

768

(
49 + 35

n2

)
(Zα)3

+ · · ·
]
. (6)
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FIG. 1. Feynman diagrams for the one-loop vacuum polarization
NRQED contributions.

The second-order term, determined by the diagram in
Fig. 1(b), has the form

�Eb
vp = 2〈(HB − 〈HB〉)(E0 − H )−1(Uvp − 〈Uvp〉)〉 (7)

and may be evaluated using �B = (E0 − H )−1(HB −
〈HB〉)�0. An analytical expression of �B can be found, e.g.,
in [7]. For the S states, one gets

�Eb
vp = α(Zα)4

πn3

{
−3π

16
(Zα) − 2

15

[
ln (Zα)−2 − 2

(
ψ(n + 1) − ψ(1) − ln n + ln 2 − 107

60
− 2

n
+ 5

2n2

)]
(Zα)2

+ 5π

96

[
ln (Zα)−2 − 2

(
ψ(n + 1) − ψ(1) − ln n − ln 2 − 43

60
− 2

n
+ 3

n2

)]
(Zα)3 + · · ·

}
, (8)

where ψ is the logarithmic derivative of the Euler gamma function �(z).
As discussed above, the NRQED effective Hamiltonian at mα(Zα)6 order contains just one contribution determined by the

diagram in Fig. 1(c):

H (7)
vp = 1

8�Uvp. (9)

Using

�

(
e−	r

r

)
= −4πδ(r) + 	2 e−	r

r
,

one gets

H (7)
vp = − 1

12

Zα

π

∫ ∞

1
dt

[
−4πδ(r) + 4t2

α2

e− 2r
α

t

r

] (
1

t2
+ 1

2t4

) (
t2 − 1

)1/2
. (10)

Taking the expectation values of this effective Hamiltonian, one immediately gets for S states

�Ec
vp = 1

8
〈nl|(�Uvp)|nl〉 = α(Zα)4

πn3

[
3π

16
(Zα) − 1

3

(
1 + 1

5n2

)
(Zα)2 + 5π

576

(
7 + 5

n2

)
(Zα)3 + · · ·

]
. (11)

The NRQED contribution, which is determined by the three terms of Fig. 1, should be exact up to mα(Zα)7 order. The sum
of these three contributions for S states gives the final result

�EU = α(Zα)4

πn3

{
− 4

15
+ 5π

48
(Zα) − 2

15
(Zα)2 ln (Zα)−2 + 4

15
(Zα)2

[
ψ(n + 1) − ψ(1) − ln

(n

2

)
− 431

105
− 2

n
+ 57

28n2

]
+ · · ·

− 2

15

[
ln (Zα)−2 − 2

(
ψ(n + 1) − ψ(1) − ln n + ln 2 − 431

105
− 2

n
+ 57

28n2

)]
(Zα)2

+ 5π

96

[
ln (Zα)−2 − 2

(
ψ(n + 1) − ψ(1) − ln n − ln 2 − 153

80
− 2

n
+ 103

48n2

)]
(Zα)3 + · · ·

}
. (12)

The first three lines are in complete agreement with the
combined result of [8,9]. The last line extends the general
expression of �EU by one further order in Zα; for the 1s state
it coincides with the analytical result of [10].

III. TWO-CENTER PROBLEM

Now, we are ready to study two-center systems. The
nonrelativistic Hamiltonian of an electron is then

H0 = p2

2
+ V, V = −Z1

r1
− Z2

r2
. (13)

The energy and wave function of the ground (1sσ ) state will
be denoted by E0 and ψ0, respectively. The Uehling potential
is a sum of interactions with both nuclei:

Uvp(r) = Uvp(r1) + Uvp(r2). (14)

We now want to calculate the contributions corresponding to
Figs. 1(a), 1(b), and 1(c) in the same way as in the previous
section for the hydrogen atom.

The first of these diagrams contains the leading-order
contributions [of orders α(Zα)4 and α(Zα)5], which were
already included in earlier calculations [11]. We are thus
interested in higher-order [α(Zα)6 and above] terms, which
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can be obtained by the following subtraction:

�E(7+)
a = 〈ψ0|Uvp|ψ0〉 − �E(5)

vp − �E(6)
vp

= 〈ψ0|Uvp|ψ0〉 + 4α3

15
〈Z1δ(r1) + Z2δ(r2)〉

− 5α4

48
π

〈
Z2

1δ(r1) + Z2
2δ(r2)

〉
. (15)

As shown in Sec. II, Figs. 1(b) and 1(c) both contain α(Zα)5-
order terms, which cancel each other. Writing �Eb in terms of
the first-order perturbation wave function ψB associated with
the Breit-Pauli Hamiltonian,

�Eb = 2〈ψB |Uvp|ψ0〉, (16)

with

(E0 − H0)ψB = (HB − 〈HB〉)ψ0, (17)

one can see that the α(Zα)5-order term in �Eb comes from the
leading 1/r singularity of ψB . In order to get the contribution
of order α(Zα)6 and above, it is convenient to subtract this
singularity and use the wave function ψ̃B defined by

ψB = ψ̃B + (U1 − 〈U1〉)ψ0, U1 = −V

4
, (18)

which satisfies the following relation [7,12]:

(E0 − H0)ψ̃B = (H ′
B − 〈H ′

B〉)ψ0,

H ′
B = −(E0 − H0)U1 − U1(E0 − H0) + HB.

(19)

One thus obtains

�E
(7+)
b = 2〈ψ̃B |Uvp|ψ0〉 + 1

2 〈V 〉〈ψ0|Uvp|ψ0〉. (20)

Finally, the subtracted term is added to the contribution �Ec,
which is thus redefined as

�E(7+)
c = 1

8 〈ψ0|�Uvp|ψ0〉 − 1
2 〈ψ0|V Uvp|ψ0〉. (21)

Integration by parts and the use of the Schrödinger equation
�ψ0 = 2(V − E0)ψ0 provide the following relationship, in
which the α(Zα)5-order term has been explicitly canceled out:

�E(7+)
c = 1

4
〈ψ0|pUvpp|ψ0〉 − E0

2
〈ψ0|Uvp|ψ0〉. (22)

The final result is

�E
(7+)
U = �E(7+)

a + �E
(7+)
b + �E(7+)

c (23)

and may be put in the form [see Ref. [4], Eq. (46)]

�E
(7+)
U = α5

π

[
V61 ln(α−2) + G

(1)
VP(R)

]〈Vδ〉, (24)

with V61 = −2/15. The logarithmic term comes from the
logarithmic singularity in ψ̃B and should thus be subtracted
from �E

(7)
b :

G
(1)
VP(R) = π�E(7+)

a

/〈Vδ〉 + [
π�E

(7+)
b

/〈Vδ〉 − V61 ln(α−2)
]

+π�E(7+)
c

/〈Vδ〉. (25)

Since the initial NRQED approximation is valid up to and
including mα8 order, the result of Eq. (25) should be accurate
to O(α2).

IV. RESULTS AND CONCLUSION

We calculated all operator mean values appearing in
Eqs. (16), (20), and (22) for the ground (1sσ ) electronic
state of the two-center problem for both Z1 = Z2 = 1 for
application to H2

+ and HD+ and Z1 = 2, Z2 = −1 for
application to antiprotonic helium. The numerical approach
has been described previously (see, e.g., [13]). The following
expansion for the σ electronic wave function is used:

�0(r) =
∞∑
i=1

Cie
−αir1−βir2 . (26)

For Z1 = Z2 the variational wave function should be sym-
metrized,

�0(r1,r2) =
∞∑
i=1

Ci(e
−αir1−βir2 ± e−βir1−αir2 ), (27)

where (+) is used to get a gerade electronic state and (−) is
for an ungerade state. Parameters αi and βi are generated in a
quasirandom manner.

The matrix elements of the Uehling potential in such an
exponential basis set are not known in analytical form, in
contrast to the case of the three-body problem [14]. We thus
resorted to numerical integration for all the terms involving

FIG. 2. Effective potentials G
(1)
VP(R) for (left) the hydrogen molecular ions, Z1 = Z2 = 1, and (right) antiprotonic helium, Z1 = 2, Z2 = −1.
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TABLE I. Results of numerical calculations of the G
(1)
VP contribu-

tion for the ground states of H2
+ and HD+ and the fundamental

transitions (v = 0,L = 0) → (v′ = 1,L′ = 0). A comparison with
previous estimates made in [1] within the LCAO approximation is
presented.

H2
+ HD+

This work LCAO [1] This work LCAO [1]

Ground state (kHz) − 28.35 − 34.73 − 28.38 − 34.93
Transition (kHz) 0.42 0.94 0.37 0.82

Uvp. To that end we used the approximate form of the Uehling
potential presented in [15], which is accurate to at least nine
digits.

Results are shown in Fig. 2. As can be seen, the values
of G

(1)
VP(R) at R → 0 tend to infinity and do not obey the

continuity relationship that could be expected, G
(1)
VP(R) →

G
(1)
VP(HZ(1S)), where HZ(1S) denotes the 1S state of a

hydrogenic atom with nuclear charge Z = Z1 + Z2. The
reason for such behavior is that the coefficients of the Zα

expansion have no physical meaning, and only the sum
over all orders matters. Only the complete Uehling potential
contribution, indeed, is a continuous function of R at the
united atom limit. The same observation is also valid for the
one-loop self-energy contribution [13] and for higher-order
diagrams.

On the contrary, continuity is observed at the other limit,
R → ∞. We checked this by direct numerical evaluation of
expressions (16), (20), and (22) with 1S hydrogenic wave
functions. The values of G

(1)
VP(R) at large R converge towards

G
(1)
VP(HZ=1(1S)) = −0.618 45 in the hydrogen molecular ion

case and towards G
(1)
VP(HZ=2(1S)) = −0.421 94 in the antipro-

tonic helium case.

The last step is numerical integration of the vacuum
polarization “effective” potentials of Fig. 2 over vibrational or
heavy-particle degrees of freedom to get the energy corrections
for individual states. Numerical results for the ground states of
H2

+ and HD+ and for the fundamental transitions (v = 0,L =
0) → (v′ = 1,L′ = 0) are collected in Table I. Comparison
with the LCAO approximation demonstrates that in the case
of individual states it may give a reasonable estimate. However,
for the transition frequency, due to the slope of the effective
potential at the equilibrium position at R = 2.0, the difference
in contributions from the two states becomes substantially
sensitive, and the LCAO estimate gives only an order of mag-
nitude. This tendency is less marked in the case of antiprotonic
helium; for example, for the two-photon (33,32) → (31,30)
transition in 4He p̄ we obtain a shift of 121 kHz, while the
LCAO estimate is 98 kHz. That may be explained as follows:
the dominating contribution comes from the 1S state wave
function of hydrogenlike helium (Z = 2), and the contribution
from the antiproton is negligible. However, it is worth noting
that for the antiprotonic helium, nonadiabatic effects become
essential at this level, and complete three-body calculations
are needed to get improved accuracy.

In conclusion, we have calculated the Uehling corrections
at orders mα7 and mα8 for the two-center problem. Together
with improved numerical calculations of the relativistic Bethe
logarithm [13], these results will allow for further improve-
ment of the theoretical accuracy of transition frequencies in
H2

+, HD+, and antiprotonic helium.
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