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We propose approximate kinetic energy (KE) functionals of the pair-density (PD)-functional theory on the
basis of the rigorous expression with the coupling-constant integration (RECCI) that has been recently derived
[Phys. Rev. A 85, 062508 (2012)]. These approximate functionals consist of the noninteracting KE and correlation
energy terms. It is found that the Thomas-Fermi-Weizsäcker functional is shown to be better as the noninteracting
KE term than the Thomas-Fermi and Gaussian model functionals. It is also shown that the correlation energy
term is also indispensable for the reduction of the KE error, i.e., reductions of both inappropriateness of the
approximate functional and error of the resultant PD. Concerning the correlation energy term, we further propose
an approximate functional in addition to using the existing familiar functionals. This functional satisfies the
scaling property of the KE functional, and yields a reasonable PD in a sense that the KE, electron-electron
interaction, and potentials energies tend to be improved with satisfying the virial theorem. The present results
not only suggest the usefulness of the RECCI but also provide the guideline for the further improvement of the
RECCI-based KE functional.
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I. INTRODUCTION

The diagonal element of the second-order reduced density
matrix, which is called the pair density (PD), has more infor-
mation about the electron correlation than the electron density
[1–4]. For example, the electron density, exchange-correlation
(xc) energy, and xc hole can be exactly calculated from the PD.
Therefore, the reproduction of the PD is an interesting subject
in the field of the development of the first-principles theory.
For this aim, the PD functional theory, which was proposed
by Ziesche [5,6], provides a powerful method to calculate the
ground-state PD [7–26]. In addition to the reproduction of the
ground-state PD, the advantage of the PD functional theory
over the conventional density-functional theory (DFT) [27,28]
is that we do not need the approximation of the xc energy
functional because it can be expressed rigorously in terms of
the PD [1–4]. Namely, in the conventional DFT both xc energy
and kinetic energy (KE) should be approximated appropriately
while only the approximate form of the KE is needed in the
PD functional theory.

In order to perform actual calculations on the basis of the
PD functional theory, there are two problems that should be
overcome. One is how the variational principle with respect
to the PD is performed with keeping the search region of PDs
within the set of N -representable PDs [1–4,29–40]. Another
problem is that the approximate form of the KE functional
has to be developed in a form of the PD functional, as
mentioned above [41–45]. These two problems should be
solved simultaneously.

Concerning the first problem, there are a lot of works
where the necessary and sufficient conditions for the N rep-
resentability of the PD are discussed [1–4,29–40]. However,
the necessary and sufficient conditions are not yet known in
a practical form [1–4,29–40]. In order to avoid this problem,
we have proposed several schemes so far [18–20,22–25]. Most

recently, we have developed the PD functional theory utilizing
the electron coordinates scaling of PDs [24,25]. This method
can substantially extend the search region of PDs without
additional heavy tasks of calculations, and is called the “scaling
method” [24,25]. The scaling method is employed also in
this paper when we check the validity of approximate KE
functionals (Sec. IV).

Concerning the second problem, we can consult the way to
develop the xc energy functional of the conventional DFT and
current-density-functional theory (CDFT) [46–49]. Namely,
there are two schemes for developing approximate forms of
the energy functional [45]. One is to employ as restrictive
conditions exact relations and bounds that should be satisfied
by the energy functional. This scheme is hereafter referred as
scheme A. This scheme A has been actually used in developing
the generalized gradient approximation [50–53], density-
moment approximation [54–60] of the xc energy functional
of the DFT, and vorticity expansion approximation [61–64] of
the xc energy functional of the CDFT [46–49]. Along scheme
A, we have already started to develop the approximate KE
functional [18–20,22–25]. Several approximate forms have
been obtained by using exact relations that are derived from
the scaling property of the KE functional and Hohenberg-Kohn
theorem of the PD functional theory [18–20,22–25].

Another scheme is to develop approximate forms of the
energy functional on the basis of the rigorous expression with
the coupling-constant integration (RECCI) [45]. This scheme
is hereafter called scheme B. This scheme B has also been used
in developing the local density approximation (LDA) [28],
average-density approximation [65–68], and weighted-density
approximation [66–70] of the xc energy functional of the
DFT. Also in the CDFT, we have developed the RECCI-based
LDA, ADA, and WDA [71]. By reference to these successful
examples, scheme B is expected to be an effective way
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to develop the approximate KE functional also in the PD
functional theory.

Although we have already derived the RECCI for the
KE functional [45], the specific approximate forms are not
yet presented on the basis of it. In this paper, we propose
approximate forms of the KE functional along scheme B and
check the validity of their approximate forms by performing
atomic structure calculations. We also discuss the usefulness
and possibility of scheme B as an alternative way to develop
the approximate form of the KE functional.

Organization of this paper is as follows. In Sec. II, we review
the RECCI for the KE functional of the PD functional theory.
On the basis of it, we present six kinds of approximate KE
functionals by using familiar energy functionals. We apply
them to atomic structure calculations for Be, Ne, and Mg
atoms, and perform the error analysis of the KE and resultant
PD. The atomic structure calculations are based on the scaling
method of the PD functional theory [24,25]. In Sec. III, we
explain the details of the calculation method. In Sec. IV, we
present results of the error analysis and discuss the validity
of these approximate forms in order to get the guideline for
improvements of the RECCI-based KE functional. On the
basis of the discussion, in Sec. V, we devise the RECCI-based
KE functional that is consistent with the scaling property of
the KE functional. In addition, the validity and soundness of
the proposed KE functional is confirmed by atomic structure
calculations in Sec. V. Finally, the concluding remarks are
given in Sec. VI.

II. APPROXIMATE KE FUNCTIONAL BASED
ON THE RECCI

A. RECCI for the KE functional

In this section, we briefly review the RECCI for the KE
functional [45] for the convenience of later discussions. The
RECCI is derived by considering the Hamiltonian that depends
on the coupling constant λ:

Ĥλ = T̂ + V̂ int
eff + V̂ + λ

(
Ŵ − V̂ int

eff

)
, (1)

where T̂ , Ŵ , and V̂ are operators of the KE, electron-electron
interaction energy, and external potential energy, respectively,
and where V̂ int

eff denotes the effective potential operator of the
electron-electron interaction of the noninteracting reference
system [18,20]. It should be noted that Eq. (1) becomes the
Hamiltonian of the noninteracting reference system [18,20]
and that of the real system when λ = 0 and λ = 1, respectively.
If we denote the ground-state wave function of Eq. (1) by �λ,
then the ground-state wave functions of the noninteracting
reference system and real system are written by �0 and �1,
respectively. Due to the Hohenberg-Kohn theorem with respect
to the PD, �λ is the functional of the PD [45]. Therefore, the
expectation values of T̂ and Ŵ with respect to �1 are expressed
as the functional of the ground-state PD γ (2) of the real system.
If we denote their expectation values as T [γ (2)] and W [γ (2)],
then the RECCI for T [γ (2)] is given by [45]

T [γ (2)] = Ts

[
γ

(2)
SD [γ (2)]

] +
∫ 1

0
〈�λ| Ŵ − V̂ int

eff |�λ〉� dλ

− W [γ (2)] + V int
eff

[
γ

(2)
SD [γ (2)]

]
, (2)

where γ
(2)
SD [γ (2)] denotes the variationally best PD among the

set of PDs that are constructed from the Slater determinant
(SD), and where Ts[γ

(2)
SD [γ (2)]] and V int

eff [γ (2)
SD [γ (2)]] are expec-

tation values of T̂ and V̂ int
eff with respect to �0. The reason why

γ
(2)
SD is a functional of γ (2) is that γ

(2)
SD is uniquely determined

as the approximate PD for the real system whose external
potential has one-to-one correspondence to γ (2) due to the
Hohenberg-Kohn theorem [45]. Although the RECCI Eq. (2)
seems to be complicated, this expression really gives a good
starting point of developing the approximate form as shown in
subsequent sections.

B. RECCI-based approximate KE functionals
constructed from familiar energy functionals

In order to develop the approximate form of T [γ (2)]
by means of Eq. (2), we employ the perturbation theory
for approximating �λ [45]. Specifically, T̂ + V̂ int

eff + V̂ and
λ(Ŵ − V̂ int

eff ) in Eq. (1) are treated as the nonperturbative
Hamiltonian and perturbation, respectively. As the lowest-
order approximation, by neglecting the second- and higher-
order terms of the perturbation series, Eq. (2) is approximated
to [45]

T [γ (2)] ≈ Ts

[
γ

(2)
SD [γ (2)]

] − (W [γ (2)] − 〈�0|Ŵ |�0〉). (3)

By using Eq. (3), we can devise the approximate form of
the KE functional. The first term of the right-hand side of
Eq. (3), Ts[γ

(2)
SD [γ (2)]], is the KE of the noninteracting system.

We immediately come up with the idea of using the model
functional for the noninteracting KE as the approximation of
Ts[γ

(2)
SD [γ (2)]]. For instance, the Thomas-Fermi (TF) functional

TTF[ρ] [72–74], Gaussian model functional TGM[ρ] [74,75],
and Thomas-Fermi-Weizsäcker (TFW) functional TTFW[ρ]
[74,76] may be used as the approximation of Ts[γ

(2)
SD [γ (2)]].

These are provided as the functional of the electron density
ρ(r), which are exactly calculated from the PD. The explicit
forms are given by

TTF [ρ] = 3

5
(3π )2/3

∫
ρ(r)5/3d3r, (4)

TGM [ρ] = 3π

22/3

∫
ρ(r)5/3d3r, (5)

TTFW [ρ] = TTF [ρ] + 1

9
TW [ρ] , (6)

with

TW [ρ] = 1

8

∫ |∇ρ(r)|2
ρ(r)

d3r, (7)

ρ(r) = 2

N − 1

∫
γ (2)(rr′; rr′)d3r ′. (8)

Next, concerning the second term of the right-hand
side of Eq. (3), W [γ (2)] − 〈�0| Ŵ |�0〉 is expected to be
comparable in magnitude to the correlation energy because
�0 is the ground-state wave function of the noninteracting
reference system. Therefore, the second term may be approx-
imated by the known functional of the correlation energy
Ec [ρ]. In this paper, we adopt the LDA ELDA

c [ρ] [77] and
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Perdew-Burke-Ernzerhof (PBE) functional EPBE
c [ρ] [52] as

Ec [ρ]. Thus, we obtain six kinds of approximate forms:

TTF-LDA[γ (2)] = TTF[ρ] − ELDA
c [ρ], (9)

TTF-PBE[γ (2)] = TTF[ρ] − EPBE
c [ρ], (10)

TGM-LDA[γ (2)] = TGM[ρ] − ELDA
c [ρ], (11)

TGM-PBE[γ (2)] = TGM[ρ] − EPBE
c [ρ], (12)

TTFW-LDA[γ (2)] = TTFW[ρ] − ELDA
c [ρ], (13)

TTFW-PBE[γ (2)] = TTFW[ρ] − EPBE
c [ρ]. (14)

Equations (9)–(14) are referred to as the TF-LDA, TF-PBE,
GM-LDA, GM-PBE, TFW-LDA, and TFW-PBE functional,
respectively. These approximate forms seem to be quite
plausible because the similar approximate formula is found
in the conventional DFT [78]. No adjustable parameters are
included in these KE functionals. This is a desirable feature for
evaluating the real value of the RECCI-based KE functional.
Thus, the RECCI Eq. (2) provides a solid basis for this type of
the approximate form in the PD functional theory.

III. CALCULATION METHOD

In order to check the validity of six approximate functionals,
and to get the guideline for improvements of the RECCI-based
KE functional, atomic structures of neutral Be, Ne, and Mg
atoms are calculated by using the scaling method that is a
recently proposed method and makes the search region of
PDs extended efficiently [24,25]. For comparison, we also
perform numerical calculations for Be, Ne, and Mg atoms by
using TTF[ρ] alone, TGM[ρ] alone, and TTFW[ρ] alone as the
approximate form of T [γ (2)]. The approximate KE functionals
used in the test calculations, which are denoted as T̃ [γ (2)], are
summarized in Table I. In order to clarify the combination of
the Ts part and the Ec part in T̃ [γ (2)], we also show both Ts[ρ]
and Ec[ρ] together with T̃ [γ (2)] in Table I. It should be noted
that the TFW Escale

c , which is listed in the last row of Table I,
will be explained in Sec. V as the RECCI-based KE functional
that satisfies the scaling property of the KE functional.

TABLE I. The approximate KE functionals T̃ [γ (2)], and their
constituent functionals.

T̃ [γ (2)] Ts part Ec part

TF Eq. (4) TTF [ρ]
GM Eq. (5) TGM [ρ]
TFW Eq. (6) TTFW [ρ]
TF-LDA Eq. (9) TTF [ρ] ELDA

c [ρ]
GM-LDA Eq. (11) TGM [ρ] ELDA

c [ρ]
TFW-LDA Eq. (13) TTFW [ρ] ELDA

c [ρ]
TF-PBE Eq. (10) TTF [ρ] EPBE

c [ρ]
GM-PBE Eq. (12) TGM [ρ] EPBE

c [ρ]
TFW-PBE Eq. (14) TTFW [ρ] EPBE

c [ρ]
TFW-Escale

c Eq. (26) TTFW [ρ] Escale
c [γ (2)]

The first step of the scaling method is to prepare the seed
PD that corresponds to the variationally best PD among the
predetermined search region that is not yet extended by the
scaling method [24,25]. In the test calculations, we employ
as the predetermined search region the set of PDs that are
constructed from the linear combination of SDs [23]. The
numbers of SDs used in the test calculations are 345, 1342, and
1627 for Be, Ne, and Mg, respectively. After getting the seed
PD, the search region of PDs is extended by adding scaled PDs
to elements of the search region, where scaled PDs are obtained
by transforming the seed PD via the uniform scaling of electron
coordinates. Next, the corrected PD, which corresponds to the
variationally best PD among the extended search region of
PDs, is easily obtained along the calculation procedure of the
scaling method [24,25]. Using the corrected PD, the KE (T ),
electron-electron interaction energy (W ), potential energy (V ),
and total energy (E) are calculated for Be, Ne, and Mg atoms.
We also evaluate errors of the KE, electron-electron interaction
energy and potential energy by comparing with the results of
the 1/Z expansion method [79]. Here, the 1/Z expansion
method is a sophisticated calculation method for the atomic
structure, which is based on data of configuration interaction
(CI) calculations and experiments [80,81].

IV. ERROR ANALYSIS BY MEANS OF THE RECCI-BASED
KE FUNCTIONAL CONSTRUCTED FROM FAMILIAR

ENERGY FUNCTIONALS

In this section, the validity of approximate forms is
discussed on the basis of calculation results for Be, Ne, and
Mg atoms. The KE error, especially causes of the KE error,
are analyzed and discussed in Sec. IV A.

In Sec. IV B, for the purpose of evaluating the resultant
PD, the errors of the potential energy and electron-electron
interaction energy are investigated. The xc hole is also
calculated from the resultant PD and is compared with the
correct reference data obtained from the CI method. Through
these analyses, we discuss the guideline for improvements of
the RECCI-based KE functional.

A. Kinetic energy

If the exact and approximate KE functionals are denoted
by T [γ (2)] and T̃ [γ (2)], respectively, then the error of the KE
(�T ) is generally written as

�T = T̃
[
γ̃

(2)
0

] − T
[
γ (2)

gs

]
, (15)

where γ (2)
gs is the correct ground-state PD, and where γ̃

(2)
0

denotes the resultant PD that is obtained as the solution of the
scaling method [24,25]. The error �T can be divided into two
terms:

�T = {
T̃

[
γ (2)

gs

] − T
[
γ (2)

gs

]} + {
T̃

[
γ̃

(2)
0

] − T̃
[
γ (2)

gs

]}
. (16)

The first term of the right-hand side of Eq. (16) can be
recognized as the error that comes from the inappropriateness
of the approximate functional. Namely, this error is observed
even though γ (2)

gs is input into the approximate functional.
The second term of the right-hand side of Eq. (16) can be
recognized as the error that comes from the difference between
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TABLE II. Calculation results of T̃ [γ (2)
gs ], �Tfunctional, and Ts and

Ec parts of T̃ [γ (2)
gs ] for the Ne atom. When estimating �Tfunctional,

we also refer to the result of the 1/Z expansion method [79] as the
correct KE T [γ (2)

gs ].

T̃ [γ (2)
gs ] �Tfunctional �Tfunctional Ts part Ec part

(Ry) (Ry) (%) (Ry) (Ry)

TF 235.502 −22.372 −8.675 235.502 0.000
GM 243.490 −14.384 −5.578 243.490 0.000
TFW 255.616 −2.258 −0.876 255.616 0.000
TF-LDA 237.334 −20.540 −7.965 235.502 −1.832
GM-LDA 245.322 −12.552 −4.868 243.490 −1.832
TFW-LDA 257.447 −0.427 −0.165 255.616 −1.832
TF-PBE 236.201 −21.673 −8.404 235.502 −0.699
GM-PBE 244.189 −13.685 −5.307 243.490 −0.699
TFW-PBE 256.315 −1.559 −0.605 255.616 −0.699
TFW-Escale

c 256.931 −0.942 −0.365 255.616 −1.316

γ̃
(2)
0 and γ (2)

gs [see Eq. (19) shown below]. Let us denote these
errors as �Tfunctional and �Tdensity:

�Tfunctional = T̃
[
γ (2)

gs

] − T
[
γ (2)

gs

]
, (17)

�Tdensity = T̃
[
γ̃

(2)
0

] − T̃
[
γ (2)

gs

]
. (18)

It is worthwhile to rewrite �Tdensity by using the Taylor series
expansion of T̃

[
γ (2)

]
around γ (2) = γ (2)

gs , i.e.,

�Tdensity =
∫∫ {

γ̃
(2)
0 (rr′; rr′) − γ (2)

gs (rr′; rr′)
}

×
{

δT̃ [γ (2)]

δγ (2)(rr′; rr′)

}
γ (2)=γ

(2)
gs

d3rd3r ′ + · · ·. (19)

It is clear from this equation that �Tdensity is the error reflecting
the difference between γ̃

(2)
0 and γ (2)

gs .
Since the present approximate KE functionals are the

functional of the electron density ρ(r), the CI electron density
for the Ne atom [82] can be utilized as the correct ground-state
electron density in evaluating �Tfunctional and �Tdensity.

1. Evaluation of �Tfunctional for Ne

Using the CI electron density [82] as the correct ground-
state electron density, we evaluate �Tfunctional for approximate
forms shown in Table I. The results of �Tfunctional for the Ne
atom are summarized in Table II. It is found that resultant
�Tfunctional’s for all approximate forms are negative. This
means that the present approximate forms tend to underes-
timate the KE. In order to investigate in more detail, we
show the Ts part and the Ec part separately in Table II. The
underestimation is reduced if the TFW functional is used as
the Ts part. The underestimation is also reduced by the Ec

part, i.e., ELDA
c [ρ] and EPBE

c [ρ] decrease �Tfunctional by about
0.7% and 0.2%, respectively (Table II). Two parts, the Ts part
and the Ec part, would have the tendency to cancel each other.

The correction by ELDA
c [ρ] is more effective than that by

EPBE
c [ρ], which seems to be due to the accidental cancellation

of errors between the Ts part and the Ec part. Namely, the
LDA tends to overestimate the correlation energy due to
the logarithmic divergence in the high density limit [74].
This overestimation of the correlation energy accidentally
reduces the underestimation of the KE well. This means that
the improvement of either the Ts part or the Ec part is not
sufficient, and that well-balanced improvement of both parts
is indispensable for the reduction of �Tfunctional.

2. Evaluation of �Tdensity for Ne

Evaluation results of �Tdensity for the Ne atom are given
in Table III. It is found from Table III that �Tdensity’s for
all approximate forms are positive. This means that the
resultant PD and the corresponding electron density lead to
the overestimation of the KE. It is also found from Table III
that the Ec part substantially affects the resultant PD, and
accordingly �Tdensity is reduced. Specifically, Ec parts of the
LDA and PBE reduce �Tdensity by about 0.5 Ry and 0.3 Ry,
respectively. Thus, the Ec part decreases �Tdensity reasonably.

Figure 1 shows resultant electron densities that are calcu-
lated by using the TF-PBE, GM-PBE, and TFW-PBE func-
tionals, together with the CI electron density. From this figure,
the electron density strongly depends on the approximate
form of the Ts part. The TFW-PBE functional provides the
electron density that is closer to the CI electron density than

TABLE III. Calculation results of T̃ [γ̃ (2)
0 ], T̃ [γ (2)

gs ], �Tdensity, and Ts and Ec parts of T̃ [γ̃ (2)
0 ] for

the Ne atom. T̃ [γ (2)
gs ] in the second column are identical to those in Table II.

T̃ [γ̃ (2)
0 ] T̃ [γ (2)

gs ] �Tdensity �Tdensity Ts part Ec part
(Ry) (Ry) (Ry) (%) (Ry) (Ry)

TF 281.085 235.502 45.582 19.355 281.085 0.000
GM 272.595 243.490 29.105 11.953 272.595 0.000
TFW 259.029 255.616 3.414 1.335 259.029 0.000
TF-LDA 282.521 237.334 45.187 19.039 280.717 −1.804
GM-LDA 273.926 245.322 28.604 11.660 272.202 −1.724
TFW-LDA 260.277 257.447 2.830 1.099 258.545 −1.733
TF-PBE 281.538 236.201 45.337 19.194 280.920 −0.618
GM-PBE 272.989 244.189 28.800 11.794 272.401 −0.588
TFW-PBE 259.426 256.315 3.112 1.214 258.796 −0.631
TFW-Escale

c 257.707 256.931 0.776 0.302 256.897 −0.811
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FIG. 1. Profiles of electron densities of the Ne atom. These
profiles are calculated by using the TF-PBE (chain line), GM-
PBE (dashed line), and TFW-PBE functionals (solid line). As a
reference, the electron density by the CI method [82] is also shown
(dotted line).

the TF-PBE and GM-PBE functionals. In agreement with this
improvement in the electron density, the magnitude of �Tdensity

is also smallest as shown in Table III.
Figures 2–4 show the dependencies of the electron density

on the Ec part. Although it apparently seems that the Ec

part has a little effect on the electron density as shown in
Figs. 2–4, quantitative differences in �Tdensity can be found
in Table III, and the Ec part definitely improves �Tdensity,
which is also shown in Table III. This is because �Tdensity is an
integrated value, and because �Tdensity depends on not only the
error of the electron density but also the functional derivative
{δT̃ [γ (2)]/δγ (2)(rr′; rr′)}

γ (2)=γ
(2)
gs

as shown in Eq. (19).
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FIG. 2. Profiles of electron densities of the Ne atom. These
profiles are calculated by using the TF (chain line), TF-LDA (dashed
line), and TF-PBE functionals (solid line). As a reference, the electron
density by the CI method [82] is also shown (dotted line).
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FIG. 3. Profiles of electron densities of the Ne atom. These
profiles are calculated by using the GM (chain line), GM-LDA
(dashed line), and GM-PBE functionals (solid line). As a reference,
the electron density by the CI method [82] is also shown (dotted line).

3. Evaluation of �T for Ne, and those for Be and Mg

As mentioned in Secs. IV A 1 and IV A 2, since �Tdensity has
an opposite sign to �Tfunctional, they cancel each other. These
cancellations occur in all cases of the present approximate KE
functionals, as shown in Table IV. Especially, the resultant total
errors �T ’s for the TFW-based KE functionals (TFW, TFW-
LDA, TWF-PBE) are quite small and less than 1%. Judging
from this fact, and considering that the present work is the
initial attempt for the approximation of Eq. (3), the TFW-based
KE functional seems to be tolerable or sound.

Here note that �T for the TFW functional is less than
those for the other functionals (TFW-LDA, TFW-PBE). But
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TFW-E        c
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FIG. 4. Profiles of electron densities of the Ne atom. These
profiles are calculated by using the TFW (chain line), TFW-LDA
(dashed line), TFW-PBE (solid line), and TFW-Escale

c functionals
(gray bold line). As a reference, the electron density by the CI method
[82] is also shown (dotted line).

062511-5



KATSUHIKO HIGUCHI AND MASAHIKO HIGUCHI PHYSICAL REVIEW A 90, 062511 (2014)

TABLE IV. Calculation results of �T for the Ne atom. For reference, the resultant KE T̃ [γ̃ (2)
0 ],

�Tfunctional, and �Tfunctional are listed.

T̃ [γ̃ (2)
0 ] �T �T �Tfunctional �Tfunctional �Tdensity �Tdensity

(Ry) (Ry) (%) (Ry) (%) (Ry) (%)

TF 281.085 23.211 9.001 −22.372 −8.675 45.582 19.355
GM 272.595 14.721 5.709 −14.384 −5.578 29.105 11.953
TFW 259.029 1.155 0.448 −2.258 −0.876 3.414 1.335
TF-LDA 282.521 24.647 9.558 −20.540 −7.965 45.187 19.039
GM-LDA 273.926 16.052 6.225 −12.552 −4.868 28.604 11.660
TFW-LDA 260.277 2.403 0.932 −0.427 −0.165 2.830 1.099
TF-PBE 281.538 23.664 9.177 −21.673 −8.404 45.337 19.194
GM-PBE 272.989 15.115 5.861 −13.685 −5.307 28.800 11.794
TFW-PBE 259.426 1.552 0.602 −1.559 −0.605 3.112 1.214
TFW-Escale

c 257.707 −0.167 −0.065 −0.942 −0.365 0.776 0.302

this does not mean that the TFW functional is more reasonable
than other approximate forms, because the KE functional
can be appreciated as a good approximate form only if both
�Tdensity and �Tfunctional are improved simultaneously by it.
In this sense, the TFW-LDA and TFW-PBE functionals may
be regarded as a good approximation as compared with the
TFW functional. As shown in Secs. IV A 1 and IV A 2, not
only does the Ts part explicitly affect the KE error, but also the
Ec part improves both �Tdensity and �Tfunctional. The key point
to the simultaneous improvements of �Tdensity and �Tfunctional

is to devise the Ts part and the Ec part in a well-balanced way.
This is an important finding and will be used for the further
development of the RECCI-based KE functional (Sec. V).

The calculation results for Be and Mg are summarized in
Tables V and VI, respectively. Concerning the KE energy,
the KE errors for Be and Mg are reduced by using the TFW
functional as the Ts part. It is also found in Tables V and VI
that Ec parts obviously affect �T , but sometimes decrease
and sometimes increase �T , similarly to the case of the Ne
atom (Table IV). This is expected to be because the accidental
cancellation of �Tdensity and �Tfunctional occurs for the cases of
Be and Mg atoms as is the same for the Ne atom.

At the end of this section, we compare the present
approximate forms with the previously proposed one that
is devised along scheme A [25]. Hereafter, we refer to this
functional as the scheme-A KE functional. The errors for the
present approximate forms are still large as compared with that

TABLE V. Calculation results of �T and T̃ [γ̃ (2)
0 ] for the Be atom.

T̃ [γ̃ (2)
0 ] (Ry) �T (Ry) �T (%)

TF 32.392 3.058 10.423
GM 31.337 2.003 6.828
TFW 29.044 −0.290 −0.990
TF-LDA 32.741 3.407 11.615
GM-LDA 31.682 2.348 8.006
TFW-LDA 29.373 0.039 0.133
TF-PBE 32.387 3.053 10.409
GM-PBE 31.345 2.011 6.856
TFW-PBE 29.074 −0.260 −0.887
TFW-Escale

c 28.816 −0.518 −1.765

for the scheme-A KE functional [25]. This means that there
is room for improvement in the present approximate forms.
However, on the other hand, the present approximate forms
(RECCI-based KE functional) never contain parameters, while
the scheme-A KE functional contains parameters that should
be determined in actual calculations [25]. Therefore, the
RECCI-based KE functional is more suitable for measuring
the potential of the PD functional theory than the previous
one. In addition, the calculation process to determine such
parameters is not needed for the present approximate forms.
From these points of view, the RECCI-based KE functional
seems to be more promising than the scheme-A KE functional
for further developments of the KE functional.

B. Potential and electron-electron interaction energies

1. Error of the potential energy

Calculation results of the potential energy for Ne, Be, and
Mg atoms are given in Tables VII–IX, respectively. We shall
at first discuss the results of the Ne atom (Table VII). The error
of the potential energy (�V ) is reduced by replacing the TF
functional with the GM functional or with the TFW functional.
The reduction rates for the former and latter replacements are
about 4% and 8%, respectively. This dependence of �V on the
Ts part is consistent with that of the electron density (Fig. 1). In
accordance with the fact that the Ec part substantially affects
the electron density, which is mentioned in Sec. IV A 2, the

TABLE VI. Calculation results of �T and T̃ [γ̃ (2)
0 ] for the Mg atom.

T̃ [γ̃ (2)
0 ] (Ry) �T (Ry) �T (%)

TF 433.344 33.234 8.306
GM 418.897 18.787 4.695
TFW 401.080 0.970 0.242
TF-LDA 434.553 34.443 8.608
GM-LDA 420.364 20.254 5.062
TFW-LDA 402.612 2.502 0.625
TF-PBE 433.691 33.581 8.393
GM-PBE 419.528 19.418 4.853
TFW-PBE 401.945 1.835 0.459
TFW-Escale

c 399.919 −0.191 −0.048
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TABLE VII. Calculation results for the Ne atom. The KE (T ),
electron-electron interaction energy (W ), potential energy (V ), and
total energy (E) are shown together with their errors to the reference
data. The errors are shown in the parentheses. The reference data are
also shown in the last row [79].

T (Ry) W (Ry) V (Ry) E (Ry)

281.085 112.837 −675.006 −281.085
TF

(9.001%) (6.012%) (8.489%) (9.001%)

272.595 102.675 −647.866 −272.595
GM

(5.709%) (−3.535%) (4.127%) (5.709%)

259.029 101.601 −619.660 −259.029
TFW

(0.448%) (−4.544%) (−0.406%) (0.448%)

282.521 110.071 −672.096 −279.504
TF-LDA

(9.558%) (3.413%) (8.022%) (8.388%)

273.926 100.278 −645.258 −271.054
GM-LDA

(6.225%) (−5.787%) (3.708%) (5.111%)

260.277 99.347 −617.019 −257.394
TFW-LDA

(0.932%) (−6.662%) (−0.831%) (−0.186%)

281.538 111.304 −673.437 −280.594
TF-PBE

(9.177%) (4.572%) (8.237%) (8.811%)

272.989 101.405 −646.500 −272.106
GM-PBE

(5.861%) (−4.728%) (3.908%) (5.519%)

259.426 100.334 −618.216 −258.455
TFW-PBE

(0.602%) (−5.735%) (−0.638%) (0.225%)

257.707 108.578 −623.993 −257.707
TFW-Escale

c (−0.065%) (2.011%) (0.290%) (−0.065%)

Reference 257.874 106.438 −622.186 −257.874
data [79]

dependence of �V on the Ec part is definitely found in
Table VII. This is because �V is also an integrated value
similar to the case of �Tdensity.

Similar results of �V ’s are obtained for Be and Mg atoms
(Tables VIII and IX). Namely, �V ’s are reduced if the TFW
functional is used as the Ts part instead of using the TF or
GM functional. In addition, �V ’s are changed obviously by
the Ec part. These similarities between data of three tables
(Tables VII–IX) suggest that the present KE functionals have
a kind of universality which is independent of the system.

2. Error of the electron-electron interaction energy

Errors of the electron-electron interaction energy (�W ) for
Ne, Be, and Mg atoms are also shown in Tables VII, VIII,
and IX, respectively. We discuss �W for the Ne atom at first
(Table VII). It is found in Table VII that if the TF functional
is adopted as the Ts part, then the electron-electron interaction
energy is overestimated. Then, the Ec part reduces �W well in
this case. On the other hand, the electron-electron interaction
energy is underestimated if the GM or TFW functional is used
as the Ts part. In this case (GM or TFW functional), the Ec

part slightly enhances �W . Although �W is actually one of
the useful benchmarks for evaluating the resultant PD, it is
difficult in the present case to judge only from values of �W

which functional is best for reproducing the ground-state PD.

TABLE VIII. Calculation results for the Be atom. The KE (T ),
electron-electron interaction energy (W ), potential energy (V ), and
total energy (E) are shown together with their errors to the reference
data. The errors are shown in the parentheses. The reference data are
also shown in the last row [79].

T (Ry) W (Ry) V (Ry) E (Ry)

32.392 9.858 −74.641 −32.392
TF

(10.423%) (12.664%) (10.714%) (10.423%)

31.337 9.513 −72.187 −31.337
GM

(6.828%) (8.723%) (7.074%) (6.828%)

29.044 8.807 −66.895 −29.044
TFW

(−0.990%) (0.656%) (−0.776%) (−0.990%)

32.741 9.800 −74.367 −31.826
TF-LDA

(11.615%) (12.001%) (10.308%) (8.495%)

31.682 9.447 −71.912 −30.783
GM-LDA

(8.006%) (7.970%) (6.666%) (4.938%)

29.373 8.739 −66.617 −28.504
TFW-LDA

(0.133%) (−0.122%) (−1.188%) (−2.828%)

32.387 9.817 −74.442 −32.238
TF-PBE

(10.409%) (12.197%) (10.419%) (9.899%)

31.345 9.469 −71.995 −31.181
GM-PBE

(6.856%) (8.217%) (6.789%) (6.296%)

29.074 8.764 −66.714 −28.877
TFW-PBE

(−0.887%) (0.161%) (−1.044%) (−1.559%)

28.816 8.727 −66.359 −28.816
TFW-Escale

c (−1.765%) (−0.266%) (−1.570%) (−1.765%)

Reference 29.334 8.750 −67.418 −29.334
data [79]

This is because the cancellation of errors of the resultant PD
over the spatial coordinates could occur in calculating �W ,
where we note that �W is obtained from the integration of the
error of the resultant PD multiplied by the factor 2/|r − r′|.

In order to evaluate more directly whether the resultant PD
is close to the correct ground-state PD or not, the xc hole is
investigated for the Ne atom. The xc hole that can be calculated
from the PD reflects the spatial shape of the PD directly. The
xc hole nxc(r , r′) is given by

nxc(r , r′) = 2γ (2)(r r′; r r′ ) − ρ(r)ρ(r′)
ρ(r)

. (20)

Figure 5 shows profiles of the xc hole calculated by using
the TF-PBE, GM-PBE, and TFW-PBE functionals, together
with the corresponding xc hole calculated by the CI method
[83]. These profiles are calculated along the z axis under the
condition that the reference electron is placed at z = 0.2. It is
found from Fig. 5 that the xc hole by the TFW-PBE functional
is close to that by the CI method [83]. Namely, the width of the
large hole around the nucleus (z′ − z = −0.2), the profile of
the valley around z′ − z = −0.8, and the position of the peak
around z′ − z = −0.5 for the case of the TFW-PBE functional
are in more agreement with the results by the CI method than
those by other functionals. Thus, the investigation of the xc
hole reveals that the TFW functional is better as the Ts part
than the TF or GM functional.
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TABLE IX. Calculation results for the Mg atom. The KE (T ),
electron-electron interaction energy (W ), potential energy (V ), and
total energy (E) are shown together with their errors to the reference
data. The errors are shown in the parentheses. The reference data are
also shown in the last row [79].

T (Ry) W (Ry) V (Ry) E (Ry)

433.344 170.034 −1036.722 −433.344
TF

(8.306%) (7.459%) (8.166%) (8.306%)

418.897 166.257 −1004.050 −418.897
GM

(4.695%) (5.072%) (4.757%) (4.695%)

401.080 159.133 −961.293 −401.080
TFW

(0.242%) (0.569%) (0.296%) (0.242%)

434.553 173.009 −1038.353 −430.790
TF-LDA

(8.608%) (9.339%) (8.336%) (7.668%)

420.364 166.190 −1003.217 −416.663
GM-LDA

(5.062%) (5.029%) (4.671%) (4.137%)

402.612 157.409 −959.020 −398.998
TFW-LDA

(0.625%) (−0.520%) (0.059%) (−0.278%)

433.691 173.147 −1039.087 −432.249
TF-PBE

(8.393%) (9.426%) (8.413%) (8.033%)

419.528 167.067 −1004.633 −418.037
GM-PBE

(4.853%) (5.584%) (4.818%) (4.481%)

401.945 158.077 −960.448 −400.426
TFW-PBE

(0.459%) (−0.098%) (0.208%) (0.079%)

399.919 160.331 −960.169 −399.991
TFW-Escale

c (−0.048%) (1.326%) (0.179%) (−0.048%)

Reference 400.110 158.232 −958.452 −400.110
data [79]

Next, we shall consider the effect of the Ec part on the
resultant PD. Profiles of the xc hole for the cases of the TFW,
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FIG. 5. Profiles of the xc holes [nxc(r , r′)] of the Ne atom along
z axis. The reference electron is placed at z = 0.2. These profiles are
calculated by using the TF-PBE (chain line), GM-PBE (dashed line),
and TFW-PBE functionals (solid line). As a reference, the xc hole by
the CI method [83] is also shown (dotted line).
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FIG. 6. Profiles of the xc holes [nxc(r , r′)] of the Ne atom along
z axis. The reference electron is placed at z = 0.2. These profiles are
calculated by using the TFW (chain line), TFW-LDA (dashed line),
TFW-PBE (solid line) and TFW-Escale

c functionals (gray bold line).
As a reference, the xc hole by the CI method [83] is also shown
(dotted line).

TFW-LDA, and TFW-PBE functionals are shown in Figs. 6–8
in which the reference electron is placed at z = 0.2 (Figs. 6
and 7) and z = 0.4 (Fig. 8), respectively. Although profiles for
z = 0.2 (Figs. 6 and 7) are little dependent on the Ec part,
profiles for z = 0.4 (Fig. 8) have some differences between
them, especially around z′ − z = −0.8. It is found from Fig. 8
that the xc hole by the TFW functional is closer to that by
the CI method than those by the TFW-LDA and TFW-PBE.
This tendency of the xc hole is consistent with that of �W , as
shown in Table VII. This tendency of the xc hole is also found
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FIG. 7. Profiles of the xc holes [nxc(r , r′)] of the Ne atom along
z axis. The reference electron is placed at z = 0.2. These profiles are
calculated by using the TFW (chain line), TFW-LDA (dashed line),
TFW-PBE (solid line), and TFW-Escale

c functionals (gray bold line).
As a reference, the xc hole by the CI method [83] is also shown
(dotted line).
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FIG. 8. Profiles of the xc holes [nxc(r , r′)] of the Ne atom along
z axis. The reference electron is placed at z = 0.4. These profiles are
calculated by using the TFW (chain line), TFW-LDA (dashed line),
TFW-PBE (solid line), and TFW-Escale

c functionals (gray bold line).
As a reference, the xc hole by the CI method [83] is also shown
(dotted line).

in the case of using GM functional as the Ts part. On the other
hand, the xc hole is improved by the Ec part in the case of
using the TF functional as the Ts part, which is also consistent
with the results of �W shown in Table VII. Thus, whether the
Ec part improves the xc hole or not depends on the Ts part.

Similar results concerning �W can be found in Be and Mg
atoms, which are shown in Tables VIII and IX, respectively. It
is seen from Tables VIII and IX that �W is reduced by using
the TFW as the Ts part. This is similar to the tendency of the xc
hole of the Ne atom. The Ec part works effectively in reducing
�W for the case of the Be atom, while in the case of the Mg
atom it works effectively only if the TFW is used as the Ts

part.
Thus, it is shown that although the TFW functional is better

as the Ts part than the TF or GM functional, the effects of the
Ec part on �W and the xc hole do not show a clear tendency.
Such an absence of the tendency would be caused by the
enhancement or cancellation between errors of the resultant
PD. Namely, the error of the resultant PD can be divided into
two errors that are caused by the Ts part and the Ec part. These
two errors seem to cancel each other, or enhance each other
case by case. This means, again, that it is quite significant to
develop the Ts part and the Ec part in a well-balanced way. This
will become a useful guideline for the further development of
the KE functional.

V. RECCI-BASED KE FUNCTIONAL CONSISTENT
WITH THE SCALING PROPERTY

With the aim of improving Ts and Ec parts in a well-
balanced way, we develop the RECCI-based KE functional
that is consistent with the scaling property of the KE functional
[9,78,84]. The solution obtained by the scaling method [24,25]
necessarily satisfies the virial theorem if the approximate KE
functional is consistent with the scaling property. Furthermore,
the scaling property is used as one of the key restrictive

conditions also in scheme A [18–20,22–25]. Therefore, it is
meaningful to develop the RECCI-based KE functional that
has the correct scaling property. In this section, we shall
propose such an approximate KE functional and discuss its
validity.

A. Approximate form

In RECCI-based approximate KE functionals discussed in
Sec. IV, TF, GM, and TFW functionals that are used as the
Ts part satisfy the scaling property of the KE functional.
Namely, these functionals respectively satisfy the fol-
lowing relations: TTF[ρζ ] = ζ 2TTF[ρ], TGM[ρζ ] = ζ 2TGM[ρ],
TTFW[ρζ ] = ζ 2TTFW[ρ], where ζ is the scaling factor and ρζ (r)
denotes the scaled electron density that is given by ζ 3ρ(ζr).
On the other hand, LDA and PBE functionals that are used
as the Ec part do not satisfy the scaling property of the KE
functional. In order to improve this unbalance, we propose the
RECCI-based KE functional in which both the Ts part and
the Ec part are consistent with the scaling property of the KE
functional.

Since the TFW functional is better than the TF and GM
functionals, as shown in the previous section, we adopt the
TFW functional as the Ts part. As the Ec part, we employ the
following functional:

Escale
c [γ (2)] = α[ρ](W [γ (2)] − U [ρ] − Ex[ρ]), (21)

where U [ρ] is the Hartree energy which can be rigorously
expressed by the electron density. The functional Ex[ρ]
denotes the exchange energy functional. Since the exchange
energy cannot be expressed by the PD alone, some approx-
imation is needed. In this paper, we utilize as Ex[ρ] the
DFT-LDA exchange energy functional that is constructed by
borrowing the expression for the exchange energy density
of the homogeneous electron liquid [85]. The functional
α[ρ] is determined so that Escale

c [γ (2)] satisfies the scaling
property of the KE functional: Escale

c [γ (2)
ζ ] = ζ 2Escale

c [γ (2)].
Namely, if α[ρ] is given in such a way that the relation
α[ρζ ] = ζα[ρ] holds, then Escale

c [γ (2)] will have the correct
scaling property of the KE functional. Here, we use the fact
that W [γ (2)] − U [ρ] − Ex[ρ] holds the following relation:

W
[
γ

(2)
ζ

] − U [ρζ ] − Ex[ρζ ] = ζ (W [γ (2)] − U [ρ] − Ex[ρ]).

(22)

In this paper, the following functional is employed as α [ρ]:

α [ρ] = β

∫
ρ(r)4/3d3r, (23)

where β is a constant. Substituting Eq. (23) into Eq. (21), we
have the Ec part of the present KE functional:

Escale
c [γ (2)] = β

∫
ρ(r)4/3d3r(W [γ (2)] − U [ρ] − Ex[ρ]).

(24)

Next, we shall explain how to determine the value
of β. From Eq. (24), we formally get β = Escale

c [γ (2)]/∫
ρ(r)4/3d3r(W [γ (2)] − U [ρ] − Ex[ρ]). By using the electron

density that is obtained through the DFT calculations with
the PBE functional [52], we estimate

∫
ρ(r)4/3d3r , U [ρ],
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FIG. 9. Dependence of β on the total number of electrons N .

and Ex[ρ]. As to W [γ (2)], the results of the 1/Z ex-
pansion method [79] is adopted. Also, using the Slater
determinant 
KS that consists of the Kohn-Sham orbitals,
we estimate Escale

c [γ (2)] via W [γ (2)] − 〈
KS |Ŵ |
KS〉. The
estimated values of β for closed-shell atoms are shown in
Fig. 9. From Fig. 9, we have

β = 0.848×N−1.557 (25)

to an accuracy with the coefficient of determination (R2) of
0.992, where N denotes the total number of electrons. It should
be noted that since the variational principle with respect to the
PD is performed under the condition that N is unchanged, β

is regarded as a constant in actual calculations.
We refer to the approximate KE functional with Eq. (24) as

TFW-Escale
c , the explicit expression of which is given by

TTFW-Escale
c

[γ (2)] = TTFW[ρ] − Escale
c [γ (2)]. (26)

As is clear from the above-mentioned discussion, the TFW-
Escale

c functional satisfies the correct scaling property of the
KE of the PD functional theory [9,78,84]. This approximate
form does not contain any adjustable parameters that should
be determined depending on the system. Therefore, the TFW-
Escale

c would be applicable not only to atoms and molecules
but also solids.

B. Validity check of the TFW-Escale
c functional

1. Error of the KE

We shall start with the discussion on the error of the KE in
the TFW-Escale

c functional. As mentioned in Sec. IV, the error
of the KE can be divided into two kinds of errors, �Tfunctional

and �Tdensity. The results of �Tfunctional and �Tdensity for Ne are
shown in Tables II and III, respectively. It is found that both
�Tfunctional and �Tdensity are improved by using the TFW-Escale

c

functional instead of other KE functionals [86]. It is also
found from these tables that �Tfunctional and �Tdensity for the
TFW-Escale

c functional are negative and positive, respectively,
which is similar to the cases of other approximate forms
(Table IV). Due to the cancellation of these two reduced errors,
�T for Ne is as small as −0.119%. This value is much smaller
than errors by other approximate KE functional as shown in

Table IV. Also in the case of Mg, the TFW-Escale
c functional

leads to the smallest �T (Table VI). On the other hand, in
the case of Be, �T by the TFW-Escale

c functional increases a
little as compared to those by the TFW-LDA and TFW-PBE
functionals (Table V). This would be because the accidental
cancellation between �Tfunctional and �Tdensity occurs in cases
of using the TFW-LDA and TFW-PBE functionals more
effectively than the case of using the TFW-Escale

c functional.
Thus, the TFW-Escale

c functional that is consistent with the
scaling property leads to comparable or better KE than the
TFW-LDA and TFW-PBE functionals that are not consistent
with the scaling property.

2. Errors of the potential and electron-electron
interaction energies

Calculation results of the potential and electron-electron
interaction energies for Ne, Be, and Mg atoms are given in
Tables VII–IX, respectively. It is found from these tables
that the virial theorem (2T [γ (2)] + W [γ (2)] + V [γ (2)] = 0)
[24,25] holds in the case of using the TFW-Escale

c functional,
which is confirmed directly by using calculation results of T ,
W , and V for Ne, Be, and Mg atoms. This is one of the striking
features of using the TFW-Escale

c functional.
In order to investigate �V and �W , we shall first discuss

the results of Ne (Table VII). As compared to the results by the
TFW-LDA and TFW-PBE functionals, �V is much reduced
by using the TFW-Escale

c functional. Consistently with this
improvement in �V , the electron density is also improved
as shown in Fig. 4. Both the first and second peaks of the
present electron density (gray bold line) are close to the CI
electron density as compared with those calculated by other
KE functionals.

Similarly to the improvements in �V and �T , it is found
from Table VII that �W is also improved for Ne by using
the TFW-Escale

c functional. As shown in Figs. 6 and 7, the
xc hole in the case of z = 0.2 gets closer to the CI xc hole
when the TFW-Escale

c functional is used. Especially, the large
hole (z − z′ = 0.2) that largely contributes to the xc energy
εxc is much improved as shown in Fig. 7. On the other hand,
in the case of z = 0.4 (Fig. 8), the xc hole by the TFW-Escale

c

functional gets away from the CI xc hole compared with those
by other functionals. But, we can say that this discrepancy
does not cause a large error in εxc. The reason is as follows.
The xc energy εxc is written as

εxc = e2

2

∫∫
ρ(r)nxc(r , r′)

|r − r′| d3rd3r ′. (27)

Equation (27) implies that nxc(r,r′) contributes to εxc largely
if the factor ρ(r)/|r − r′| has a large value. Since ρ(r) is large
near the nucleus (r = 0), ρ(r)/|r − r′| has a large value at
the vicinity of r = r′ = 0. This means that the accuracy of
nxc(r,r′) at z = 0.2 is more important than that at z = 0.4 in
evaluating εxc. Thus, the TFW-Escale

c functional preferentially
improves the profile of the xc hole in the region where the
xc hole effectively affects the accuracy of εxc. Combining this
fact with the improvement in the profile of the electron density
(Fig. 4), the improvement of �W in the case of Ne can be
recognized.
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Next, we shall discuss �V and �W for Be and Mg
atoms (Tables VIII and IX). Concerning �V ′s for Be and
Mg atoms, there is not a considerable difference between
the TFW-LDA, TFW-PBE, and TFW-Escale

c functionals. On
the other hand, �W for Mg worsens a little by using the
TFW-Escale

c functional instead of the TFW-LDA or TFW-PBE
functional while �W for Be obtained by the TFW-Escale

c

functional is also comparable with those by the TFW-LDA
and TFW-PBE functionals. This different tendency would
be caused by the fact that the scaling method [24,25] with
the TFW-Escale

c functional necessarily leads to the solution
satisfying the virial theorem. Namely, if any one of T , W , and
V has a little error, then the others are adjusted so that the
virial theorem 2T + W + V = 0 holds. Thus, different types
of cancellations of errors would occur in the case of using the
TFW-Escale

c functional.
Although the degree of improvement of �V , �W , and �T

have a small variation, the resultant PD would be improved as
a whole by using the TFW-Escale

c functional. The key point of
the improvement is that the resultant PD obtained by the TFW-
Escale

c functional satisfies the virial theorem that is regarded as
one of the strong necessary conditions for the ground state.

VI. CONCLUDING REMARKS

Approximate KE functionals of the PD functional theory
are proposed on the basis of the RECCI (Table I). The validity
and soundness of the approximate KE functionals are checked
by applying them to electronic structure calculations for Be,
Ne, and Mg atoms. The striking points of this work are as
follows:

(1) All of the approximate forms that are proposed in
this work have no adjustable parameters, which enables us
to evaluate the real value of scheme B.

(2) According to the error analysis by using the RECCI-
based KE functionals that consist of familiar energy

functionals (Sec. IV), the Ec part plays a non-negligible role in
the KE functional, especially it reasonably reduces �Tfunctional

and �Tdensity for the Ne atom, and also reduces �W and �V

for the Be, Ne, and Mg atoms.
(3) The matching problem between the Ts part and the Ec

part can be found also from the error analysis. This problem
would come from the incompleteness of both the Ts part and
the Ec part. The results of the error analysis suggest that it
would be necessary to devise approximate forms of the Ts part
and the Ec part in a well-balanced way.

(4) In order to improve the Ts part and the Ec part in
a well-balanced way, the RECCI-based KE functional that
is consistent with the scaling property of the KE functional
is proposed (TFW-Escale

c functional). This KE functional
successfully leads to the reasonable PD that satisfies the
virial theorem. This functional would be the first milestone
in developing the approximate KE functional along scheme B.

Thus, it is shown that the RECCI for the KE functional is
a good starting point for developing the approximate form.
It would be worthwhile to attempt to add the higher-order
correction term [74] into the TFW functional and/or to incor-
porate the higher-order terms of the perturbation into Eq. (3).
When incorporating the higher-order perturbation terms, the
correction term will get close to the correct correlation
contribution to the KE, i.e., Tc (=T − Ts). Many previous
works on Tc [55,58,87–89] would be helpful in incorporating
the higher-order terms. Such attempts and discussions seem to
be the next issues.
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[59] S. B. Liu, F. De Proft, Á. Nagy, and R. G. Parr, Adv. Quantum

Chem. 36, 77 (2000).
[60] P. W. Ayers, J. B. Lucks, and R. G. Parr, Acta Chim. Phys.

Debricina 34-35, 223 (2002).
[61] K. Higuchi and M. Higuchi, Phys. Rev. B 74, 195122 (2006);

,75, 159902(E) (2007).
[62] M. Higuchi and K. Higuchi, Phys. Rev. B 75, 195114 (2007).
[63] K. Higuchi and M. Higuchi, J. Phys.: Condens. Matter 19,

365216 (2007).
[64] M. Higuchi and K. Higuchi, Phys. Rev. A 81, 042505 (2010).
[65] O. Gunnarsson and P. Johansson, Int. J. Quantum Chem. 10, 307

(1976).
[66] O. Gunnarsson, M. Jonson, and B. I. Lundqvist, Solid State

Commun. 24, 765 (1977).
[67] O. Gunnarsson, M. Jonson, and B. I. Lundqvist, Phys. Rev. B

20, 3136 (1979).
[68] O. Gunnarson and R. O. Jones, Phys. Scr. 21, 394 (1980).
[69] J. A. Alonso and L. A. Girifalco, Solid State Commun. 24, 135

(1977).
[70] J. A. Alonso and L. A. Girifalco, Phys. Rev. B 17, 3735 (1978).
[71] M. Higuchi and K. Higuchi, Phys. Rev. B 65, 195122 (2002).
[72] L. H. Thomas, Proc. Cambridge Philos. Soc. 23, 542 (1927).
[73] E. Fermi, Rend. Accad. Lincei 6, 602 (1927).
[74] R. G. Parr and W. Yang, Density-Functional Theory of Atoms

and Molecules (Oxford University Press, New York, 1989),
Chap. 6.

[75] C. Lee and R. G. Parr, Phys. Rev. A 35, 2377 (1987).
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