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We consider nonadiabatic transitions in explicitly time-dependent systems with Hamiltonians of the form
Ĥ (t) = Â + B̂t + Ĉ/t , where t is time and Â, B̂, Ĉ are Hermitian N × N matrices. We show that in any
model of this type, scattering matrix elements satisfy nontrivial exact constraints that follow from the absence
of the Stokes phenomenon for solutions with specific conditions at t → −∞. This allows one to continue
such solutions analytically to t → +∞, and connect their asymptotic behavior at t → −∞ and t → +∞. This
property becomes particularly useful when a model shows additional discrete symmetries. In particular, we derive
a number of simple exact constraints and explicit expressions for scattering probabilities in such systems.
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I. INTRODUCTION

Quantum nonadiabatic transitions have been studied for
a long time with numerous applications in physics of atomic
and molecular collisions [1]. This field of research has strongly
benefited from the discovery of exact formulas that describe
dynamics of two-state systems in specific but frequently
encountered situations. The most famous such a theoretical re-
sult is the Stückelberg-Majorana-Landau-Zener (LZ) formula
[2–4]. However, many other exact results, such as the solution
of the Rosen-Zener model and its generalizations [5–7], have
also been very influential and frequently used.

More recently, the interest in quantum nonadiabatic transi-
tions has been revived due to the new applications in ultracold
atomic systems [8,9], quantum coherence [10], Landau-Zener
interferometry [11], and quantum control of mesoscopic
systems [12], which typically deal with quantum systems of
mesoscopic size and a large phase space.

The multistate version of the LZ model is one of the
most frequently emerging problems in these studies [1].
It considers interactions among N states during the time
evolution described by the Schrödinger equation with time-
dependent parameters that change according to simple power
laws. Specifically, here we will discuss the evolution equations
of the form

i
dψ

dt
=

(
Â + B̂t + Ĉ

t

)
ψ, (1)

where ψ is the state vector in a space of N states; Â, B̂, and
Ĉ are constant Hermitian N × N matrices.

In this article we will assume that matrices are written
in the, so-called, diabatic basis, in which the matrix B̂ is
diagonal and if some of its diagonal elements βi , i = 1, . . . ,N ,
are degenerate then diabatic basis states are chosen to make
constant couplings among such states equal to zero, i.e., in the
diabatic basis we have

B̂ = diag{β1, . . . ,βN }, Anm = 0 if βn = βm. (2)

Diagonal elements of the Hamiltonian

Ĥ (t) = Â + B̂t + Ĉ/t (3)

can be generally written in the diabatic basis as

εd
i = βit + εi + ki/t, i = 1, . . . ,N, (4)

where ki are diagonal elements of Ĉ and εi are diagonal
elements of Â. Off-diagonal elements of Â and Ĉ in the
diabatic basis are called the coupling constants.

The goal of the theory is to find the scattering N × N

matrix Ŝ, whose element Snn′ is the amplitude of the diabatic
state n at t → +∞, given that at t → 0+ the system was in
the n′th eigenstate of the Hamiltonian. In most cases, only
the related matrix P̂ , Pn′→n = |Snn′ |2, called the matrix of
transition probabilities, is of interest.

Even the case of Eq. (1) for only two states (N = 2)
generally does not reduce to the hypergeometric equation,
and its analytical solution, e.g., in the form of a contour
integral of a simple function, is unknown. The situation may
look even less promising at larger N because Eq. (1) is
then equivalent to an N th order differential equation with
polynomial time-dependent coefficients that quickly grow in
complexity.

Although the general solution of the model (1) has not
been found, a number of exactly solvable cases with specific
forms of matrices Â, B̂, and Ĉ have been derived. Exact
results provided useful intuition about the behavior of strongly
driven quantum systems. The models of type (1) with Ĉ = 0
have been discussed rather extensively in the past [13–20].
In contrast, the addition of the last term in (1), with
Ĉ �= 0, has been introduced relatively recently in physics
literature [21], and it will be the main focus of the present
work.

We will refer to an arbitrary model of the type (1) with a
nonempty matrix Ĉ as an LZC model, named after Landau,
Zener, and Coulomb. Exactly solvable LZC models have
been shown to capture very complex patterns of behavior,
including counterintuitive transitions and violent oscillations
of transition probabilities as functions of parameters [22–24].
Physically they show a lot of common features with nonadia-
batic transitions in Rydberg atoms [25] and molecular collision
models [26].

The goal of this article is to explore an unusual phenomenon
that appears to be common for all models of the type (1). We
will demonstrate that no matter how big the complexity of
such a model, there are always nontrivial but simple exact
constraints on its scattering matrix elements in addition to the
trivial constraints that follow from the unitarity and elementary
discrete symmetries. We will provide tests of such constraints
by numerical simulations and comparisons with available
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exact results, and demonstrate how they can be used to
derive new relations between transition probabilities in specific
systems.

The structure of our article is as follows. In Sec. II we will
explore the Stokes phenomenon in systems of the type (1)
and derive the exact constraints for the scattering matrix for
such systems. In Sec. III we explore the case N = 2 in more
detail and demonstrate how constraints on the scattering matrix
can lead to constraints on transition probabilities in elementary
LZC-type models. Section IV describes specific examples with
N > 2 for which simple constraints on transition probabilities
can be derived. We summarize our results in the conclusion
Sec. V, in which we also discuss possible directions for
future research. Appendix A connects our results with previous
studies of the special case of Ĉ = 0 in (1). Appendix B presents
the derivation of exact transition probabilities in a specific
model with arbitrary N that we use to check the validity of
some of our results in the main text.

II. ASYMPTOTIC BEHAVIOR OF EXTREMAL
AMPLITUDES IN LZC MODELS

Our treatment of the general case of the LZC model will
closely follow the proof of the Brundobler-Elser formula and
derivation of the no-go theorem in [15]. The major difference
from that work is that now we include a nonzero value of the
matrix Ĉ into account. Let us define the extremal amplitude as
the amplitude of the diabatic state that has the highest or the
lowest slope at t → ±∞, i.e., that has the largest or the lowest
eigenvalue of the matrix B̂. We can now prove the following
rule.

A. Connection formula

Without loss of generality, let 1 be the index of the extremal
slope with β1 = max(β1, . . . ,βN ) and let C ′ be an arbitrary
contour that connects asymptotic values t → ±∞ on the real
axis but otherwise it makes an arbitrary continuous path in the
upper half of the complex plane avoiding the singular point of
the Hamiltonian at t = 0, as shown in Fig. 1(a). Suppose also
that at real t → −∞ the asymptotic values of the amplitudes
of diabatic states are given by

|ψ−∞
1 (t)| = 1, |ψ−∞

i (t)| = 0, i �= 1. (5)

We are going to show now that the value of the extremal
amplitude at real t → +∞ is given by

ψ+∞
1 (t) = S

up
11ψ−∞

1 (t), (6)

S
up
11 = exp

⎛
⎝−πk1 − π

∑
i (i �=1)

|A1i |2
|β1 − βi |

⎞
⎠ , (7)

where parameters are introduced in Eqs. (1)–(4), and index
“up” indicates that evolution went along the time contour in
the upper half of the complex plane.

Respectively, let N be the index of the extremal slope with
βN = min(β1, . . . ,βN ) and C ′ connects real t → ±∞ in the
lower half of the complex plane with initial conditions

|ψ−∞
N (t)| = 1, |ψ−∞

i (t)| = 0, i �= N, (8)

FIG. 1. (Color online) Contours of complex time for evolution
with Eq. (1) connecting real points at t → ±∞. (a) Arbitrary
contour C ′ laying in the upper half-plane can be deformed without
encountering singularities into the contour C shown in (b) that has
the shape of a semicircle with radius R. This contour crosses two
rays, t = Reiφ , at φ = 3π/4 and φ = π/4. Along those rays, the
highest slope amplitude has the highest rate of, respectively, decay and
growth with increasing R. (c) Without changing asymptotic values
of the solution at real t → ±∞, the contour C can be deformed to
the contour that is placed almost everywhere on the real time axis,
except an infinitely small semicircle that avoids the singularity of
the Hamiltonian (3) at t = 0. (d) Applying the same arguments to the
extremal amplitude with the lowest slope of diabatic energy, we arrive
at a contour C at the lower complex half-plane that can be deformed
to a contour along the real axis except an infinitely small semicircle
around t = 0 in the lower half-plane.

then

ψ+∞
N (t) = Sdn

NNψ−∞
N (t), (9)

Sdn
NN = exp

⎛
⎝+πkN − π

∑
i (i �=N)

|ANi |2
|βi − βN |

⎞
⎠ , (10)

where the index “dn” indicates that evolution went along the
time contour in the lower half of the complex plane.

Proof: Consider nondegenerate βi , i = 1, . . . ,N . We will
prove the case of the highest slope first. Since we are interested
in the asymptotic magnitude of the amplitudes of states at large
time, we do not have to find the evolution matrix for Eq. (1)
at arbitrary time point of C ′. Moreover, since the solution
is analytic everywhere except t = 0, the deformations of the
contour that do not change its asymptotic points at the real
axis do not change asymptotics of the solution. Hence, we can
analytically extend the evolution (1) to the path C that always
has |t | → ∞, as shown in Fig. 1(b), i.e.,

C : t = Reiφ, R → ∞, φ ∈ [π,0], (11)

where R is real and positive.
Along the contour C , diabatic states coincide with eigen-

states of the Hamiltonian. The distances between correspond-
ing instantaneous eigenenergies Ei(t) of the Hamiltonian (3)
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always remain large in this case, namely of the order of
|(βi − βj )t | � |Aij |, |Cij/t | for the states i �= j and hence
one can use the adiabatic approximation for the amplitudes ψi

of the diabatic states:

ψi(t) = e−i
∫ t

−∞ Ei (t)dtψi(−∞), i = 1, . . . ,N. (12)

To the leading orders in 1/R, the Hamiltonian eigenenergy
that corresponds to the amplitude of the highest slope is given
by

E1 = β1t + ε1 + 1

t

⎛
⎝k1 +

∑
j (j �=1)

|A1j |2
|β1 − βj |

⎞
⎠ + O(1/R2).

(13)
Now, as it was done in [14,15] for the case of Ĉ = 0, we
make the observation that by substituting (13) into (12) and
integrating over time along the semicycle t = Reiφ , where
φ ∈ [π,0], we obtain (7).

This observation, however, cannot be considered as the
proof yet because, generally, the adiabatic approximation (12)
may break down for complex values of time, which is the
essence of the Stokes phenomenon. The evolution along a
complex time path is no longer unitary so that some of the
amplitudes can become exponentially large in comparison to
ψ1. In such a case, approximation (12) cannot be applied
because even a weak coupling to states with exponentially
large amplitudes cannot be treated perturbatively.

In principle, to justify (12), one can apply arguments akin
to Landau’s derivation of the LZ formula and the treatment
of over-barrier transitions [3], as it was suggested in [14]
for systems with Ĉ = 0. However, such arguments are in-
trinsically semiclassical and generally predict only the leading
exponential factor for a transition amplitude. For example, the
semiclassical formula for the over-barrier reflection fails in the
limit of a weak barrier, i.e., in the domain of applicability of
the Born approximation. In order to make exact statements,
one has to explore the Stokes phenomenon in this problem in
more detail.

In order to prove that the perturbative expansion (13) can be
used in Eq. (12) everywhere along the path C, we should show
that the amplitude with energy E1 remains either exponentially
larger or at least of the same order with other state amplitudes.
The latter means here that the ratio of the extremal amplitude
to any other one is not suppressed exponentially in the limit
R → ∞.

It is sufficient for this proof to consider only the leading
order terms in the exponents

ψi ∼ exp(−iβi t
2/2), i = 1, . . . ,N. (14)

Stokes phenomenon, i.e., sharp changes of the behavior of the
values of the amplitudes at R → ∞, can happen at crossing the
Stokes lines, i.e., rays along which some of the amplitudes are
growing or decaying with extremal rate. In our case, those lines
are the rays φ = π/4 and φ = 3π/4. It is sufficient to prove
that the extremal amplitude behaves continuously at crossing
those rays.

Consider the ray at φ = 3π/4 and assume that ψ1 is of
the same order or exponentially larger than all other state
amplitudes at some very large R. This is the ray of the slowest
growth of the extremal amplitude. Hence, by continuing

asymptotics (14) to larger values of φ, the amplitude ψ1 is
exponentially growing in comparison to all other amplitudes
up to φ = π . This means that this solution can be normalized
to satisfy initial conditions (5) and the extremal amplitude
does not become suppressed in comparison to other states
in the sector (π,3π/4). Similarly, moving to the right from
the ray φ = 3π/4, we find that up to the ray φ = π/4,
the amplitude ψ1 is exponentially growing in comparison
to other amplitudes. Finally, at interval φ ∈ (π/4,0) other
amplitudes start growing but from exponentially suppressed
value at φ = π/4. Therefore, it is safe to continue the extremal
amplitude analytically to the right of this ray and hence to the
whole sector up to φ = 0. This completes our proof of the
absence of the Stokes phenomenon for the extremal amplitude
along the contour C and initial conditions (5). The proof for the
level with the lowest slope is analogous but with the contour
C placed in the lower half of the complex plane.

B. No-go rule for LZC models

Equations (7) and (10) are generalizations of the
Brundobler-Elser formula in multistate Landau-Zener models
with linear time dependence of parameters, which we review
briefly in Appendix A.

Our inclusion of the Coulomb term in (1) changed the result
but did not change basic steps discussed in [15] for derivation
of the connection formula for the case Ĉ = 0. Indeed, at large
time values, the Coulomb term introduces only marginally
relevant contribution, which produces a geometric-phase-like
prefactor, which does not influence the Stokes phenomenon.
This observation can be used to derive another exact constraint.
Namely, in [15], the so-called “no-go rule” was derived for the
case when instead of one state with the highest (or one lowest)
slope of the diabatic energy level there is a band of an arbitrary
number of states having the same highest slope so that diabatic
energies in this band are different only by constant energy
parameters, as shown in Fig. 2.

The no-go rule states that the so-called counterintuitive
transitions are exactly forbidden. Generally for the model (1),

FIG. 2. Plot of diagonal elements of the matrix B̂t + Â in
the diabatic basis can be used to identify extremal states and
counterintuitive transitions. For the shown system of six states, levels
1 and 2 have the highest slope, levels 5 and 6 have the lowest slope,
and transitions from level 6 to level 5 and from level 1 to level 2 are
counterintuitive.
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if βm = βn = max(β1, . . . ,βN ) then the transition from the
state m to the state of the same band n is defined to be
“counterintuitive” if εm < εn, where εi is defined in (4).
Correspondingly, if βn = βm = min(β1, . . . ,βN ) then the tran-
sition is counterintuitive if εm > εn. For example, in Fig. 2,
transitions from state 1 to state 2 and from state 6 to state 5
are counterintuitive. Note that this definition allows arbitrary
form of the matrix Ĉ.

According to the no-go rule, the amplitude of a counterintu-
itive transition is vanishingly small, i.e., for a specific element
of the evolution matrix, we have

Sup/dn
nm = 0 (15)

when n and m are extremal amplitudes, and transition from
m to n is counterintuitive in the sense described above. The
choice of “up” or “dn” index in (15) is according to whether
levels m and n have, respectively, the highest or the lowest
slope.

The no-go rule (15) was proved in [15] by exploring the
Stokes phenomenon and therefore it is equally valid for the
LZC model (1). Indeed, suppose that we have more than one
state with the highest slopes. Then the magnitudes of their
amplitudes at the contour C are dominated by the exponents

ψn,m ∼ exp(−iεn,mt − iβ1t
2/2). (16)

Along the ray φ = π/2, the amplitude ψn is growing faster than
ψm when R is growing because εn > εm. Consider a situation
when for some very large R we have the boundary condition
that both amplitudes are comparable along this ray. Then the
solution with εm < εn is growing if φ is continued either to the
right or to the left along the contour C. Hence, it is possible
to normalize this solution so that at real t → −∞ the state m

has a unit amplitude and state n is vanishing. Continuation to
the real positive time t → +∞ will produce that ψm is not
influenced by state n and satisfies (7) and ψn has a vanishing
amplitude.

C. Constraints on a quantum mechanical evolution operator

The connection formulas (7)–(10), as well as the no-go
rule (15), apply to arbitrary contour that can be obtained by a
continuous deformation of a contour C without crossing the
singular point at t = 0. Therefore, at least part of this contour
has to lay at nonzero imaginary part of the time t , which
makes the evolution along this contour nonunitary. However,
depending on whether C is in the upper or the lower parts of
the complex plain, one can deform C into one of the contours,
either C+ or C−, as shown in Figs. 1(c) and 1(d), such that
during real time intervals t ∈ (−∞, − r) and t ∈ (r, + ∞) the
evolution is unitary. We will choose to connect those intervals
by a half-circle path C0 and assume that the radius r of this
path is infinitesimally small

C0 : t = re±iφ, r → 0, φ ∈ [π,0], (17)

where r is real and positive and the choice of the sign of
the phase corresponds to the choice of the semiplane of the
contour C .

In the limit r → 0, the evolution along C0 is totally
dominated by the singular term with matrix Ĉ in the Hamilto-
nian (3). Hence the evolution operator over C0 can be easily

found:

Ŝ
up/dn
0 = exp

(
−i

∫
C0

dt
Ĉ

t

)
= exp(∓πĈ), (18)

where up and dn indexes refer to the contour C0 which is
placed, respectively, above or below the real axis.

Let Ŝup and Ŝdn be the N × N matrix scattering operators
for evolution along the contours, respectively, C+ and C−,
illustrated in Figs. 1(c) and 1(d); and let Ŝ− and Ŝ+ be the
operators for unitary quantum mechanical evolution along the
real time during intervals, respectively, t ∈ (−∞,0−) and t ∈
(0+, + ∞). Then

Ŝup/dn = Ŝ+Ŝ
up/dn
0 Ŝ−, (19)

so that connection formulas can be expressed as follows:

[
Ŝ+Ŝ

up
0 Ŝ−

]
11 = exp

⎛
⎝−πk1 − π

∑
i (i �=1)

|A1i |2
|β1 − βi |

⎞
⎠ , (20)

[
Ŝ+Ŝdn

0 Ŝ−
]
NN

= exp

⎛
⎝πk1 − π

∑
i (i �=N)

|ANi |2
|βN − βi |

⎞
⎠ , (21)

[
Ŝ+Ŝ

up/dn
0 Ŝ−

]
nm

= 0, (22)

where the transition from state m to state n is counterintuitive
in the sense that was defined in the previous subsection.

Equations (18)–(22) are the most general central result of
this work. They say that for any Hamiltonian (3) there are exact
nonperturbative constraints on the scattering matrices Ŝ+ and
Ŝ− of the quantum mechanical evolution. At the current stage,
those constraints are not looking particularly useful because
they do not provide an explicit expression for any particular
matrix element of the physically useful scattering matrices Ŝ±.
In fact, constraints (20)–(22) are expressed via the products of
scattering matrices that describe the evolution over disjoined
time intervals.

Nevertheless, we will show that Eqs. (18)–(22) become
quite useful when subclasses of LZC models with specific
discrete symmetries are considered. In those cases, it is
possible to connect the elements of Ŝ− with elements of
Ŝ+, and hence rewrite the matrices Ŝup/dn only in terms of
Ŝ+. After this, Eqs. (20)–(22) usually can be expressed as
nontrivial constraints on the desired transition probabilities
between states of an LZC system during the evolution in
t ∈ (0+, + ∞).

III. TWO-STATE SYSTEMS

The goal of this section is to provide elementary demon-
strations of how transition probabilities in LZC models can be
found by using connection rules (20)–(22).

A. Case 1: Diagonal Ĉ and off-diagonal Â

Consider the following evolution of two states:

i
d

dt

(
a

b

)
=

(
k/t g

g βt

) (
a

b

)
. (23)

Equation (23) is symmetric under simultaneous
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(i) reflection of time: t → −t , and
(ii) change of the sign of the first amplitude: a(t) → −a(t).
In terms of the evolution matrices, symmetries (i) and (ii)

mean that if we write the evolution operator from t = 0+ to
t = +∞ in the matrix form,

Ŝ+ ≡ Ŝ(+∞|0+) =
(

s11 s12

s21 s22

)
, (24)

then the evolution operator for backward in time evolution,
starting from t = 0− and ending at t = −∞ is given by

Ŝ(−∞|0−) =
(

s11 −s12

−s21 s22

)
. (25)

(iii) Finally, we recall the symmetry, which is always
present. Due to the unitarity, backward and forward in time
evolutions are related by complex conjugation of the evolution
matrices, i.e.,

Ŝ(−∞|0−) = Ŝ†(0−| − ∞). (26)

Since Ŝ(0−| − ∞) ≡ Ŝ−, (i)–(iii) mean that

Ŝ− =
(

s∗
11 −s∗

21−s∗
12 s∗

22

)
. (27)

Consider the case with β > 0. The evolution over the
infinitesimal contour around t = 0 below the real axis gives

Ŝdn
0 =

(
eπk 0
0 1

)
. (28)

Substituting (27) and (28) into (19) and (22), for the contour
C−, and noting that |sij |2 ≡ pj→i we find

p1→1e
πk − p1→2 = eπk−πg2/β . (29)

Due to the unitarity of quantum mechanical evolution, the
transition probability matrix is doubly stochastic, which means
that p1→1 + p1→2 = 1. Combining this property with (29) we
find

p1→1 = p2→2 = e−πg2/β + e−πk

1 + e−πk
, (30)

p1→2 = p2→1 = 1 − e−πg2/β

1 + e−πk
. (31)

This result coincides with the solution of this model discussed
in [22]. The case of β < 0 can be worked out similarly but
using either the rule for the contour C+ or applying the
connection rule to the other state.

B. Case 2: Â = 0

The most general, irreducible by elementary phase trans-
formations, two-state case with Â = 0 reads

i
d

dt

(
a

b

)
=

(
βt g/t

g/t k/t

) (
a

b

)
. (32)

Equation (32) is symmetric under reflection of time (i), which
means that Ŝ− = (Ŝ+)†. However, a small complication in
comparison to the previous case follows from the fact that,
at t → 0±, the diabatic states are not eigenstates of the
Hamiltonian. Physically it is expected that the evolution starts

from some eigenstate of the Hamiltonian, and at t → 0±,
the Hamiltonian eigenstates coincide with the eigenstates of
the matrix Ĉ. Let |+〉 and |−〉 be the two eigenstates that
correspond to eigenvalues

E± = k ±
√

k2 + 4g2

2
(33)

of the matrix

Ĉ =
(

0 g

g k

)
. (34)

In the basis of states |±〉, the evolution around the contour C0

in the upper half-plane has a simple form:

Ŝ
up
0 =

(
e−πE+ 0

0 e−πE−

)
. (35)

Scattering amplitudes from states |±〉 and diabatic states
are then well defined for evolution during t ∈ (0+, + ∞).
Let Ŝ+ be such a scattering matrix with elements sjα , where
j = 1,2 and α = +,−. In combination with symmetry (i), the
connection formula for the diabatic state |1〉, i.e., for the state
that has the highest slope β > 0, reads(

Ŝ+Ŝ
up
0 Ŝ

†
+
)

11 = 1, (36)

which can be written in terms of transition probabilities
pα→j ≡ |sjα|2 as

e−πE+p+→1 + e−πE−p−→1 = 1. (37)

Using the unitarity constraint p+→2 + p−→2 = 1, we finally
find

p+→1 = p−→2 = e−πE− − 1

e−πE− − e−πE+
, (38)

p−→1 = p+→2 = 1 − e−πE+

e−πE− − e−πE+
. (39)

In Appendix B we solve a multistate model that includes
result (38) at k = 0 as a special case. In Fig. 3 we also verify

FIG. 3. (Color online) (a) Numerical test of Eq. (38). Solid curves
are theoretical predictions and discrete points are numerical results.
Parameters: β = 2, k = 0.5. Solution of Eq. (1) was obtained for
the time interval t ∈ (0.001,1000) with initial condition |ψ〉 = |+〉.
Details of the numerical program are discussed in the supplementary
file for Ref. [22]. (b) Plot of eigenvalues of the Hamiltonian for the
model (32) as functions of time at g = 0.4. At t → 0, eigenstates
coincide with states |±〉, while at t → +∞, eigenstates approach the
diabatic states |1〉 and |2〉.
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predictions of Eqs. (38) and (39) numerically by simulating
the evolution (1) with the Hamiltonian (32).

C. Case 3: B̂ = 0

Here we will explore two possibilities.
(I) First, we consider the evolution without diagonal

elements of the matrix Ĉ:

i
d

dt

(
a

b

)
=

(
ε g/t

g/t −ε

) (
a

b

)
, (40)

where ε > 0.
Since at t → +∞ the off-diagonal terms vanish, diabatic

states become eigenstates of the Hamiltonian, and one can de-
fine the scattering matrix from eigenstates of the corresponding
matrix Ĉ,

|±〉 = |1〉 ± |2〉√
2

,

to the diabatic states.
The model (40) has interesting property: Since the matrix

B̂ is zero, all diabatic states can be considered as having both
the highest and the lowest slope. Moreover, in addition to
the previously used connection rules (20) and (21) we have
also the option to use the no-go rule (22). Equation (40) is
also symmetric under two, simultaneously applied, discrete
operations: time reversal t → −t and a new discrete operation:

(iv) Exchange of indexes: 1 → 2, 2 → 1. Consider the
evolution matrix during time t ∈ (0+, + ∞) from states |±〉
to diabatic states |1〉, |2〉:

Ŝ+ =
(

s1+ s1−
s2+ s2−

)
. (41)

Under the symmetry (iv) state |−〉 changes sign and states
|1〉 and |2〉 transfer into each other. Combining this fact with
symmetry operations (i) and (iii), which were defined for
previous models, we find the expression for the evolution
matrix in negative times in terms of elements sjα:

Ŝ− =
(

s∗
2+ s∗

1+
−s∗

2− −s∗
1−

)
. (42)

Finally, in the basis |±〉 we have

Ŝ
up
0 =

(
e−πg 0

0 eπg

)
. (43)

For evolution in the upper complex half-plane, it will be easiest
to use the no-go rule (22) that reads(

Ŝ+Ŝ
up
0 Ŝ−

)
12 = 0, (44)

or explicitly

|s1+|2e−πg − |s1−|2eπg = 0.

Combining this with the definition of transition probabilities
and the unitarity constraint (i.e., that the matrix of transition
probabilities is doubly stochastic), we finally obtain

p+→2 = p−→1 = 1

1 + e2πg
, (45)

p−→2 = p+→1 = 1

1 + e−2πg
. (46)

(II) Next we consider the most general case of evolution
with zero matrix B̂:

i
d

dt

(
a

b

)
=

(
ε + k/t g/t

g/t −ε

)(
a

b

)
, (47)

where ε > 0. In such a case there is no obvious symmetry that
connects evolution at negative and positive times. However,
the number of constraints that we can use includes two
constraints (20) and (21) that can be applied to each diabatic
level. The latter is because each level can be considered having
both the highest and the lowest slope in this model. In addition,
there are two no-go constraints (22) depending on whether we
choose the contour C in the upper or the lower half-plane.
It turns out that not all of those constraints are independent
of each other but their number is sufficient to estimate
transition probabilities, both for negative and positive time
evolution.

As in case 2, we will explore transition probabilities from
states |±〉 that are eigenstates of the matrix Ĉ, with eigenvalues
E± defined in (33), to the diabatic states.

To derive transition probabilities, we will use the fact
that any 2 × 2 unitary matrix can be parametrized by three
parameters, p1, φ1, and θ1 as follows:

Ŝ+ =
( √

p1e
iφ1

√
1 − p1e

iθ1

−√
1 − p1e

−iθ1
√

p1e
−iφ1

)
. (48)

Similarly, we can parametrize scattering matrix for negative in
time evolution:

Ŝ− =
( √

p2e
iφ2

√
1 − p2e

iθ2

−√
1 − p2e

−iθ2
√

p2e
−iφ2

)
, (49)

and the evolution around t = 0 is given by

Ŝ
up/dn
0 =

(
e∓πE+ 0

0 e∓πE−

)
. (50)

The no-go rule applied to the contour in the upper half-plane
gives (

Ŝ+Ŝ
up
0 Ŝ−

)
12 = 0, (51)

which in terms of the introduced parametrization reads

e−πE−
√

p2(1 − p1)e−i(φ2−θ1)

+ e−πE+
√

p1(1 − p2)ei(φ1+θ2) = 0. (52)

Moving one of the terms in (52) to the right-hand side and
comparing absolute values, we obtain the relation between
probabilities:

p1(1 − p2)e−2πE+ = p2(1 − p1)E−2πE− . (53)

Another equation for probabilities is obtained by applying
connection formulas (20) and (21) to the second diabatic state.
Subtracting results for the upper and the lower contours from
each other we find(

Ŝ+
[
Ŝ

up
0 − Ŝdn

0

]
Ŝ−

)
22 = 0, (54)

which leads to

(1 − p1)(1 − p2)(eπE+ − e−πE+ )2 = p1p2(eπE− − e−πE− )2.

(55)
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Solving (53) and (55) we find

p2 = e2πE− (e2πE+ − 1)

e2πE+ − e2πE−
, (56)

p1 = e2πE+ − 1

e2πE+ − e2πE−
. (57)

Note that p1 �= p2, i.e., we were able to find nontrivial
transition probabilities simultaneously for the negative and
the positive evolution time intervals. Finally, with unitarity
constraints, we can identify transition probabilities for positive
time:

p+→1 = p−→2 = p1, p+→2 = p−→1 = 1 − p1. (58)

This example shows that it is not always necessary to use
discrete symmetries in order to obtain interesting results with
connection formulas.

IV. MULTISTATE LZC SYSTEMS

The two-state systems that were solved analytically in the
previous section can, in principle, be solved by other means.
For example, all of them can be reduced to the well-understood
confluent hypergeometric equation. In contrast, much less is
known about how to solve systems with N > 2. Therefore, this
section contains the most important results that demonstrate
how connection formulas can make a nontrivial insight in the
behavior of transition probabilities in multistate models.

A. Special state model

Consider a model in which arbitrary number N of states
interact with a single special state, to which we will give the
zero index, and

(i) matrix B̂ is not degenerate;
(ii) matrix Â contains nonzero elements only as couplings

of the special state to the other states, i.e., Ai0 = A0i = gi and
all other elements of Â are zero;

(iii) matrix Ĉ has arbitrary nonzero elements except
couplings to the special state, i.e., Ci0 = C0i = 0.

The Hamiltonian of such a system in the diabatic basis has
the form

Ĥ (t) =

⎛
⎜⎜⎝

k0/t g1 g2 . . . gN

g1 β1t + k1/t g12/t . . . g1N/t

g2 g12/t β2t + k2/t . . . . . .
...

...
...

. . .
...

⎞
⎟⎟⎠ .

(59)

Let sjα , where α,j ∈ (0, . . . ,N), be the transition amplitude
from the αth eigenstate of Ĉ to the j th diabatic state for positive
in time evolution from t → 0+ to t → +∞, i.e.,

Ŝ+ =

⎛
⎜⎜⎝

s00 s01 . . . s0N

s10 s11 . . .
...

...
...

. . .
...

⎞
⎟⎟⎠ . (60)

Evolution equation (1) with the Hamiltonian (59) is symmetric
under the time reflection t → −t , followed by the change of
the sign of the amplitude of the special state. In turn, this means

that the scattering matrix for the evolution from t → −∞ to
t → 0− has the form

Ŝ− =

⎛
⎜⎜⎜⎜⎜⎝

s∗
00 −s∗

10 . . . . . . −s∗
N0

−s∗
01 s∗

11 s∗
21 . . .

...

−s∗
02 s∗

12 s∗
22 . . .

...
...

...
...

. . .
...

⎞
⎟⎟⎟⎟⎟⎠ . (61)

Suppose, first, that the state |0〉 has the highest or lowest
slope. Then in the basis of eigenstates of Ĉ we have Ŝ

up
0 =

diag{e∓πk0 ,e∓πE1 , . . . ,e∓πEN }, where Ei are eigenvalues of
the matrix Ĉ, and the choice of − or + depends on whether the
state has the highest or lowest slope, which in turn determines
whether the contour C0 should be in the upper or in the
lower complex half-plane. Substituting this and (60) and (61)
into (20) and (21) we obtain

e∓πk0p0→0 −
N∑

i=1

e∓πEi pi→0 = e
π

(
∓k0−

∑N
i=1 g2

i /|βi |
)
. (62)

If, instead, a level with n �= 0 has the highest or lowest slope,
then (20) and (21) lead to the constraint

−e∓πk0p0→n +
N∑

i=1

e∓πEi pi→n = eπ(∓kn−g2
n/|βn|). (63)

Although Eqs. (62) and (63) do not determine a particular
element of the transition probability matrix, they represent
exact nonperturbative constraints that reduce the number of
unknown independent parameters of the transition probability
matrix. In special cases these equations can be used to derive
specific probabilities. Consider, e.g., the situation in which
only one element of the matrix Ĉ is nonzero, i.e., C00 = k0.
In such a case, Ei = 0 for i = 1, . . . ,N . Using the unitarity
condition

∑N
i=0 pi→0 = 1, Eqs. (62) and (63) tell that if the

level 0 is extremal then

p0→0 = 1 + eπ(∓k0−
∑N

i=1 g2
i /|βi |)

1 + e∓πk0
, (64)

and if a level with n �= 0 is extremal then

p0→n = 1 − e−πg2
n/|βn|

1 + e∓πk0
, (65)

where − or + corresponds to the situation in which a given
level has the highest or lowest slope. Probabilities (64) and (65)
coincide with their values known from the exact solution of
this model [22].

B. Model with two special states

Consider now a generalization of the previous model in
which two states, with indexes 0 and 0′, equally interact with
other states. Diabatic energies of those states are separated
by a finite distance: A00 = −A0′0′ = ε and those states are
allowed to interact with each other with a decaying coupling:
C00′ = C0′0 = g/t . The Hamiltonian of this system can be
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written in the following matrix form:

Ĥ (t) =

⎛
⎜⎜⎜⎜⎝

ε g/t g1 . . . gN

g/t −ε g1 . . . gN

g1 g1 β1t + k1/t g12/t . . .

g2 g2 g12/t β2t + k2/t . . .
...

...
...

. . .
...

⎞
⎟⎟⎟⎟⎠ .

(66)

Matrix Ĉ has two eigenvectors that can be written explicitly:

|±〉 = 1√
2

(|0〉 ± |0′〉), (67)

with eigenvalues E± = ±g. For other eigenvalues of Ĉ we
will use notation of the previous model. For example, Ŝup/dn

0 =
diag{e∓πE+ ,e∓πE− ,e∓πE1 , . . . ,e∓πEN }.

Evolution equation (1) with the Hamiltonian (66) is
symmetric under simultaneous time reversal, change of sign
of special state amplitudes, and exchange of their indexes:
0 → 0′ and 0′ → 0. The latter operation leaves the state |+〉
invariant and changes the sign of |−〉. Consequently, if the
scattering matrix for positive time has the form

Ŝ+ =

⎛
⎜⎜⎜⎜⎜⎝

s0+ s0− s01 . . . s0N

s0′+ s0′− s0′1 . . .
...

s1+ s1− s11 . . .
...

...
... . . .

. . .
...

⎞
⎟⎟⎟⎟⎟⎠ , (68)

then the scattering matrix for the negative time evolution has
the form

Ŝ− =

⎛
⎜⎜⎜⎜⎜⎝

s∗
0′+ s∗

0+ −s∗
1+ . . . −s∗

N+

−s∗
0′− −s∗

0− s∗
1− . . .

...

−s∗
0′1 −s∗

01 s∗
11 . . .

...
...

... . . .
. . .

...

⎞
⎟⎟⎟⎟⎟⎠ . (69)

Suppose that the special levels have the highest slope. Then the
transition from the state |0′〉 to the state |0〉 is counterintuitive.
The no-go rule then produces a simple relation for transition
probabilities:

e−πgp+→0 − eπgp−→0 −
N∑

i=1

e−πEi pi→0 = 0. (70)

If, in this situation, the level with index n �= {0,0′} has the
lowest slope then the connection rule (21) gives

− eπgp+→n + e−πgp−→n +
N∑

i=1

eπEi pi→n = eπ(kn−2g2
n/|βn|).

(71)

For example, consider a special case Cii = −g and Cij =
0, for i,j = 1, . . . ,N . In such a case, Ei = ki = −g, and
after using the doubly stochastic character of the transition
probability matrix, Eqs. (70) and (71) produce simple results:

p+→0 = 1

1 + e−2πg
, p+→n = 1 − e−2πg2

n/|βn|

1 + e2πg
. (72)

FIG. 4. (Color online) (a) Plot of eigenvalues of the Hamilto-
nian (73). (b) Numerical test of Eq. (72). Parameters for numerical
simulations: g1 = 0.5, g2 = 0.7, ε = 0.5. The evolution time interval
is t ∈ (0.001,1000). Solid curves are theoretical predictions and
discrete points are numerical results.

For a numerical check we consider the latter model with
N = 4 and the Hamiltonian

Ĥ =

⎛
⎜⎝

ε + 2t g/t g1 g2

g/t −ε + 2t g1 g2

g1 g1 t − g/t 0
g2 g2 0 −g/t

⎞
⎟⎠ . (73)

In Fig. 4 we illustrate eigenvalues of this Hamiltonian as
functions of t and compare Eq. (72) with results of numerical
simulations, which are found to be in perfect agreement with
each other.

C. Chain models

There are numerous physical applications, in which diabatic
states are coupled by a constant coupling in a chainlike fashion
with all other elements of matrix Â being zero [9]. In such a
case, Eq. (1) transforms into the set of coupled equations:

iψ̇n = (kn/t + βnt)ψn + gnψn+1 + gn−1ψn−1, (74)

where n = 1, . . . ,N , and where we define g0 = gN = 0. For
evolution (74), diabatic states coincide with eigenstates both
at t → 0 and at t → ∞. Equation (74) is symmetric under
simultaneous time reversal t → −t and the change of the sign
of the amplitudes with even indexes. Therefore, the scattering
matrix for negative time is written in terms of matrix elements
sij , i,j = 1, . . . ,N , for positive time as

Ŝ− =

⎛
⎜⎜⎜⎜⎜⎝

s∗
11 −s∗

21 s∗
31 . . .

−s∗
12 s∗

22 −s∗
32

...

s∗
13 −s∗

23 s∗
33

...
...

... . . .
. . .

⎞
⎟⎟⎟⎟⎟⎠ , (75)

Consider the case when a state with index n has the highest
or lowest slope. Then if n is odd, Eqs. (20) and (21) return

N∑
i=1

(−1)i+1pi→ne
∓πki = e

−π(±kn+ g2
n

|βn−βn+1 | +
g2
n−1

|βn−βn−1 | )
. (76)
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If n is even then
N∑

i=1

(−1)ipi→ne
∓πki = e

−π(±kn+ g2
n

|βn−βn+1 | +
g2
n−1

|βn−βn−1 | )
, (77)

where − or + corresponds to the highest or lowest slope of
the extremal level.

Here we note also that the same symmetry and, hence, the
form of the scattering matrix (75) is obtained if we generalize
the chain model to include (a) constant couplings between
states with arbitrary even and odd indexes and (b) decaying
with time couplings between states of the same index parity.
Equations (76) and (77) are straightforward to generalize to
these situations.

D. Models with Â = 0

Equation (1), in the case of Â = 0, arbitrary Ĉ, and
nondegenerate B̂, is symmetric under reflection t → −t . Let
Eα , α = 1, . . . ,N be the eigenvalues of the matrix Ĉ. Then for
the extremal state with index n, (20) gives

N∑
α=1

e∓πEαpα→n = e∓πkn , (78)

where + or − corresponds to the highest or lowest slope.
As an example, consider the case when all levels are coupled

to each other according to the rule

Cij = qiqj , i,j = 1, . . . ,N, (79)

with N independent constants qi . In such a case, matrix Ĉ

has all zero eigenvalues except the one that corresponds to the
state vector

|+〉 = 1√
E+

(q1|1〉 + · · · + qN |N〉), (80)

with a single nonzero eigenvalue E+ = ∑N
i=1 q2

i . Note also
that kn = q2

n . Substituting this into (78) and using the unitarity
condition we find

p+→n = 1 − e∓πq2
n

1 − e∓π
∑N

i=1 q2
i

. (81)

In Appendix B we show that, for the latter model, one can
derive explicit expressions for transition probabilities from
the state |+〉 to any other state by an alternative approach. The
final result is in perfect agreement with (81).

E. Models with B̂ = 0

Here we will explore two specific three-state systems.

1. Case 1: Equal coupling model

Consider a three-state model with the Hamiltonian

Ĥ (t) =
⎛
⎝ ε g/t g/t

g/t 0 g/t

g/t g/t −ε

⎞
⎠ , (82)

which eigenvalues as functions of time are shown in Fig. 5(a).
Matrix Ĉ has an eigenvalue E+ = 2g with an eigenvector

|+〉 = 1√
3

(|1〉 + |2〉 + |3〉), (83)

FIG. 5. (Color online) (a) Plot of eigenvalues of the Hamilto-
nian (82) as functions of time at g = 0.3, ε = 0.5. (b)–(d) Numerical
test of Eqs. (91) and (96) at ε = 0.5 for different couplings
g. Evolution time interval is t ∈ (0.001,1000). Solid curves are
theoretical predictions and discrete points are results of the numerical
solution of the evolution equation with the Hamiltonian (82).

and two degenerate eigenvalues E0 = E0′ = −g with eigen-
vectors

|0〉 = |1〉 − |3〉√
2

, |0′〉 = |1〉 − 2|2〉 + |3〉√
6

. (84)

Equation (1) with the Hamiltonian (82) is symmetric under
the time reversal and, simultaneously, exchange of indexes
1 → 3 and 3 → 1. Note that the index exchange leaves states
|+〉 and |0′〉 invariant but changes the sign of |0〉.

Let the scattering matrix for the positive time evolution
have the form

Ŝ+ =
⎛
⎝s1+ s10 s10′

s2+ s20 s20′

s3+ s30 s30′

⎞
⎠ , (85)

then the negative time scattering matrix reads

Ŝ− =
⎛
⎝ s∗

3+ s∗
2+ s∗

1+−s∗
30 −s∗

20 −s∗
10

s∗
30′ s∗

20′ s∗
10′

⎞
⎠ , (86)

and in the basis of states (83) and (84)

Ŝ
up/dn
0 = diag{e∓πE+ ,e∓πE0 ,e∓πE0′ }. (87)

Here we note again that the case with B̂ = 0 is, in some
sense, unusual: all its states can be simultaneously considered
as having both the highest and the lowest slope and all
off-diagonal transitions can be considered counterintuitive,
although depending on whether levels are considered having
the highest or the lowest slope. Applying the no-go rule to
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transitions between levels 3 and 1, we find constraints on
probabilities

p+→1e
−2πg − p0→1e

πg + p0′→1e
πg = 0, (88)

p+→3e
2πg − p0→3e

−πg + p0′→3e
−πg = 0, (89)

and applying the connection formulas (20) and (21) to the state
|2〉 we find

p+→2e
±2πg − p0→2e

∓πg + p0′→2e
∓πg = 1. (90)

In combination with the unitarity rule: p+→2 + p0→2 +
p0′→2 = 1, Eq. (90) leads to explicit expressions for transitions
to the second state:

p+→2 = 1

1 + 2 cosh(2πg)
, p0→2 = cosh(πg) − 1

2 cosh(πg) − 1
,

p0′→2 = cosh(πg) + 1

2 cosh(πg) + 1
. (91)

At a first view, it seems that rules (88) and (89) are
insufficient to determine the remaining unknown elements
of the transition probability matrix, while the interpreta-
tion of the unused constraints in terms of the probabilities
seems obscure. However, below we will show that the
model with B̂ = 0 contains one extra useful property that,
in our case, produces new simple constraints on transition
probabilities.

2. Duality between B̂ = 0 and Â = 0 models

Consider arbitrary model (1) with Â = 0:

i
dψ

dt
=

(
B̂t + Ĉ

t

)
ψ. (92)

For strictly positive time, t > 0, we can make a change of
variables: t2/2 = τ . Transition from t to τ does not change the
scattering matrix for evolution during t ∈ (0+, + ∞). Using
that d/dt = td/dτ , we then find

i
dψ

dτ
=

(
B̂ + Ĉ

2τ

)
ψ, (93)

i.e., the change of variables that does not affect transition
probability matrix for t > 0 transforms the model with (Â = 0)
into the model with (B̂ = 0) but with elements of the matrix
Ĉ rescaled by a factor 1/2.

This means that we can apply Eq. (78) to the levels having
the extremal (largest or lowest) value of the parameter εi in
any model of the B̂ = 0 type. In particular, application of this
rule to the extremal levels of the model (82) gives

e−4πgp+→1 + e2πgp0→1 + e2πgp0′→1 = 1, (94)

e4πgp+→3 + e−2πgp0→3 + e−2πgp0′→3 = 1. (95)

In fact, one of expressions (94) and (95) is redundant, as only
one of them is sufficient to reconstruct all remaining transition

FIG. 6. (Color online) (a) Plot of eigenvalues of the Hamilto-
nian (97) as functions of time at g = ε = 0.5, k = 2. (b)–(d) Nu-
merical test of Eqs. (104) at ε = 0.5, k = 0.3 for different couplings
g. Evolution time interval is t ∈ (0.001,1000). Solid curves are
theoretical predictions and discrete points are results of the numerical
solution of the evolution equation with the Hamiltonian (97).

probabilities:

p+→1 = e4πg

1 + e2πg + e4πg
, p0→1 = 1

2 − 2eπg + 2e2πg
,

p0′→1 = 1

2(1 + eπg + e2πg)
, p+→3 = 1

1 + e2πg + e4πg
,

p0→3 = eπg

4 cosh(πg) − 2
, p0′→3 = eπg

4 cosh(πg) + 2
. (96)

In Figs. 5(b)–5(d) we provide numerical test of (91) and (96)
that shows perfect agreement of theory and numerics.

3. Case 2: Chain model with decaying couplings

Consider another example of a three-state model with the
Hamiltonian

Ĥ (t) =
⎛
⎝ ε g/t 0

g/t k/t g/t

0 g/t −ε

⎞
⎠ , (97)

which eigenvalues, as functions of t , are shown in Fig. 6(a).
Corresponding matrix Ĉ has one eigenstate

|0〉 = 1√
2

(|1〉 − |3〉) (98)

that corresponds to the zero eigenvalue, and two eigenstates,
|+〉 and |−〉 that correspond to eigenvalues

E± = 1

2
(k ±

√
k2 + 8g2). (99)
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One can check that under exchange of indexes 1 → 3 and 3 →
1, eigenstate |0〉 changes sign, while eigenstates |±〉 remain
invariant. The no-go rule then produces constraints

p+→1e
−πE+ − p0→1 + p−→1e

−πE− = 0, (100)

p+→3e
πE+ − p0→3 + p−→3e

πE− = 0. (101)

The connection formulas (20)–(22) applied to the diabatic state
|2〉 produces

p+→2e
∓πE+ − p0→2 + p−→2e

∓πE− = e∓πk, (102)

and the duality produces an additional constraint

p+→1e
−2πE+ + p0→1 + p−→1e

−2πE− = 1. (103)

Altogether, Eqs. (100)–(103) and the doubly stochastic
character of the transition probability matrix produce the set
of transition probabilities:

p+→2 = e−πE− (1 + eπk)(eπk − eπE− )

(1 + eπE+ )(eπE+ − eπE− )
,

p0→2 = eπE+ + eπE− − 1 − eπk

1 + eπE+ + eπE− + eπk
,

p−→2 = e−πE+ (1 + eπk)(eπE+ − eπk)

(1 + eπE− )(eπE+ − eπE− )
,

p−→3 = e−2πE−p−→1, p+→3 = e−2πE+p+→1, (104)

p+→1 = e2πE+ (1 − eπE− )

(eπE+ + 1)(eπE+ − eπE− )
,

p−→1 = e2πE− (eπE+ − 1)

(eπE− + 1)(eπE+ − eπE− )
,

p0→1 = p0→3 = 1 + eπk

1 + eπE+ + eπE− + eπk
.

In Figs. 6(b)–6(d) we compare theoretical predictions (104)
with transition probabilities obtained with numerical simula-
tions and find perfect agreement between them.

V. DISCUSSION AND CONCLUSION

In this work we demonstrated that the absence of the Stokes
phenomenon is the property of solutions in a large class of LZC
systems (1). For any such model, it is possible to obtain exact
nontrivial constraints on the elements of the scattering matrix.
Generally those constraints do not show a simple interpretation
in terms of transition probabilities for evolution from t →
0+ to t → +∞. However, there is quite a large subclass of
LZC systems that contain additional discrete symmetries that
eventually lead to simple linear constraints on elements of the
transition probability matrix and, sometimes, even to analytical
expressions for probabilities of particular transitions.

Certainly it is likely that examples found in this article
do not exhaust the set of tricks that can be applied to derive
new interesting solutions of LZC models. So future progress
in this direction is expected. Here we would like to point to
alternative research directions, which have not been explored
in the present article.

First, we note that the proof of the absence of the Stokes
phenomenon can be applied to even larger class of systems.

For example, one can consider the generalized LZC model with
the Hamiltonian

Ĥ = Â + B̂t +
L∑

i=0

Ĉi

t − ti
(105)

that has similar, to the LZC model, behavior of asymptotic
solutions near points ti and t → ∞. In such a case, a contour
at R → ∞ that connects asymptotics at t → ±∞ can be
continuously deformed to lay along the real axis except the
points ti that it should encircle. It would be interesting to
find out whether it is possible to derive useful constraints
on transition probabilities for models of the type (105) by
imposing additional symmetries of the Hamiltonian, as we did
in the present work for the LZC model.

The second observation that can be useful is that even if only
one of the amplitudes is completely known along a contour
then all other solutions can be found as integrals of this known
amplitude. For example, an arbitrary evolution of a two-state
system with time-dependent coefficients can be written in the
following form:

iȧ = e(t)a + g∗(t)b,

iḃ = g(t)a.

Let C be a contour that goes around the infinite time
semicircle connecting t → ±∞ asymptotics at the real axis
as we discussed before. If for some reason the amplitude
a(t) is known along C with initial conditions (a,b) = (1,0)
at t → −∞, then one can also connect asymptotic values for
b(t) as

b(t → +∞) = −i

∫
C

dt ′g(t ′)a(t ′). (106)

Applying this idea to the extremal amplitude of an LZC
model, one would find, however, that it is not enough to know
the leading terms in 1/t for the amplitude a(t) along C because
subleading terms in the expansion of a(t) over the small
parameter 1/t generally produce a finite contribution to (106).
Nevertheless, imagine that one can find a formal solution
for the amplitude a(t) of an extremal state in an LZC-type
model in terms of a formal series in powers of the small
parameter 1/t times the leading oscillating term along C . One
can then directly substitute this formal solution in expressions
like (106) and, after evaluating Gaussian integrals over time,
obtain the series that determines the asymptotic values of other
elements of the evolution matrix. So the problem reduces to
the question whether interesting LZC models can be found for
which not only leading asymptotics but also the whole series
in powers of 1/t can be written explicitly, i.e., not in terms of
recursion relations but rather in terms of explicit expressions
for coefficients of this expansion over 1/t , e.g., in the form of
the Tailor series for the generalized hypergeometric function.

The Stokes phenomenon in systems of differential equa-
tions with polynomial in time coefficients has been extensively
discussed in mathematical literature [27]. However, mathemat-
ical results have been usually formalized to include too general
equations that lack a transparent physical interpretation. In
contrast, the major goal of exactly solvable models in physics
is to obtain the intuition about a complex nonperturbative
regime. Hence, valuable formulas must be written in terms
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of physically measurable characteristics, such as transition
probabilities. Usually most interesting exact results can be
expressed via elementary functions of model’s parameters.
It can be also useful when a solvable model can produce
an insight into numerically challenging situations with a
macroscopic number of interacting states (N � 1).

We hope that explicit examples that we provided will raise
the interest in quantum mechanical properties of LZC modes,
and this article will be used as the bridge between mathematical
literature and physically interesting applications.
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APPENDIX A: MULTISTATE LANDAU-ZENER MODELS
WITH LINEAR LEVEL CROSSINGS

Consider the Hamiltonian with linear time dependence of
parameters

Ĥ = Â + B̂t. (A1)

Since the Hamiltonian (A1) has no singularity at t = 0,
typically the scattering problem is formulated for the evolution
from t → −∞ to t → +∞, and we will focus on this case
here too.

1. Brundobler-Elser formula and no-go theorem

It was observed, initially in numerical simulations [13],
that for any model of the form (A1) there are elements of the
transition probability matrix, for evolution during t ∈ (−∞, +
∞), that can be found by a simple application of the two
state Landau-Zener formula at every intersection of diabatic
energies. Reference [13] presented the formula for the diagonal
element of the scattering matrix for the state whose diabatic
energy level has the extremal slope, i.e., if k is the index of the
state with Bkk = max(β1, . . . ,βN ) or Bkk = min(β1, . . . ,βN )
then

|Skk(+∞, − ∞)| = exp

⎛
⎝−π

∑
i (i �=k)

|Aki |2
|βk − βi |

⎞
⎠ . (A2)

In [15] another exact result, called the “no-go theorem,” was
found in the case when instead of one state with the highest
(or one lowest) slope of the diabatic energy level there is a
band of an arbitrary number of states having the same highest
slope so that diabatic energies in this band are different only
by constant energy parameters. The no-go theorem states that
the counterintuitive transitions, as they are defined in the main
text, are exactly forbidden:

Pn→m ≡ |Smn(−∞, + ∞,)| = 0. (A3)

One can easily verify that (A2) and (A3) are direct conse-
quences of the rules (20)–(22) applied to the systems with the
Hamiltonian (A1). We note also that validity of (A2) and (A3)
was proved by an alternative approach in [16].

2. Discrete symmetries in systems with linear level crossings

Discrete symmetries of evolution equations with the Hamil-
tonian (A1) can be useful to derive constraints on transition
probabilities. Here we will show two examples.

First, consider the class of models of transitions on a linear
chain [20] with evolution of amplitudes an(t), n = 1, . . . ,N ,
of the form

iȧn = βntan + gnan+1 + gn−1an, g0 = gN = 0. (A4)

As we discussed in Sec. IV C, this system is symmetric under
the sign change of time and, simultaneously, the sign change
of amplitudes with even indexes. Applying this symmetry to
off-diagonal elements of the scattering matrix for evolution
from t → −∞ to t → +∞, we find that sij = ±s∗

ji . The
latter symmetry means that the transition probability matrix
is symmetric:

pi→j = pj→i , (A5)

which explains some observations in [20].
Second, consider a three-state model with equal couplings

between any pair of states:

Ĥ (t) =
⎛
⎝βt g g

g 0 g

g g −βt

⎞
⎠ . (A6)

Exact solution for this model has not been found. However,
this model is symmetric under three simultaneously applied
operations:

(i) time reversal t → −t ;
(ii) change of indexes, 1 → 3 and 3 → 1;
(iii) complex conjugation of the evolution equation.
Let the scattering matrix have the form

Ŝ(+∞| − ∞) =
⎛
⎝s11 s12 s13

s21 s22 s23

s31 s32 s33

⎞
⎠ , (A7)

then applying a sort of CPT symmetry (i)–(iii) in combination
with unitarity S(t1|t2) = S†(t2|t1), we find that

Ŝ(+∞| − ∞) =
⎛
⎝s33 s23 s13

s32 s22 s12

s31 s21 s11

⎞
⎠ . (A8)

Comparing (A7) and (A8) we find constraints on transition
probabilities:

p2→1 = p3→2, p2→3 = p1→2. (A9)

Unfortunately, conditions (A9) and the Brundobler-Elser
formula, which provides two additional constraints, are still
insufficient to determine all transition probabilities in this
model.

APPENDIX B: EXACTLY SOLVABLE MULTISTATE
LZC-LIKE MODEL WITH ALL NONZERO

PAIRWISE COUPLINGS

Here we present an exactly solvable system of the type (1)
that admits the possibility of an arbitrary number of interacting
states. Its solution contains some of the results in Secs. III C
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and IV D as special cases and hence can be considered as
independent verification of connection formulas.

Our model has Â = 0, and we assume that elements of the
matrix Ĉ can be factorized as Cij = qiqj with i,j = 1, . . . ,N ,
where qi are characteristic coupling constants. Matrix B̂ is
assumed to be nondegenerate. B̂ = diag{β1, . . . ,βN }. We will
also assume that state indexes are ordered so that βi > βj if
i < j . Evolution equation for amplitudes an(t) of those states
can be written in the form

i
d

dt
an = βntan + qn

t
u, u =

N∑
m=1

qmam. (B1)

where n = 1, . . . ,N . Matrix Ĉ has N − 1 zero eigenvalues
and one nonzero eigenvalue

E+ =
N∑

m=1

q2
m (B2)

that corresponds to the eigenstate

|+〉 = 1√
E+

N∑
m=1

qm|m〉. (B3)

Our goal will be to find transition probabilities from this
special eigenstate of the Hamiltonian at t → 0+ to all possible
diabatic states.

First, we change variables: u → t2v and τ = t2/2, leading
to

i
d

dτ
an = βnan + qnv, 2τv =

N∑
m=1

qmam, (B4)

where n = 1, . . . ,N .
We introduce then the ansatz

an(τ ) =
∫

A
dse−isτ αn(s), v(τ ) =

∫
A

dse−isτ V (s), (B5)

where A is a contour such that the integrand vanishes at this
contour limits. Substituting (B5) in (B4) we obtain a first-
order differential equation for an(s), which is trivially solvable.
Substituting the result back to (B5) we find

v(τ ) = Q

∫
A

ds e−isτ

N∏
n=1

(−s + βn)
iq2

n
2 ,

(B6)

am(τ ) = −Qgm

∫
A

ds
e−isτ

−s + βm

N∏
n=1

(−s + βn)
iq2

n
2 ,

where Q is a normalization constant.
Consider a contour A, shown in Fig. 7(a), that incloses

branch cuts at s = {βn} from a large distance and goes to
infinities at s = −i∞ ± R, where R is a large real number. In
this limit we can disregard terms βn in comparison with s, so
that integrals in (B6) simplify, e.g.,

v(τ ) → Q

∫
A

e−isτ (−s)
iE+

2 ds. (B7)

In (B7), the contour A can be transformed into the contour C
in Fig. 7(b) by switching to the variable z = iut and shrinking
the contour to run around the branch cut of z. We can then use

FIG. 7. (a) The integration contour A enclosing all branch cuts
(dashed lines) from a large distance. (b) Each integral over γ n can
be transformed into the integral over the contour C by a change of
variables.

the formula

�(z) = − 1

2isin(πz)

∫
C

(−τ )z−1e−τ dτ (B8)

to evaluate the integral. We find that, at τ → 0+, this solution
behaves as the state |+〉, i.e., it corresponds to the desired
initial condition if one introduces the normalization factor

|Q| = 1√
4π

√
1 − e−πE+

. (B9)

In order to find transition probabilities at τ → +∞ limit, we
continuously deform the contour A into the combination of
contours γ n that inclose the branch cuts at s = βn as shown
in Fig. 7(a). In the limit τ → +∞, only the vicinity of the
branching points contribute essentially to each integral over
γ n. Hence one can change variables s → u + βn, keeping the
dependence on s only for terms that are singular near the origin
of the γ nth cut. In all other factors we can substitute s by its
value at this point. The mth integral in (B6) over γ m provides
the asymptotic at t → +∞ for am(t), i.e.,

am(t)→+∞ = −Qgm

N∏
n=1, n�=j

(βn − βm)i
q2
n
2

×
∫

γ 0

ds e−ist (−s)−1+i
q2
m
2 , (B10)

where we should assume that (−i) = e−iπ/2 and −1 = e−iπ .
Remaining integrals again can be evaluated with Eq. (B8).
Transition probabilities can be obtained by taking squares of
the absolute values of transition amplitudes. In order to write
them, it is convenient to introduce LZ-like probabilities:

pj = e−πq2
j , j = 1, . . . ,N. (B11)

The transition probabilities from the initially populated |+〉
state to all possible diabatic states are then given by

P+→m = (1 − pm)
∏βm<βn

n pn

1 − e−πE+
. (B12)

One can verify that for the special case of N = 2 and the
case when m is the index of the extremal level, Eq. (B12)
transfers into results presented in Secs. III C and IV D. We also
note that Eq. (B12) predicts that the transition probabilities do
not depend on the slopes of the levels βi as far as the ordering
of βi according to their magnitudes is preserved.

062509-13



N. A. SINITSYN PHYSICAL REVIEW A 90, 062509 (2014)

[1] H. Nakamura, Nonadiabatic Transition, 2nd ed. (World
Scientific, Singapore, 2012).

[2] E. Majorana, Nuovo Cimento 9, 43 (1932).
[3] L. D. Landau, Phys. Z. Sowjetunion 2, 46 (1932).
[4] C. Zener, Proc. R. Soc. London Ser. A 137, 696 (1932);

E. C. G. Stückelberg, Helv. Phys. Acta 5, 369 (1932).
[5] N. Rosen and C. Zener, Phys. Rev. 40, 502 (1932); J. B. Delos

and W. R. Thorson, Phys. Rev. A 6, 728 (1972).
[6] E. E. Nikitin, Adv. Quantum Chem. 5, 135 (1970).
[7] V. I. Osherov and H. Nakamura, J. Chem. Phys. 105, 2770

(1996).
[8] V. A. Yurovsky, A. Ben-Reuven, and P. S. Julienne, Phys. Rev. A

65, 043607 (2002); V. Shahnazaryan, O. Kyriienko, I. Shelykh,
arXiv:1410.1379; W. H. Zurek, U. Dorner, and P. Zoller, Phys.
Rev. Lett. 95, 105701 (2005); B. Damski and W. H. Zurek, Phys.
Rev. A 73, 063405 (2006); B. Damski, H. T. Quan, and W. H.
Zurek, ibid. 83, 062104 (2011); V. Gurarie, ibid. 80, 023626
(2009); B. E. Dobrescu and V. L. Pokrovsky, Phys. Lett. A 350,
154 (2006); M. Schecter and A. Kamenev, Phys. Rev. A 85,
043623 (2012).

[9] D. Sun, A. Abanov, and V. L. Pokrovsky, Europhys. Lett. 83,
16003 (2008); A. Altland, V. Gurarie, T. Kriecherbauer, and
A. Polkovnikov, Phys. Rev. A 79, 042703 (2009); A. P. Itin and
P. Törmä, ibid. 79, 055602 (2009).

[10] K. Saito, M. Wubs, S. Kohler, Y. Kayanuma, and P.
Hänggi, Phys. Rev. B 75, 214308 (2007); P. Ao and J.
Rammer, ibid. 43, 5397 (1991); M. H. S. Amin, D. V.
Averin, and J. A. Nesteroff, Phys. Rev. A 79, 022107
(2009); V. N. Ostrovsky and M. V. Volkov, Phys. Rev. B
73, 060405 (2006); J. Keeling, A. V. Shytov, and L. S.
Levitov, Phys. Rev. Lett. 101, 196404 (2008); M. Wubs,
K. Saito, S. Kohler, P. Hänggi, and Y. Kayanuma, ibid. 97,
200404 (2006).

[11] M. N. Kiselev, K. Kikoin, and M. B. Kenmoe, Europhys. Lett.
104, 57004 (2013); F. Forster, G. Petersen, S. Manus, P. Hanggi,
D. Schuh, W. Wegscheider, S. Kohler, and S. Ludwig, Phys. Rev.
Lett. 112, 116803 (2014); S. Ganeshan, E. Barnes, and S. Das
Sarma, ibid. 111, 130405 (2013); H. Ribeiro, J. R. Petta, and G.
Burkard, Phys. Rev. B 87, 235318 (2013); S. Martinez-Garaot
E. Torrontegui, X. Chen, M. Modugno, D. Guery-Odelin, S. Y.
Tseng, and J. G. Muga, Phys. Rev. Lett. 111, 213001 (2013).

[12] C. M. Quintana, K. D. Petersson, L. W. McFaul, S. J. Srinivasan,
A. A. Houck, and J. R. Petta, Phys. Rev. Lett. 110, 173603

(2013); S. Masuda, K. Nakamura, and A. del Campo, ibid. 113,
063003 (2014); S. Deffner, C. Jarzynski, and A. del Campo,
Phys. Rev. X 4, 021013 (2014); A. del Campo, M. M. Rams,
and W. H. Zurek, Phys. Rev. Lett. 109, 115703 (2012).

[13] S. Brundobler and V. Elser, J. Phys. A 26, 1211 (1993).
[14] A. V. Shytov, Phys. Rev. A 70, 052708 (2004).
[15] N. A. Sinitsyn, J. Phys. A 37, 10691 (2004).
[16] B. E. Dobrescu and N. A. Sinitsyn, J. Phys. B: At. Mol. Opt.

Phys. 39, 1253 (2006); M. V. Volkov and V. N. Ostrovsky, ibid.
37, 4069 (2004); ,38, 907 (2005).

[17] Yu. N. Demkov and V. I. Osherov, Zh. Exp. Teor. Fiz. 53, 1589
(1967) ,[Sov. Phys. JETP 26, 916 (1968)]; A. A. Rangelov,
J. Piilo, and N. V. Vitanov, Phys. Rev. A 72, 053404 (2005).

[18] N. A. Sinitsyn, Phys. Rev. B 66, 205303 (2002); J. Dziarmaga,
Phys. Rev. Lett. 95, 245701 (2005); M. V. Volkov and V. N.
Ostrovsky, Phys. Rev. A 75, 022105 (2007).

[19] Y. N. Demkov and V. N. Ostrovsky, Phys. Rev. A 61, 032705
(2000); ,J. Phys. B 28, 403 (1995); V. N. Ostrovsky and
H. Nakamura, J. Phys. A 30, 6939 (1997); Y. N. Demkov and
V. N. Ostrovsky, J. Phys. B 34, 2419 (2001); C. E. Carroll and
F. T. Hioe, J. Phys. A 19, 1151 (1986).

[20] N. A. Sinitsyn, Phys. Rev. A 87, 032701 (2013); V. L. Pokrovsky
and N. A. Sinitsyn, Phys. Rev. B 65, 153105 (2002).

[21] V. N. Ostrovsky, Phys. Rev. A 68, 012710 (2003).
[22] N. A. Sinitsyn, Phys. Rev. Lett. 110, 150603 (2013).
[23] J. Lin and N. A. Sinitsyn, J. Phys. A: Math. Theor. 47, 015301

(2014).
[24] J. Lin and N. A. Sinitsyn, J. Phys. A: Math. Theor. 47, 175301

(2014).
[25] J. S. Cabral et al., New J. Phys. 12, 093023 (2010);

F. Baumgartner and H. Helm, Phys. Rev. Lett. 104, 103002
(2010); J. M. Menendez, I. Martin, and A. M. Velasco, J. Chem.
Phys. 119, 12926 (2003); V. A. Nascimento, L. L. Caliri, A.
Schwettmann, J. P. Shaffer, and L. G. Marcassa, Phys. Rev.
Lett. 102, 213201 (2009); F. Robicheaux, C. Wesdorp, and L. D.
Noordam, Phys. Rev. A 62, 043404 (2000); Y.-L. He, J. Phys.
B: At. Mol. Opt. Phys. 45, 015001 (2012).

[26] R. S. Tantawi, A. S. Sabbah, J. H. Macek, and S. Yu.
Ovchinnikov, Phys. Rev. A 62, 042710 (2000); J. S. Cohen,
L. A. Collins, and N. F. Lane, ibid. 17, 1343 (1978); T. R.
Dinterman and J. B. Delos, ibid. 15, 463 (1977).

[27] V. P. Gurarii and V. I. Matsaev, Teoret. Mat. Fiz. 100(2), 173
(1994); ,English transl., Theor. Math. Phys. 100(2), 928 (1994).

062509-14

http://dx.doi.org/10.1007/BF02960953
http://dx.doi.org/10.1007/BF02960953
http://dx.doi.org/10.1007/BF02960953
http://dx.doi.org/10.1007/BF02960953
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1098/rspa.1932.0165
http://dx.doi.org/10.1103/PhysRev.40.502
http://dx.doi.org/10.1103/PhysRev.40.502
http://dx.doi.org/10.1103/PhysRev.40.502
http://dx.doi.org/10.1103/PhysRev.40.502
http://dx.doi.org/10.1103/PhysRevA.6.728
http://dx.doi.org/10.1103/PhysRevA.6.728
http://dx.doi.org/10.1103/PhysRevA.6.728
http://dx.doi.org/10.1103/PhysRevA.6.728
http://dx.doi.org/10.1016/S0065-3276(08)60338-X
http://dx.doi.org/10.1016/S0065-3276(08)60338-X
http://dx.doi.org/10.1016/S0065-3276(08)60338-X
http://dx.doi.org/10.1016/S0065-3276(08)60338-X
http://dx.doi.org/10.1063/1.472139
http://dx.doi.org/10.1063/1.472139
http://dx.doi.org/10.1063/1.472139
http://dx.doi.org/10.1063/1.472139
http://dx.doi.org/10.1103/PhysRevA.65.043607
http://dx.doi.org/10.1103/PhysRevA.65.043607
http://dx.doi.org/10.1103/PhysRevA.65.043607
http://dx.doi.org/10.1103/PhysRevA.65.043607
http://arxiv.org/abs/arXiv:1410.1379
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1103/PhysRevA.73.063405
http://dx.doi.org/10.1103/PhysRevA.73.063405
http://dx.doi.org/10.1103/PhysRevA.73.063405
http://dx.doi.org/10.1103/PhysRevA.73.063405
http://dx.doi.org/10.1103/PhysRevA.83.062104
http://dx.doi.org/10.1103/PhysRevA.83.062104
http://dx.doi.org/10.1103/PhysRevA.83.062104
http://dx.doi.org/10.1103/PhysRevA.83.062104
http://dx.doi.org/10.1103/PhysRevA.80.023626
http://dx.doi.org/10.1103/PhysRevA.80.023626
http://dx.doi.org/10.1103/PhysRevA.80.023626
http://dx.doi.org/10.1103/PhysRevA.80.023626
http://dx.doi.org/10.1016/j.physleta.2005.10.009
http://dx.doi.org/10.1016/j.physleta.2005.10.009
http://dx.doi.org/10.1016/j.physleta.2005.10.009
http://dx.doi.org/10.1016/j.physleta.2005.10.009
http://dx.doi.org/10.1103/PhysRevA.85.043623
http://dx.doi.org/10.1103/PhysRevA.85.043623
http://dx.doi.org/10.1103/PhysRevA.85.043623
http://dx.doi.org/10.1103/PhysRevA.85.043623
http://dx.doi.org/10.1209/0295-5075/83/16003
http://dx.doi.org/10.1209/0295-5075/83/16003
http://dx.doi.org/10.1209/0295-5075/83/16003
http://dx.doi.org/10.1209/0295-5075/83/16003
http://dx.doi.org/10.1103/PhysRevA.79.042703
http://dx.doi.org/10.1103/PhysRevA.79.042703
http://dx.doi.org/10.1103/PhysRevA.79.042703
http://dx.doi.org/10.1103/PhysRevA.79.042703
http://dx.doi.org/10.1103/PhysRevA.79.055602
http://dx.doi.org/10.1103/PhysRevA.79.055602
http://dx.doi.org/10.1103/PhysRevA.79.055602
http://dx.doi.org/10.1103/PhysRevA.79.055602
http://dx.doi.org/10.1103/PhysRevB.75.214308
http://dx.doi.org/10.1103/PhysRevB.75.214308
http://dx.doi.org/10.1103/PhysRevB.75.214308
http://dx.doi.org/10.1103/PhysRevB.75.214308
http://dx.doi.org/10.1103/PhysRevB.43.5397
http://dx.doi.org/10.1103/PhysRevB.43.5397
http://dx.doi.org/10.1103/PhysRevB.43.5397
http://dx.doi.org/10.1103/PhysRevB.43.5397
http://dx.doi.org/10.1103/PhysRevA.79.022107
http://dx.doi.org/10.1103/PhysRevA.79.022107
http://dx.doi.org/10.1103/PhysRevA.79.022107
http://dx.doi.org/10.1103/PhysRevA.79.022107
http://dx.doi.org/10.1103/PhysRevB.73.060405
http://dx.doi.org/10.1103/PhysRevB.73.060405
http://dx.doi.org/10.1103/PhysRevB.73.060405
http://dx.doi.org/10.1103/PhysRevB.73.060405
http://dx.doi.org/10.1103/PhysRevLett.101.196404
http://dx.doi.org/10.1103/PhysRevLett.101.196404
http://dx.doi.org/10.1103/PhysRevLett.101.196404
http://dx.doi.org/10.1103/PhysRevLett.101.196404
http://dx.doi.org/10.1103/PhysRevLett.97.200404
http://dx.doi.org/10.1103/PhysRevLett.97.200404
http://dx.doi.org/10.1103/PhysRevLett.97.200404
http://dx.doi.org/10.1103/PhysRevLett.97.200404
http://dx.doi.org/10.1209/0295-5075/104/57004
http://dx.doi.org/10.1209/0295-5075/104/57004
http://dx.doi.org/10.1209/0295-5075/104/57004
http://dx.doi.org/10.1209/0295-5075/104/57004
http://dx.doi.org/10.1103/PhysRevLett.112.116803
http://dx.doi.org/10.1103/PhysRevLett.112.116803
http://dx.doi.org/10.1103/PhysRevLett.112.116803
http://dx.doi.org/10.1103/PhysRevLett.112.116803
http://dx.doi.org/10.1103/PhysRevLett.111.130405
http://dx.doi.org/10.1103/PhysRevLett.111.130405
http://dx.doi.org/10.1103/PhysRevLett.111.130405
http://dx.doi.org/10.1103/PhysRevLett.111.130405
http://dx.doi.org/10.1103/PhysRevB.87.235318
http://dx.doi.org/10.1103/PhysRevB.87.235318
http://dx.doi.org/10.1103/PhysRevB.87.235318
http://dx.doi.org/10.1103/PhysRevB.87.235318
http://dx.doi.org/10.1103/PhysRevLett.111.213001
http://dx.doi.org/10.1103/PhysRevLett.111.213001
http://dx.doi.org/10.1103/PhysRevLett.111.213001
http://dx.doi.org/10.1103/PhysRevLett.111.213001
http://dx.doi.org/10.1103/PhysRevLett.110.173603
http://dx.doi.org/10.1103/PhysRevLett.110.173603
http://dx.doi.org/10.1103/PhysRevLett.110.173603
http://dx.doi.org/10.1103/PhysRevLett.110.173603
http://dx.doi.org/10.1103/PhysRevLett.113.063003
http://dx.doi.org/10.1103/PhysRevLett.113.063003
http://dx.doi.org/10.1103/PhysRevLett.113.063003
http://dx.doi.org/10.1103/PhysRevLett.113.063003
http://dx.doi.org/10.1103/PhysRevX.4.021013
http://dx.doi.org/10.1103/PhysRevX.4.021013
http://dx.doi.org/10.1103/PhysRevX.4.021013
http://dx.doi.org/10.1103/PhysRevX.4.021013
http://dx.doi.org/10.1103/PhysRevLett.109.115703
http://dx.doi.org/10.1103/PhysRevLett.109.115703
http://dx.doi.org/10.1103/PhysRevLett.109.115703
http://dx.doi.org/10.1103/PhysRevLett.109.115703
http://dx.doi.org/10.1088/0305-4470/26/5/037
http://dx.doi.org/10.1088/0305-4470/26/5/037
http://dx.doi.org/10.1088/0305-4470/26/5/037
http://dx.doi.org/10.1088/0305-4470/26/5/037
http://dx.doi.org/10.1103/PhysRevA.70.052708
http://dx.doi.org/10.1103/PhysRevA.70.052708
http://dx.doi.org/10.1103/PhysRevA.70.052708
http://dx.doi.org/10.1103/PhysRevA.70.052708
http://dx.doi.org/10.1088/0305-4470/37/44/016
http://dx.doi.org/10.1088/0305-4470/37/44/016
http://dx.doi.org/10.1088/0305-4470/37/44/016
http://dx.doi.org/10.1088/0305-4470/37/44/016
http://dx.doi.org/10.1088/0953-4075/39/5/N01
http://dx.doi.org/10.1088/0953-4075/39/5/N01
http://dx.doi.org/10.1088/0953-4075/39/5/N01
http://dx.doi.org/10.1088/0953-4075/39/5/N01
http://dx.doi.org/10.1088/0953-4075/37/20/003
http://dx.doi.org/10.1088/0953-4075/37/20/003
http://dx.doi.org/10.1088/0953-4075/37/20/003
http://dx.doi.org/10.1088/0953-4075/37/20/003
http://dx.doi.org/10.1088/0953-4075/38/7/011
http://dx.doi.org/10.1088/0953-4075/38/7/011
http://dx.doi.org/10.1088/0953-4075/38/7/011
http://dx.doi.org/10.1103/PhysRevA.72.053404
http://dx.doi.org/10.1103/PhysRevA.72.053404
http://dx.doi.org/10.1103/PhysRevA.72.053404
http://dx.doi.org/10.1103/PhysRevA.72.053404
http://dx.doi.org/10.1103/PhysRevB.66.205303
http://dx.doi.org/10.1103/PhysRevB.66.205303
http://dx.doi.org/10.1103/PhysRevB.66.205303
http://dx.doi.org/10.1103/PhysRevB.66.205303
http://dx.doi.org/10.1103/PhysRevLett.95.245701
http://dx.doi.org/10.1103/PhysRevLett.95.245701
http://dx.doi.org/10.1103/PhysRevLett.95.245701
http://dx.doi.org/10.1103/PhysRevLett.95.245701
http://dx.doi.org/10.1103/PhysRevA.75.022105
http://dx.doi.org/10.1103/PhysRevA.75.022105
http://dx.doi.org/10.1103/PhysRevA.75.022105
http://dx.doi.org/10.1103/PhysRevA.75.022105
http://dx.doi.org/10.1103/PhysRevA.61.032705
http://dx.doi.org/10.1103/PhysRevA.61.032705
http://dx.doi.org/10.1103/PhysRevA.61.032705
http://dx.doi.org/10.1103/PhysRevA.61.032705
http://dx.doi.org/10.1088/0953-4075/28/3/011
http://dx.doi.org/10.1088/0953-4075/28/3/011
http://dx.doi.org/10.1088/0953-4075/28/3/011
http://dx.doi.org/10.1088/0953-4075/28/3/011
http://dx.doi.org/10.1088/0305-4470/30/19/028
http://dx.doi.org/10.1088/0305-4470/30/19/028
http://dx.doi.org/10.1088/0305-4470/30/19/028
http://dx.doi.org/10.1088/0305-4470/30/19/028
http://dx.doi.org/10.1088/0953-4075/34/12/309
http://dx.doi.org/10.1088/0953-4075/34/12/309
http://dx.doi.org/10.1088/0953-4075/34/12/309
http://dx.doi.org/10.1088/0953-4075/34/12/309
http://dx.doi.org/10.1088/0305-4470/19/7/017
http://dx.doi.org/10.1088/0305-4470/19/7/017
http://dx.doi.org/10.1088/0305-4470/19/7/017
http://dx.doi.org/10.1088/0305-4470/19/7/017
http://dx.doi.org/10.1103/PhysRevA.87.032701
http://dx.doi.org/10.1103/PhysRevA.87.032701
http://dx.doi.org/10.1103/PhysRevA.87.032701
http://dx.doi.org/10.1103/PhysRevA.87.032701
http://dx.doi.org/10.1103/PhysRevB.65.153105
http://dx.doi.org/10.1103/PhysRevB.65.153105
http://dx.doi.org/10.1103/PhysRevB.65.153105
http://dx.doi.org/10.1103/PhysRevB.65.153105
http://dx.doi.org/10.1103/PhysRevA.68.012710
http://dx.doi.org/10.1103/PhysRevA.68.012710
http://dx.doi.org/10.1103/PhysRevA.68.012710
http://dx.doi.org/10.1103/PhysRevA.68.012710
http://dx.doi.org/10.1103/PhysRevLett.110.150603
http://dx.doi.org/10.1103/PhysRevLett.110.150603
http://dx.doi.org/10.1103/PhysRevLett.110.150603
http://dx.doi.org/10.1103/PhysRevLett.110.150603
http://dx.doi.org/10.1088/1751-8113/47/1/015301
http://dx.doi.org/10.1088/1751-8113/47/1/015301
http://dx.doi.org/10.1088/1751-8113/47/1/015301
http://dx.doi.org/10.1088/1751-8113/47/1/015301
http://dx.doi.org/10.1088/1751-8113/47/17/175301
http://dx.doi.org/10.1088/1751-8113/47/17/175301
http://dx.doi.org/10.1088/1751-8113/47/17/175301
http://dx.doi.org/10.1088/1751-8113/47/17/175301
http://dx.doi.org/10.1088/1367-2630/12/9/093023
http://dx.doi.org/10.1088/1367-2630/12/9/093023
http://dx.doi.org/10.1088/1367-2630/12/9/093023
http://dx.doi.org/10.1088/1367-2630/12/9/093023
http://dx.doi.org/10.1103/PhysRevLett.104.103002
http://dx.doi.org/10.1103/PhysRevLett.104.103002
http://dx.doi.org/10.1103/PhysRevLett.104.103002
http://dx.doi.org/10.1103/PhysRevLett.104.103002
http://dx.doi.org/10.1063/1.1628212
http://dx.doi.org/10.1063/1.1628212
http://dx.doi.org/10.1063/1.1628212
http://dx.doi.org/10.1063/1.1628212
http://dx.doi.org/10.1103/PhysRevLett.102.213201
http://dx.doi.org/10.1103/PhysRevLett.102.213201
http://dx.doi.org/10.1103/PhysRevLett.102.213201
http://dx.doi.org/10.1103/PhysRevLett.102.213201
http://dx.doi.org/10.1103/PhysRevA.62.043404
http://dx.doi.org/10.1103/PhysRevA.62.043404
http://dx.doi.org/10.1103/PhysRevA.62.043404
http://dx.doi.org/10.1103/PhysRevA.62.043404
http://dx.doi.org/10.1088/0953-4075/45/1/015001
http://dx.doi.org/10.1088/0953-4075/45/1/015001
http://dx.doi.org/10.1088/0953-4075/45/1/015001
http://dx.doi.org/10.1088/0953-4075/45/1/015001
http://dx.doi.org/10.1103/PhysRevA.62.042710
http://dx.doi.org/10.1103/PhysRevA.62.042710
http://dx.doi.org/10.1103/PhysRevA.62.042710
http://dx.doi.org/10.1103/PhysRevA.62.042710
http://dx.doi.org/10.1103/PhysRevA.17.1343
http://dx.doi.org/10.1103/PhysRevA.17.1343
http://dx.doi.org/10.1103/PhysRevA.17.1343
http://dx.doi.org/10.1103/PhysRevA.17.1343
http://dx.doi.org/10.1103/PhysRevA.15.463
http://dx.doi.org/10.1103/PhysRevA.15.463
http://dx.doi.org/10.1103/PhysRevA.15.463
http://dx.doi.org/10.1103/PhysRevA.15.463
http://dx.doi.org/10.1007/BF01016755
http://dx.doi.org/10.1007/BF01016755
http://dx.doi.org/10.1007/BF01016755
http://dx.doi.org/10.1007/BF01016755



