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High-order nonlinear refractive indices for He, Ne, Kr, and Xe atoms
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The time-dependent nonlinear refractive index n4 is calculated for a series of noble gases (helium, neon,
krypton, and xenon) in the nonresonant regime using the coupled cluster singles and doubles method to account
for electron correlation. Second-order polynomial fitting of dc Kerr γ

(2)
λμνρ(−ω; ω,0,0), electric-field-induced

second-harmonic generation γ
(2)
λμνρ(−2ω; ω,ω,0), degenerate four-wave mixing (DFWM) γ

(2)
λμνρ(−ω; ω, −ω,ω),

and static second-order hyperpolarizability γ
(2)
λμνρ(0; 0,0,0) is performed to obtain the corresponding fourth-order

optical properties. An expression involving static, dc Kerr, DFWM fourth-order hyperpolarizability is employed to
calculate the degenerate six-wave mixing γ

(4)
λμνρφθ (−ω; ω,−ω,ω,−ω,ω) optical process. The calculated higher-

order nonlinear refractive indices n4 for He, Ne, Kr, and Xe atoms are positive over the wavelengths 250–2000
nm. The quartic nonlinear refractive index calculated for xenon is about four orders of magnitude larger than that
for helium in the infrared regime.
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I. INTRODUCTION

Calculation and measurement of the nonlinear optical
response of gases has been an active research area for
understanding femtosecond laser filamentation [1], which
results in self-channeled structures propagating over many
Rayleigh lengths without diffraction [2]. When the laser beam
power exceeds the medium-specific critical value, Kerr lensing
overcomes diffraction effects and causes the laser beam to
self-focus [3,4]. Filaments generated by high-power, ultrafast
laser pulses in the atmosphere or in atmospheric-pressure gases
are described as a balance between self-focusing induced by
the optical Kerr effect and defocusing induced by strong-field
ionization. Predictive modeling of high-intensity laser pulses
propagating in a gas medium requires knowledge of linear
and nonlinear optical responses of that medium. For laser
intensities well below the atomic ionization threshold these
responses are given by the induced polarization as determined
by bound electrons [5].

The nonlinear optical processes in an isotropic medium
exposed to an intense laser field can be understood by
expressing the polarization P (t) as a perturbation expansion
over odd powers of the electric-field strength, E(t); P (t) =
χ (1)E(t) + χ (3)E3(t) + χ (5)E5(t) + · · · , where the χ refers to
the susceptibility and the electric-field amplitude varies slowly.
In particular, the third-order term in the Taylor expansion
of the polarization χ (3)E3(t), giving rise to the optical Kerr
effect, leads to an increase of the refractive index with
intensity, n(I ) = n0 + n2I + n4I

2 + · · · , and results in the
self-focusing phenomenon. Here n2j coefficients are related
to the χ (2n+1) susceptibilities. Subsequently, the higher-order
terms,χ (5)E5(t), etc., are responsible for the so-called [6–8]
higher-order Kerr effects (HOKE) and have been suggested to
be negative and non-negligible. Improving the precision of the
χ (5) coefficient is important for understanding the propagation
of intense laser pulses in gases [9–12].
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Recent transient birefringence measurements [13] were
interpreted as a saturation of the intensity-dependent refractive
index for air at intensities greater than 26 TW/cm2. This
observation prompted the HOKE hypothesis, ascribing the
primary cause of defocusing to a crossover, a negative sign
of the n4 coefficient. To study the origins of the proposed satu-
ration theoretically, Brée et al. [14–17] exploited the nonlinear
Kramers-Kronig (KK) relation [18] which expresses nonlinear
refractive index in terms of the optical absorption coefficient
derived from the Keldysh theory [19,20]. Finding evidence for
the HOKE hypothesis, they proposed that the nonlinear index
of refraction for noble gases saturates and becomes negative at
intensities well below the threshold for ionization. However,
the HOKE hypothesis has been challenged more recently
on both experimental and theoretical grounds, revealing that
the dominant negative contribution to the refractive index is
due to the presence of the free electrons. An interferometry
measurement [21] reported that the nonlinear response in noble
gases is positive and increases linearly with the laser intensity
up to the ionization threshold. This finding contradicts both
the Loriot et al. [13] interpretation as well as the Brée
et al. [17] calculations. In parallel developments, the sum-
over-states quantum mechanical model for centrosymmetric
molecules was employed to investigate the contribution from
one-photon or two-photon transitions to the sign of n2 in the
off-resonant and nonresonant regime [22]. In earlier work
we tested the applicability of the HOKE hypothesis for Ar
by obtaining theoretical values for n4 coefficients using ab
initio quantum calculations [23]. Our calculations indicated
the quartic nonlinear refractive index for Ar is positive in the
wavelength range 300–2000 nm. In parallel, recent spectrally
resolved transient birefringence measurements [24] in air with
a probe at 400 nm demonstrate that no sign inversion is
observed when the pump and the probe are nondegenerate
and that a negative contribution to the index of refraction
is observed when the pump and the probe are degenerate.
Nevertheless, numerical investigations of the influence of
the quartic nonlinear response on the propagation dynamics
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in gases [7,25,26] showed that n4 is negative; i.e., the χ (5)

susceptibility leads to defocusing.
Several ab initio investigations performed on frequency-

dependent second-order optical properties of noble gases
[27–31] indicate the importance of using sufficiently large
one-particle basis sets and applying high-level treatment
of electron correlation [31]. For example, the calculations
performed on the second-order hyperpolarizabilities of the
noble gases Ne, Ar, and Kr demonstrated that applying
the coupled cluster singles and doubles (CCSD) level of
electron-correlation contribution and the t-aug-cc-pV5Z basis
sets [28,29] provides very good agreement between theory
and experiment [27,32–36]. For Xe, most of the contribution
from electron correlation is recovered when using the CCSD
model with [7s6p4d1f ] contracted functions augmented with
(3s3p3d 3f ) diffuse functions [31].

In the present study, we build on the general approach
developed in Ref. [23], and calculate the quartic refractive
index for a series of noble gases (He, Ne, Kr, and Xe) to
ascertain the effects of electronic structure on the dynamic
nonlinear response and to test the applicability of the HOKE
hypothesis for these species. Systematic basis set investigation
is carried out for static fourth-order hyperpolarizability and
dynamic hyperpolarizability at 800 nm. An improved approx-
imate relation between static, dc Kerr, degenerate four-wave
mixing (DFWM), and degenerate six-wave mixing (DSWM)
fourth-order hyperpolarizabilities is derived, which allows for
calculation of the DSWM values with considerably reduced
error. The calculated DSWM, γ

(4)
λμνρφθ (−ω; ω,−ω,ω,−ω,ω),

is then used to obtain the frequency-dependent nonlinear re-
fractive index n4. The frequency-dependent calculations were
performed in the nonresonant regime, where the frequency of
the oscillating electric field corresponds to an energy much
smaller than the transition energy from the ground state of the
atom to its excited states.

II. THEORETICAL APPROACH

The static and dynamic fourth-order hyperpolarizabilities
of He, Ne, Kr, and Xe are numerically computed using the

analytical calculations of second-order hyperpolarizabilities
implemented in the DALTON program [37]. A relationship
among the particular fourth-order optical properties is investi-
gated to calculate the approximate values of the corresponding
DSWM optical process. The calculations were performed at
the CCSD [38] level of theory using the coupled cluster
cubic response model [39]. Adding an external field to the
Hamiltonian does not work for models that include triple
excitations [i.e., CCSD(T) and CC3 levels] in the DALTON

program; thus we approximate the interaction with the CCSD
level of theory. The auxiliary static electric field applied in
these calculations was varied from 10−3 to 10−2 e−1 a−1

0 Eh

(that is, 5.14 × 10−2–5.14 × 10−1 V/Å).
The essence of our numerical method [23] is to approximate

the response of an atom or molecule to applied electric field F,
using an expansion of the induced dipole moment as a function
of instantaneous field magnitude [40],

μλ = 〈ψ(F,t)|μ̂λ|ψ(F,t)〉
= μ0λ

+ αλμFμ + 1
2!βλμν FμFν + 1

3!γ
(2)

λμνρFμFνFρ

+ 1
4!γ

(3)
λμνρκFμFνFρFκ

+ 1
5!γ

(4)
λμνρκτFμFνFρFκFτ + · · · . (1)

The subscripts (λ, μ, etc.) relate to the Cartesian coordinates
in atomic or molecular axes on which the external field is
projected.

To assess the prospects for HOKE, we calculate the
dynamic coefficient of the sixth term in the expansion (1),
γ

(4)
λμνρκτ , which is responsible for n4. We use a specific form of

time-dependent electric field, F(t) defined as

F = F0 + Fω cos(ωt). (2)

Subsequently, applying the electric field of Eq. (2) the
expansion (1) is written as

μλ = μ0
λ + αλμ(0; 0)F0μ + αλμ(−ω; ω)Fωμ cos(ωt) + 1

2βλμν (0; 0,0)F0μF0ν + 1
4βλμν (0; ω,−ω)FωμFων

+βλμν (−ω; 0,ω)F0μFων cos(ωt) + 1
4βλμν (−2ω; ω,ω)FωμFων cos(2ωt) + 1

6γλμνρ
(2)(0; 0,0,0)F0μF0νF0ρ

+ 1
2γλμνρ

(2)(−ω; ω,0,0)FωμF0νF0ρ cos(ωt) + 1
8γλμνρ

(2)(−ω; ω,−ω,ω)FωμFωνFωρ cos(ωt)

+ 1
4γλμνρ

(2)(−2ω; ω,ω,0)FωμFωνF0ρ cos(2ωt) + 1
4γλμνρ

(2)(0; ω,−ω,0)FωμFωνF0ρ

+ 1
24γλμνρ

(2)(−3ω; ω,ω,ω)FωμFωνFωρ cos(3ωt) + · · · . (3)

Each term in the expansion (3) represents an induced dipole oscillating at the corresponding sum frequency ωσ = ∑
ωi for

a particular combination of the external field components. Many known nonlinear optical effects are associated with the
second-order hyperpolarizability coefficients γ

(2)
λμνρ . For instance, the optical Kerr effect is related to γ

(2)
λμνρ(−ω; ω,−ω,ω), while

third-harmonic generation is related to γ
(2)
λμνρ(−3ω; ω,ω,ω). In atoms and centrosymmetric molecules, the ground-state wave
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function is of even symmetry. The nonzero transition dipole moment between two states, m and n, requires a change in the
symmetry between the wave functions of the two states, i.e., one state has to have even spatial symmetry (gerade) and the other,
odd spatial symmetry (ungerade) [22]. Thus, symmetry conditions require the first- (βijk) and third-order hyperpolarizabilities
(γ (3)

ijkl) to be zero for atoms in an S state and molecules with a center of symmetry.
Subsequently, the total collection of the terms containing the fourth-order hyperpolarizability is found to be

1
120γλμνρφθ

(4)(0; 0,0,0,0,0)F0μF0νF0ρF0φF0θ + 1
24γλμνρφθ

(4)(0; 0,0,0, − ω,ω)F0μF0νF0ρFωφFωθ

+ 1
24γλμνρφθ

(4)(−2ω; ω,ω,0,0,0)F0μF0νF0ρFωφFωθ cos(2ωt) + 1
24γλμνρφθ

(4)(−ω; ω,0,0,0,0)

×F0μF0νF0ρF0φFωθ cos(ωt) + 1
16γλμνρφθ

(4)(−ω; ω, − ω,ω,0,0)FωμFωνFωρF0φF0θ cos(ωt)

+ 1
48γλμνρφθ

(4)(−3ω; ω,ω,ω,0,0)FωμFωνFωρF0φF0θ cos(3ωt) + 1
48γλμνρφθ

(4)(−2ω; ω,ω, − ω,ω,0)

×FωμFωνFωρFωφF0θ cos(2ωt) + 1
64γλμνρφθ

(4)(0; 0,ω, − ω,ω, − ω)FωμFωνFωρFωφF0θ

+ 1
192γλμνρφθ

(4)(−4ω; ω,ω,ω,ω,0)FωμFωνFωρFωφF0θ cos(4ωt) + 1
192γλμνρφθ

(4)(−ω; ω, − ω,ω, − ω,ω)

×FωμFωνFωρFωφFωθ cos(ωt) + 1
384γλμνρφθ

(4)(−3ω; ω,ω,ω, − ω,ω)FωμFωνFωρFωφFωθ cos(3ωt)

+ 1
1920γλμνρφθ

(4)(−5ω; ω,ω,ω,ω,ω)FωμFωνFωρFωφFωθ cos(5ωt). (4)

Equation (4) indicates the various combinations of the components of static and oscillating fields. As can be seen, several
fourth-order nonlinear coefficients γ

(4)
λμνρφθ containing static-field components are obtained from modified second-order

hyperpolarizability coefficients γ
(2)
λμνρ , in which parametric dependence on the static field is taken into account. The frequencies

ωi (1 � i � 5) in the fourth-order hyperpolarizability coefficients, γ
(4)
λμνρφθ (ωσ ; ω1,ω2,ω3,ω4,ω5), refer to the incoming fields

and ωσ refers to the frequency of the output signal (i.e., the prefactor of t in the arguments of the cosine functions).
Among the fourth-order hyperpolarizability coefficients in Eq. (4), the coefficients γ

(4)
λμνρφθ (−5ω; ω,ω,ω,ω,ω) and

γ
(4)
λμνρφθ (−ω; ω,−ω,ω,−ω,ω) refer to the fifth-harmonic generation and the degenerate six-wave mixing (DSWM) optical

processes, and the coefficients γ
(4)
λμνρφθ (−ω; ω,0,0,0,0), γ

(4)
λμνρφθ (−2ω; ω,ω,0,0,0), and γ

(4)
λμνρφθ (−ω; ω,−ω,ω,0,0) refer to dc

Kerr, electric-field-induced second-harmonic generation (ESHG), and DFWM fourth-order hyperpolarizabilities, respectively. In
present study, the DSWM coefficient is of primary interest as it determines the higher-order nonlinear contribution to the optical
Kerr effect. While various tensor indices contribute to the isotropic average value of the hyperpolarizability coefficients, in an
ensemble of atomic gas this averaging is simplified as

γ
(4)
ll = γ (4)

zzzzzz. (5)

Thus, for the purpose of the present calculations it is sufficient to calculate the γ (4)
zzzzzz(−ω; ω,−ω,ω,−ω,ω) component of the

fourth-order hyperpolarizability.
The static, dc Kerr, ESHG, and DFWM fourth-order hyperpolarizability coefficients are calculated using the terms in the power

series expansion of μλ (F0,Fω) with respect to F0 and Fω, as expressed by Eqs. (3) and (4). These terms can then be compared
with the results of the DALTON [37] calculations in which F0 is incorporated nonperturbatively. Specifically, we juxtapose the
results of the two approaches for the following third-order derivatives of μλ (F0,Fω) with respect to various components of F0

and Fω:

∂3μ̃(F0,Fω)

∂F0μ∂F0υ∂F0ρ

∣∣∣∣
Fω=0

= γ̃
(2)
λμνρ(F0; 0; 0,0,0)

= γλμνρ
(2)(0; 0,0,0) + 1

2
γλμνρφ

(3)(0; 0,0,0,0)F0φ + 1

2
γλμνρφθ

(4)(0; 0,0,0,0,0)F0φF0θ + · · · ,

∂3μ̃(F0,Fω)

∂Fωμ∂F0υ∂F0ρ

∣∣∣∣
Fω=0

= cos(ωt)γ̃ (2)
λμνρ(F0; −ω; ω,0,0)

= cos(ωt)

[
γλμνρ

(2)(−ω; ω,0,0) + 1

2
γλμνρφ

(3)(−ω; ω,0,0,0)F0φ

+ 1

2
γλμνρφθ

(4)(−ω; ω,0,0,0,0)F0φF0θ + · · ·
]
,
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∂3μ̃(F0,Fω)

∂Fωμ∂Fωυ∂F0ρ

∣∣∣∣
Fω=0

= cos(2ωt)γ̃ (2)
λμνρ(F0; −2ω; ω,ω,0)

= cos(2ωt)

[
γλμνρ

(2)(−2ω; ω,ω,0) + γλμνρφ
(3)(−2ω; ω,ω,0,0)F0φ

+ 1

2
γλμνρφθ

(4)(−2ω; ω,ω,0,0,0)F0φF0θ + · · ·
]
,

∂3μ̃(F0,Fω)

∂Fωμ∂Fωυ∂Fωρ

∣∣∣∣
Fω=0

= cos(ωt)γ̃ (2)
λμνρ(F0; −ω; ω,−ω,ω)

= cos(ωt)

[
γλμνρ

(2)(−ω; ω,−ω,ω) + γλμνρφ
(3)(−ω; ω,−ω,ω,0)F0φ

+ 1

2
γλμνρφθ

(4)(−ω; ω,−ω,ω,0,0)F0φF0θ + · · ·
]
. (6)

In Eq. (6), the F0-dependent coefficients, the static
γ̃ (2)

zzzz(F0| 0; 0,0,0), dc Kerr γ̃ (2)
zzzz(F0| − ω; ω,0,0), ESHG

γ̃ (2)
zzzz(F0| − 2ω; ω,ω,0), and DFWM γ̃ (2)

zzzz(F0| − ω; ω,−ω,ω)
hyperpolarizabilities can be approximated by second-order
polynomial fit:

γ̃ (2)
zzzz(F0| − (ω1 + ω2 + ω3); ω1,ω2,ω3)

≈ Ai (ω1,ω2,ω3) + Bi (ω1,ω2,ω3)F0 + Ci (ω1,ω2,ω3)F2
0,

(7)

with the index 1 � i � 4, where i refers to particular nonlinear
processes: i = 1 corresponds to static hyperpolarizability, i =
2 relates to ESHG process, i = 3 relates to the dc Kerr optical
effect, and i = 4 corresponds to the DFWM optical process. In
this expression, the fitting coefficients Ai , Bi , and Ci are related
to the second-, third-, and fourth-order hyperpolarizabilities,
respectively.

Comparison of Eq. (6) with Eq. (7) indicates that
the coefficients Ci(ω1,ω2,ω3) in Eq. (7) are related to
the fourth-order hyperpolarizabilities, γzzzzzz

(4)(0; 0,0,0,0,0),
γzzzzzz

(4)(−ω; ω,0,0,0,0), γzzzzzz
(4)(−2ω; ω,ω,0,0,0), and

γzzzzzz
(4)(−ω; ω,−ω,ω,0,0), as

γzzzzzz
(4)(0; 0,0,0,0,0) = 2C1, (8)

γzzzzzz
(4)(−2ω; ω,ω,0,0,0) = 2C2, (9)

γzzzzzz
(4)(−ω; ω,0,0,0,0) = 2C3, (10)

γzzzzzz
(4)(−ω; ω,−ω,ω,0,0) = 2C4. (11)

We use these relations to obtain the values of the dynamic
fourth-order hyperpolarizability coefficients in the following
way. First, the ab initio calculations provide the required
second-order hyperpolarizability coefficients, including the
static and the dynamic dc Kerr, ESHG, and DFWM, as
functions of the static component of the external electric
field F0 applied to the electronic system of the atom and/or
molecule. Then, the results were fit with second-order poly-
nomial expressions as prescribed by Eq. (7).

The calculated fourth-order hyperpolarizability coefficients
can be used to develop an approximate expression for the
DSWM coefficient, γ (4)(−ω; ω,−ω,ω,−ω,ω). In our
previous work [23] we justified the relation among DSWM,
ESHG, dc Kerr, and static fourth-order hyperpolarizabilities
in terms of Bishop’s equation [41]. Here, we advance a
more accurate expression to calculate the DSWM optical
process by using instead the dc Kerr, DFWM, and static
fourth-order hyperpolarizabilities. This expression is
derived on the basis of the relations among the power
series expansions of various nth-order hyperpolarizability
coefficients with respect to participating frequencies [41,42].
Bishop and Hättig suggested γ

(n)
‖ (−ωσ ; ω1,ω2, . . . ,ωn+1) =

γ
(n)
‖ (0; 0,0, . . . ,0)(1 + AW2 + BW 2

2 + B ′W4 + · · ·), where
ωσ = ∑

ωi , W2 = ω2
σ + ω2

1 + ω2
2 + · · · + ω2

n+1, W4 =
ω4

σ + ω4
1 + ω4

2 + · · · + ω4
n+1; the coefficients A, B, and

B ′ are independent of the optical process (that is, of the
participating frequencies); and the coefficients B and B ′ are
approximately the same. Based on this universal expression
and in a particular case of n = 4, the dc Kerr, ESHG, DFWM,
and DSWM optical processes are expressed as

γ
(4)
‖ (−ω; ω,0,0,0,0)

=γ
(4)
‖ (0; 0,0,0,0,0)(1 + 2Aω2 + 4Bω4 + 2B ′ω4 + · · ·),

(12a)

γ
(4)
‖ (−2ω; ω,ω,0,0,0)

=γ
(4)
‖ (0; 0,0,0,0,0)(1+ 6Aω2 + 36Bω4+18B ′ω4 + · · ·),

(12b)

γ
(4)
‖ (−ω; ω,−ω,ω,0,0)

=γ
(4)
‖ (0; 0,0,0,0,0)(1 + 4Aω2 + 16Bω4 + 4B ′ω4 + · · ·),

(12c)

γ
(4)
‖ (−ω; ω,−ω,ω,−ω,ω)

=γ
(4)
‖ (0; 0,0,0,0,0)(1+ 6Aω2 + 36Bω4 + 6B ′ω4 + · · ·).

(12d)
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As seen in Eq. (12), having the values of γ
(4)
‖ (0; 0,0,0,0,0),

γ
(4)
‖ (−ω; ω,0,0,0,0), γ

(4)
‖ (−2ω; ω,ω,0,0,0), and

γ
(4)
‖ (−ω; ω,−ω,ω,0,0), one can express the constant

coefficients in Eq. (12d) in terms of fourth-order optical
processes and thus construct an approximate expression for
γ

(4)
‖ (−ω; ω, − ω,ω, − ω,ω) at frequencies below resonance

that will be valid up to the terms ∼ω4. Here, we solve the
three linear equations, (12a)–(12c), in order to obtain the three
unknown coefficients, A, B, and B ′:

A = 1

4 ω2

[
3γ (4)(−ω; ω,0,0,0,0) − 1

3
γ (4)(−2ω; ω,ω,0,0,0)

− 8

3
γ (4)(0; 0,0,0,0,0)

]
, (13a)

B = 1

12 ω4

[
− 3γ (4)(−ω; ω,0,0,0,0)

+ 3

2
γ (4)(−ω; ω, − ω,ω,0,0) + 3

2
γ (4)(0; 0,0,0,0,0)

]
,

(13b)

B ′ = 1

12ω4

{
3

[
γ (4)(−ω; ω,0,0,0,0) − γ (4)(−ω; ω,

−ω,ω,0,0)

]
+ γ (4)(−2ω; ω,ω,0,0,0)

− γ (4)(0; 0,0,0,0,0)

}
. (13c)

Having expressed these coefficients in terms of the selected
fourth-order optical properties, we develop a relation among
the DFWM, dc Kerr, and static fourth-order hyperpolar-
izability coefficients that exactly reflects the DSWM val-
ues. Substituting the obtained coefficients A, B, and B ′
in the right-hand side of Eq. (12d), the expression for

DSWM is

γ
(4)
‖ (−ω; ω, − ω,ω, − ω,ω)

= 3γ
(4)
‖ (−ω; ω, − ω,ω,0,0) − 3γ

(4)
‖ (−ω; ω,0,0,0,0)

+ γ
(4)
‖ (0; 0,0,0,0,0), (14)

which correctly reproduces the quadratic and quartic terms
in ω (note that the ESHG coefficient is canceled out in the
right-hand side). An additional advantage of the expression
of Eq. (14) is that its right-hand side contains the three in-
dependently calculated hyperpolarizability coefficients, γ

(4)
static,

γ
(4)
dc Kerr, and γ

(4)
DFWM, and thus allows for potential reduction

of numerical errors as the coefficients are calculated indepen-
dently.

III. RESULTS AND DISCUSSION

A. Basis set study

First, the convergence of the fourth-order optical properties
at 800 nm and the static fourth-order hyperpolarizability
with respect to the basis set is studied for He, Ne, Kr,
and Xe, using the CCSD model and the x-aug-cc-pVXZ
(or x-aug-cc-pVQZ-pp) basis set family, proposed by Woon
and Dunning [43,44]. The initial basis set tested for He was
the t-aug-cc-pVQZ (triply augmented correlation-consistent
polarized valence quadruple-zeta) which has been shown to
provide second-order hyperpolarizability coefficients [27] that
are in good agreement with experimental measurements [33].
This basis set was expanded by adding diffuse functions (q-
aug-cc-pVQZ), polarization functions (t-aug-cc-pV5Z), and
both diffuse and polarization functions (q-aug-cc-pV5Z).
Table I displays the values calculated for the fourth-order
hyperpolarizabilities at 800 nm, as well as static hyperpolariz-
abilities, using various basis sets and the approach outlined
in Sec. II. For He comparison shows that an acceptable
convergence is obtained in the triple-augmented series with the
quintuple-zeta polarization functions (t-aug-cc-pV5Z). The

TABLE I. Electronic contributions to the static and frequency-dependent fourth-order hyperpolarizability of helium, neon, and krypton
at 800 nm. The calculations were performed at the CCSD level. The values are given in 104 a.u. (1.0 a.u. of fourth hyperpolarizability =
2.358 106 793 × 10−88 C6 m6 J−5).

γ (4)(0; 0,0,0,0,0) γ (4)(−ω; ω,0,0,0,0) γ (4)(−2ω; ω,ω,0,0,0) γ (4)(−ω; ω, − ω,ω,0,0)

He × 104

t-aug-cc-pVQZ 1.577 ± 0.004 1.624 ± 0.004 1.722 ± 0.004 1.672 ± 0.004
q-aug-cc-pVQZ 1.603 ± 0.004 1.650 ± 0.004 1.750 ± 0.005 1.699 ± 0.004
t-aug-cc-pV5Z 1.535 ± 0.003 1.580 ± 0.003 1.676 ± 0.003 1.627 ± 0.003
q-aug-cc-pV5Z 1.543 ± 0.003 1.589 ± 0.003 1.686 ± 0.003 1.637 ± 0.003
Ne × 104

t-aug-cc-pV5Z 6.172 ± 0.020 6.406 ± 0.021 6.909 ± 0.024 6.653 ± 0.022
q-aug-cc-pV5Z 6.287 ± 0.022 6.524 ± 0.023 7.036 ± 0.026 6.776 ± 0.025
t-aug-cc-pV6Z 6.103 ± 0.020 6.334 ± 0.021 6.831 ± 0.024 6.578 ± 0.022
q-aug-cc-pV6Z 6.158 ± 0.021 6.391 ± 0.022 6.892 ± 0.025 6.638 ± 0.024
Kr × 104

t-aug-cc-pVQZ 708.5 ± 11.3 789.7 ± 13.3 990.7 ± 19.0 885.1 ± 16.0
q-aug-cc-pVQZ 757.9 ± 9.1 846.5 ± 10.7 1066.8 ± 15.2 951.0 ± 12.8
t-aug-cc-pV5Z 701.0 ± 9.2 780.1 ± 10.8 975.3 ± 15.2 872.9 ± 12.9
q-aug-cc-pV5Z 725.7 ± 10.5 809.2 ± 12.4 1016.1 ± 17.7 907.3 ± 14.9
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TABLE II. Comparison of the second-order optical processes for
Xe, calculated using the CCSD model and x-aug-cc-pVQZ-pp (x =
d, t, q) basis sets, with previously published theoretical calculations
and experimental measurements. The dynamic second-order optical
properties are performed at 800 nm. The values are given in atomic
units.

Static dc Kerr ESHG DFWM

aug-cc-pVQZ-pp 5714 6117 7055 6566
d-aug-cc-pVQZ-pp 6687 7155 8249 7676
t-aug-cc-pVQZ-pp 6844 7331 8467 7871
q-aug-cc-pVQZ-pp 6843 7329 8466 7871
a 6888
b 7030 ± 200

aReference [33].
bReference [31].

difference between the t-aug-cc-pV5Z and t-aug-cc-pVQZ is
less than 3%, while the difference of t-aug-cc-pV5Z with
respect to the q-aug-cc-pVQZ is approximately 4% for the
static and dynamic fourth-order hyperpolarizabilities at 800
nm. For the q-aug-cc-pV5Z basis set, the values of γ (4) are
practically identical to the values obtained with the t-aug-
cc-pV5Z basis set. Thus, for further calculations of electronic
contributions to the dynamic fourth-order hyperpolarizabilities
in He we adopted the t-aug-cc-pV5Z basis set comprised of
(11s7p6d5f 4g) Gaussian-type functions (GTFs) contracted
to [8s7p6d5f 4g].

For Ne the effect of the basis set on the hyperpolarizability
is analyzed using the t-aug-cc-pV5Z basis set and expanding
the basis set with and without the addition of diffuse and
polarization functions (q-aug-cc-pV5Z, t-aug-cc-pV6Z, and
q-aug-cc-pV6Z). The t-aug-cc-pV5Z basis set was suggested
for static and dynamic second-order hyperpolarizability cal-
culations in Ne previously [45]. The t-aug-cc-pV5Z for the
first-row atoms consists of 199 functions, (17s11p7d6f 5g4h)
GTF contracted to [9s8p7d6f 5g4h]. Subsequently, the q-
aug-cc-pV5Z, t-aug-cc-pV6Z, and q-aug-cc-pV6Z are com-
prised of 235, 287, and 336 functions (the slash represents
“contracted to”); (18s12p8d7f 6g5h)/[10s9p8d7f 6g5h],
(19s13p8d7f 6g5h4i)/[10s9p8d7f 6g5h4i], and (20s14p

9d8f 7g6h5i)/[11s10p9d8f 7g6h5i], respectively. For Ne,
the difference of the t-aug-cc-pV5Z from q-aug-cc-pV5Z is
less than 2% and the deviation of t-aug-cc-pV5Z from t-aug-
cc-pV6Z is approximately 1%. Overall, the fourth-order hy-
perpolarizabilities calculated using q-aug-cc-pV6Z reproduce
the fourth-order optical responses obtained with the t-aug-cc-
pV5Z basis set well. Thus, for further calculations of electronic
contributions to the dynamic fourth-order hyperpolarizabilities

in Ne we adopted the t-aug-cc-pV5Z basis set which gives
reasonable balance between computation time and accuracy.

Similarly, for Kr the effect of the basis set on the
hyperpolarizability is studied with initiating the t-aug-cc-
pVQZ basis set which is comprised of 143 functions,
(24s19p15d5f 4g)/[10s9p7d5f 4g]. The basis set was ex-
panded with and without the addition of diffuse and polar-
ization functions, q-aug-cc-pVQZ (168 functions), t-aug-cc-
pV5Z (212 functions), and q-aug-cc-pV5Z (248 functions).
For Kr, we obtained a reasonable convergence with the
t-aug-cc-pV5Z basis set. In Kr the difference between the
fourth-order hyperpolarizability coefficients using t-aug-cc-
pV5Z and t-aug-cc-pVQZ is less than 2%, and the difference
between the t-aug-cc-pV5Z and the q-aug-cc-pV5Z is less than
4%. Thus, for further calculations of electronic contributions
to the dynamic fourth-order hyperpolarizabilities at all the
wavelengths investigated we adopted the t-aug-cc-pV5Z basis
set, which gives a reasonable balance between computation
time and accuracy.

In the case of Xe an accurate description of the re-
sponse of the electron density to an applied electric field
requires the use of a family of basis sets that systematically
converge to the complete basis set limit for such a heavy
element. The preliminary calculations of the second-order
hyperpolarizability of Xe indicate that the analytical results
accomplished at the CCSD level using x-aug-cc-pVQZ-pp
(x = d, t, q) (augmented correlation-consistent polarized
valence quadruple-zeta with relativistic pseudopotentials)
basis set series reproduced the previous calculations and
experimental measurements [33] with good accuracy and yield
a systematic convergence of the correlation energies (see
Table II). These basis sets are derived from aug-cc-pVQZ-pp,
and we added diffuse functions chosen as extensions of
the most diffuse functions. Thus, we calculate the fourth-
order hyperpolarizability with doubly, triply, and quadruply
aug-cc-pVQZ-pp basis sets. These basis sets are comprised
of (16s13p14d4f 3g)/[8s8p6d4f 3g], (17s14p15d5f 4g)/
[9s9p7d5f 4g], and (18s15p16d6f 5g)/[10s10p8d6f 5g],
respectively.

Table III collects the results of the fourth-order hyperpo-
larizabilities at 800 nm for Xe as a function of the basis set.
Comparison indicates that the q-aug-cc-pVQZ-pp basis set
significantly improves the convergence of fourth-order optical
properties and provides a good compromise between com-
putational cost and accuracy. Thus we adopt this basis set for
further studies. Note that the limitations of coding the basis sets
in the DALTON program do not permit us to exceed the limit of
maximum angular momentum of a g function; thus we accept
the basis set study with quadruple-zeta polarization function.

TABLE III. Electronic contributions to the static and frequency-dependent fourth-order hyperpolarizability of xenon at 800 nm.
The calculations were performed at the CCSD level and x-aug-cc-pVQZ-pp basis set family. All values are given in 104 a.u.

(1.0 a.u. of fourth hyperpolarizability = 2.358 106 793 × 10−88 C6 m6 J−5).

Augmentation level x γ (4)(0; 0,0,0,0,0) γ (4)(−ω; ω,0,0,0,0) γ (4)(−2ω; ω,ω,0,0,0) γ (4)(−ω; ω, − ω,ω,0,0)

d 2465 ± 44 2888 ± 57 4051 ± 96 3426 ± 74
t 3092 ± 66 3618 ± 83 5060 ± 139 4285 ± 108
q 3305 ± 88 3882 ± 112 5478 ± 189 4619 ± 147
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TABLE IV. Fourth-order hyperpolarizability coefficients, γ (4)(ω), calculated at the CCSD level using the t-aug-cc-pV5Z basis set for He,
Ne, Kr, and q-aug-cc-pVQZ-pp basis set for Xe.

Wavelength γ (4)(−ω; ω,0,0,0,0) γ (4)(−2ω; ω,ω,0,0,0) γ (4)(−ω; ω, − ω,ω,0,0)
(nm) (a.u.) (a.u.) (a.u.)

He × 104

250 2.091 ± 0.005 4.221 ± 0.016 2.991 ± 0.009
300 1.898 ± 0.004 3.016 ± 0.009 2.400 ± 0.006
400 1.727 ± 0.004 2.212 ± 0.005 1.956 ± 0.004
500 1.654 ± 0.003 1.932 ± 0.004 1.788 ± 0.004
600 1.617 ± 0.003 1.798 ± 0.004 1.705 ± 0.003
700 1.594 ± 0.003 1.723 ± 0.004 1.658 ± 0.003
800 1.580 ± 0.003 1.676 ± 0.003 1.627 ± 0.003
900 1.570 ± 0.003 1.645 ± 0.003 1.607 ± 0.003
1100 1.558 ± 0.003 1.608 ± 0.003 1.583 ± 0.003
1300 1.552 ± 0.003 1.586 ± 0.003 1.569 ± 0.003
1500 1.547 ± 0.003 1.573 ± 0.003 1.560 ± 0.003
2000 1.542 ± 0.003 1.556 ± 0.003 1.549 ± 0.003
� 1.535 ± 0.003
Ne × 104

275 8.570 ± 0.034 18.548 ± 0.119 12.676 ± 0.066
300 8.117 ± 0.031 15.161 ± 0.086 11.135 ± 0.053
400 7.181 ± 0.025 9.933 ± 0.043 8.455 ± 0.033
500 6.795 ± 0.023 8.304 ± 0.032 7.515 ± 0.027
600 6.596 ± 0.022 7.563 ± 0.028 7.065 ± 0.025
700 6.481 ± 0.021 7.159 ± 0.025 6.812 ± 0.023
800 6.406 ± 0.021 6.909 ± 0.024 6.653 ± 0.022
900 6.356 ± 0.021 6.746 ± 0.023 6.549 ± 0.022
1100 6.295 ± 0.020 6.549 ± 0.022 6.421 ± 0.021
1300 6.260 ± 0.020 6.439 ± 0.021 6.349 ± 0.021
1500 6.238 ± 0.020 6.371 ± 0.021 6.304 ± 0.020
2000 6.209 ± 0.020 6.283 ± 0.020 6.246 ± 0.020
� 6.172 ± 0.020
Kr × 104

365 1205.6 ± 21.0 5035.2 ± 177.0 2512.5 ± 67.4
400 1096.2 ± 18.2 3322.0 ± 96.0 1932.7 ± 44.6
500 927.7 ± 14.1 1748.2 ± 36.9 1279.5 ± 23.3
600 849.7 ± 12.3 1289.4 ± 23.3 1049.0 ± 17.1
700 806.8 ± 11.4 1086.7 ± 18.0 937.5 ± 14.4
800 780.1 ± 10.8 975.3 ± 15.2 872.9 ± 12.9
900 762.7 ± 10.5 908.0 ± 13.7 832.5 ± 12.0
1100 741.6 ± 10.0 832.0 ± 12.0 785.6 ± 11.0
1300 729.7 ± 9.8 791.7 ± 11.1 760.1 ± 10.4
1500 722.4 ± 9.6 767.6 ± 10.6 744.7 ± 10.1
2000 713.0 ± 9.4 737.7 ± 9.9 725.2 ± 9.7
� 701.0 ± 9.2
Xe × 104

400 6120 ± 193 42 870 ± 3521 16 798 ± 1007
500 5063 ± 167 14 613 ± 838 8710 ± 400
600 4421 ± 137 8603 ± 372 6202 ± 232
700 4085 ± 121 6505 ± 244 5170 ± 175
800 3882 ± 112 5478 ± 189 4619 ± 147
900 3751 ± 107 4899 ± 159 4291 ± 131
1100 3596 ± 100 4281 ± 130 3925 ± 114
1300 3510 ± 96 3969 ± 116 3733 ± 106
1500 3457 ± 94 3788 ± 108 3619 ± 101
2000 3390 ± 92 3567 ± 99 3478 ± 95
� 3305 ± 88
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FIG. 1. (Color online) The dispersion of DSWM for He, Ne, Ar,
Kr, and Xe. The dispersion curve for argon is taken from our previous
work (Ref. [23]).

B. Frequency dependence of the noble gas hyperpolarizability

Table IV summarizes the static γ (4)(0; 0,0,0,0,0), dc
Kerr γ (4)(−ω; ω,0,0,0,0), ESHG γ (4)(−2ω; ω,ω,0,0,0), and
DFWM γ (4)(−ω; ω, − ω,ω,0,0) fourth-order hyperpolariz-
ability coefficients for He, Ne, Kr, and Xe, calculated with
the coupled cluster cubic response functions at different
wavelengths. The polynomial curve fitting approximates the
uncertainty of fourth-order optical properties, within 4%,
as has been estimated from the least-squares approach. As
expected, at longer wavelengths, the different fourth-order
hyperpolarizability coefficients tend to converge to the value
of the static hyperpolarizability.

Figure 1 presents the DSWM coefficient for the inert gases,
helium, neon, argon [23], krypton, and xenon, calculated using
the fourth-order hyperpolarizability coefficients projected to
Eq. (14). As the ionization potentials (Ui) for helium, neon,
argon, krypton, and xenon are 24.59, 21.56, 15.76, 14.00, and
12.13 eV, respectively, thus the three-photon absorption edges
for these gases are located at the wavelengths of 151, 172,
236, 265, and 306 nm, respectively. Given that the power
series expansion of the optical processes [Eq. (12)] is expected
to fail in the vicinity of the multiphoton resonance [41,42],
using Eq. (14) implies the range of frequencies well below
resonance. Therefore, the shortest wavelength that has been
studied for our calculations is at least 100 nm away from the
multiphoton absorption resonance. The present calculations
correctly predict the dispersive behavior of the fourth-order
optical properties from He to Xe. The DSWM value for helium
at 250 nm is calculated to be 4.2 × 104 a.u. and decreases by
a factor of ∼3, to reach 1.5 × 104 a.u. in the infrared region
(2000 nm), while the DSWM fourth-order optical response
for xenon at 2000 nm is lower than the value at 400 nm by a
factor of ∼10. Note that the initial wavelength in both cases
(250 nm in helium and 400 nm in xenon) is approximately 100
nm to the red of the resonance. This comparison indicates that
the frequency dependence of fourth-order nonlinear response
becomes more dispersive when a smaller number of photons
is required to reach the continuum.

FIG. 2. (Color online) Quartic nonlinear refractive index n4 of
He, Ne, Ar, Kr, and Xe as predicted by Eq. (15). The curve for argon
is taken from data in Ref. [23].

The values of the quartic nonlinear refractive index n4, for
all the participating noble gases are displayed in Fig. 2; these
values have been computed through the following relationship
using the Lorenz-Lorenz law [5,32].

n4(cm4/W2) = 4.02 × 10−40 γ
(4)
DSWM(a.u.). (15)

As seen, the calculated values of n4 as a function of wavelength
confirm the positive sign of the fourth-order Kerr coefficient.
Note that the higher-order nonlinear refraction [46] was
previously proposed to explain saturation [13] of the Kerr non-
linearity during filament formation. Saturation and inversion of
the intensity-dependent refractive index requires at least one of
the higher-order Kerr coefficients n2k to be negative. As such,
n4 was suggested in Ref. [13]. Our results show that this is not
the case for any of the noble gases. Note that the experimental
manifestation of negative higher-order Kerr effect reported in
Ref. [13] has been attributed to the transient birefringence
caused by ionization-grating-induced coupling of the pump
and probe beams [24,47]. The calculations presented here
agree with the positive sign of the fourth-order Kerr coefficient
calculated using the Kramers-Kronig (KK) [14] approach and
time-dependent Schrödinger equation (TDSE) calculations
[48].

At 800 nm, the values for n4 vary from 6.7 × 10−12 (for
helium) to 2.2 × 10−8 cm4/TW2 (for xenon). This difference
of four orders of magnitude is attributed to the difference in
the ionization potential; the ionization energy of xenon is only
12.13 eV as compared with 24.59 eV value for helium; thus
a smaller number of infrared photons is required to reach the
continuum and the nonlinear refractive index is expected to
increase as a result. The KK [19,49] formalism indicates that
the nonlinear refraction coefficient n2k is inversely propor-
tional to the (k+1) photons required to reach the ionization
potential.

Our calculations explicitly include electron-correlation
effects and indicate that the n4 values lie in the range from
10−12 to 10−8 cm4/TW2, depending on the gas species. On
the other hand, the calculations based on the KK relations
estimate the values of the quartic nonlinear refractive index
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FIG. 3. (Color online) Higher-order nonlinear refractive index
�n for the noble gases versus laser intensity at 800 nm. The graphs
displayed as insets are taken from Ref. [21]. Blue circles in insets
show the experimental data points [21]. The dashed black lines display
the KK calculations [21]. Red (gray) dashed lines represent the KK
calculations performed in Ref. [17] and modified in Ref. [21]. The
blue dash-dotted line is the original self-refractive index as plotted
in Ref. [17]. The vertical dashed line in insets denotes the measured
ionization threshold.

for noble gases to be about three to six times less than
those we obtained [14,17]. This difference may be attributed

to the use of strong-field ionization rates for the absorption
spectra σK in the KK approach, which was shown to result
in underestimation of the absorption cross section [17]. In
addition, the KK integral spans the whole of the frequency
axis and thus covers regions where the absorption model
used in Ref. [17] is inapplicable. As mentioned previously
[21], the KK formula produces correct results when one
abandons the standard perturbative approach and accounts the
transition from multiphoton to tunneling ionization regime.
The underestimate of the nonlinear refraction in KK cal-
culations, as compared to experimental measurements and
electron-correlated calculations, has also been pointed out for
the case of n2 [14]. The KK computations should therefore only
be understood as an order-of-magnitude estimate of the onset
of contribution from higher-order nonlinear refraction [14].
Overall, our findings qualitatively confirm the positive sign of
quartic nonlinear refractive index coefficient calculated with
KK formalism [14,17].

Figure 3 displays the plot of �n, �n = (n2 + n4I ) I , as a
function of laser intensity for noble gases at 800 nm, where
n2 relates to γ

(2)
DFWM(ω) and n4 relates to γ

(4)
DSWM(ω). Note

that our perturbation approach cannot be stretched to operate
with intensities near or beyond the ionization threshold. Thus,
the intensities we applied are well below that required for
significant ionization; as a result, the perturbation theory
is assumed to be applicable. The extrapolated (n2 + n4I ) I

contribution to the Kerr effect based on our calculations agrees
well with the experimental data [21]. Our results strongly
suggest that the defocusing during filament propagation does
not stem from a negative value of quartic nonlinear refractive
index. This further confirms that filament stabilization is
most likely to be induced by the generation of free electrons
[16,21,48,50,51].

IV. CONCLUSIONS

We have generalized the ab initio numerical approach [23]
for calculating the static and frequency-dependent fourth-
order hyperpolarizability in noble gases. Coupled cluster
electron-correlated wave functions are employed to calculate
frequency-dependent second-order hyperpolarizabilities as a
function of the static electric field. By studying the con-
vergence of the basis sets and applying electron-correlation
treatments, accurate results for fourth-order hyperpolarizabil-
ity coefficients were obtained for the series of noble gases: He,
Ne, Ar [23], Kr, and Xe. The calculated fourth-order hyperpo-
larizability coefficients were used to obtain the dispersion of
the DSWM coefficient and, subsequently, the quartic nonlinear
index of refraction. The obtained values of higher-order Kerr
coefficient n4 in the nonresonance regime are positive for the
noble gases in the wavelengths ranging from about 100 nm
to the red of the purported multiphoton resonance all the way
to the static regime. The values obtained agree qualitatively
with those resulting from the Kramers-Kronig approach [14]
in the infrared regime. The results corroborate the discussion
in Refs. [16,17] that the negative contribution to higher-order
refractive index may only appear at frequencies above the
corresponding multiphoton resonance pole. The results are
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expected to be instrumental in resolving the current HOKE
controversy and to contribute considerably to development
of predictive models for the dynamics of femtosecond laser
filamentation.
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