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Time-dependent generalized-active-space configuration-interaction approach to photoionization
dynamics of atoms and molecules
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We present a wave-function-based method to solve the time-dependent many-electron Schrödinger equation
with special emphasis on strong-field ionization phenomena. The theory builds on the configuration-interaction
(CI) approach supplemented by the generalized-active-space concept from quantum chemistry. The latter allows
for a controllable reduction in the number of configurations in the CI expansion by imposing restrictions on the
active orbital space. The method is similar to the recently formulated time-dependent restricted-active-space CI
method [D. Hochstuhl and M. Bonitz, Phys. Rev. A 86, 053424 (2012)]. We present details of our implementation
and address convergence properties with respect to the active spaces and the associated account of electron
correlation in both ground-state and excitation scenarios. We apply the time-dependent generalized-active-space
CI theory to strong-field ionization of polar diatomic molecules and illustrate how the method allows us to
uncover a strong correlation-induced shift of the preferred direction of emission of photoelectrons.
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I. INTRODUCTION

Tracing electron motion and correlation on their natural
time scales has become possible within the past decade due to
enormous experimental progress in light-pulse technology and
detection methods [1–4]. These experimental advancements
and associated new possibilities for elucidating quantum
motion on an ultrafast time scale challenge theory. Clearly,
approaches that treat electron correlation and at the same time
are explicitly time dependent are needed to fully exploit the
potential of the experimental capabilities. The development
and application of such a time-dependent (TD) quantum theory
for the many-electron problem (MEP) including a possibly
strong external field is the topic of the present work.

Over the years, various approaches for the solution of the
TDMEP on a quantum-mechanical level have been proposed
and applied. On the one hand, there exist approximative meth-
ods which consider a reduced number of electrons (typically
one or two) in precalculated pseudopotentials created by frozen
electrons that are assumed to be inactive in the considered
dynamics, apart from contributing to the potential governing
the motion of the active electrons. This approach results in
the single- and two-active-electron (SAE and TAE) approx-
imations for which the TD Schrödinger equation (TDSE)
has been solved for photoionization, high-order harmonic
generation (HHG), and related phenomena since the late
1980s [5]. The appeal of these methods is their flexibility and
numerical feasibility with respect to the considered systems.
The dynamical effects of the frozen electrons, however, cannot
be tested within these SAE and TAE approximations, and
likewise there is no explicit account of electron correlation in
general. To this end, approaches have been developed where
all electrons are treated simultaneously on different levels of
“activity.” Numerical tractable methods are either achieved by
approximating the electron-electron (e-e) interactions or by
reducing the configuration space. Among these methods are
the time-dependent configuration-interaction (TD-CI) method
and its truncations, where, in particular, the simplest TD-CI-
singles (TD-CIS) with only single-orbital excitation out of

the Hartree-Fock (HF) ground state has been applied [6,7].
In addition, we mention the TD density functional theory [8],
TD natural orbital theory [9], TD coupled-cluster theory [10],
the nonequilibrium Green’s functions approaches [11–13],
and the state-specific expansion approach [14,15]. Up to
now, in particular, the TD R-matrix theory [16–19] and
the multiconfigurational time-dependent Hartree-Fock (MCT-
DHF) method [13,20–25] have found applications in the
photoionization community. In the perturbative regime for
the matter-light interaction, the MCTDHF method has been
applied to the determination of inner-shell photoionization
cross sections for molecular hydrogen fluoride [25]. The
number of configurations in the MCTDHF method increases
exponentially with respect to the number of electrons due to
the full-CI expansion. This makes the method infeasible for
systems having more than a few electrons interacting with a
strong field. The TD complete-active-space self-consistent-
field method (TD-CASCF) [26] and the more general TD
restricted-active space SCF (TD-RASSCF) [27–29] cure this
scaling by imposing restrictions on the active orbital spaces,
while keeping the attractive SCF notion of the MCTDHF
approach; i.e., the orbitals are TD and optimally updated in
each time step.

In this paper, we consider the TD generalized-active-space
(GAS) CI concept, which is based on a general CI truncation
scheme adapted from (time-independent) quantum chemistry.
In the GAS (or RAS) approach [30,31] the single-particle
basis is partitioned into physically motivated subsets and
only the configurations that are expected to be most relevant
for the processes under consideration are included in the
CI expansion, thus reducing the number of configurations
considerably. By specifying the GAS, generalizations of the
SAE and TAE approximations, without the need of construct-
ing pseudopotentials, are readily obtained as limiting cases.
Moreover, CI truncations, such as CIS, CIS-doubles (CISD),
CISD-triples (CISDT), etc., can be easily specified and the
method, accordingly, allows a straightforward increase in the
account of electron correlation within a specified active orbital
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space. The present method is similar to the time-dependent
restricted-active-space (TD-RAS) CI scheme [32], which was
applied to calculate the photoionization cross sections of
beryllium and neon [33].

A fundamental problem of any truncated CI method is the
choice of a good orbital basis. In this work, we address this
issue with the focus on TD excitations and give a detailed
analysis of different choices: pseudo-orbitals based on HF
orbitals similar to [32], an adapted version for larger systems,
and natural orbitals. Further, we demonstrate in the limiting
case of four electrons the convergence of the method by
detailed comparison with fully correlated TDSE or equivalent
calculations. In addition, we give details of the implementation
and extend the approach to small molecules in strong external
fields. In particular, the approach allows us to uncover a
strong effect of electron correlation on the preferred emission
direction of photoelectrons.

The paper is organized as follows. Section II outlines
the concepts of CI and GAS and introduces the equations
of motion and notations used in this work. In Sec. III,
we address the problem of photoionization and the related
choice of appropriate orbital basis sets. Here we choose a
partially rotated basis, which combines orbital and grid-based
approaches in an efficient manner. In Sec. IV, we apply
the TD-GASCI method to model systems for atomic helium
and beryllium and compare with fully correlated results. We
especially focus on convergence properties with respect to
the GAS partitions and the choice of orbitals. Our analysis
covers ground-state properties as well as excitation scenarios.
Finally, the application of TD-GASCI is extended to molecular
systems. We focus on the polar diatomic lithium-hydride (LiH)
molecule. After a discussion of its ground-state properties, we
present a study of the strong-field ionization with single-cycle
laser pulses including electron correlation effects. Section V
summarizes and concludes.

II. THEORY

We aim to provide a general scheme for the numerical
treatment of the nonrelativistic many-electron TDSE (ME-
TDSE), which is particularly well suited for the description of
ionization processes of atoms and molecules by short and/or
strong pulses.

The fundamental equation is the TDSE for Nel electrons in
an atom or a molecule with fixed nuclei (atomic units are used
throughout),

i
∂

∂t
|�(t)〉 = Ĥ (t)|�(t)〉, (1)

with the TD Hamiltonian

Ĥ (t) =
Nel∑
i=1

ĥi(t) +
Nel∑
i<j

ŵij . (2)

The single-particle term referring to particle i,

ĥi(t) = t̂i + v̂i + F(t)r̂ i , (3)

consists of the kinetic energy t̂i , the potential describing the
attractive interaction with the nuclei v̂i , and the interaction
with the external field, F(t)r̂ i . The latter being described

in the dipole approximation within the length gauge. The
two-body part of Ĥ (t) is given by the binary interaction
between electrons i and j , ŵij .

The general solution of Eq. (1) is only feasible by
employing powerful numerical techniques. Pioneering work in
the context of (strong-field) ionization was done for (effective)
one-electron systems in Refs. [5,34–36]. For systems with
interacting electrons, only very few cases are manageable
without approximations, such as helium and H2 [37–45], and
even in these cases the whole range of laser frequencies and
intensities cannot be accessed.

When the number of electrons increases, only approximate
solutions are accessible (see, e.g., Ref. [46] for a thorough
review), and it is mandatory to go beyond the level of time-
dependent Hartree-Fock (TDHF) to allow for a description of
e-e correlation effects.

A. Time-dependent configuration interaction

Let us form Slater determinants |�I 〉 from the spin orbitals
|φi〉 = |ϕi〉 ⊗ |σ 〉 to construct the many-electron basis. Here
|σ 〉 with σ = {α,β} denotes the spin degree of freedom and |ϕi〉
denotes the remaining single-particle degrees of freedom. The
multi-index I specifies the individual configurations spanning
the full CI Fock space VFCI. The expansion of |�(t)〉 into this
basis set with TD coefficients CI (t),

|�(t)〉 =
∑

I∈VFCI

CI (t)|�I 〉, (4)

gives the matrix form of the TDSE,

i
∂

∂t
CI (t) =

∑
J∈VFCI

HIJ (t)CJ (t), (5)

with HIJ (t) = 〈�I |Ĥ (t)|�J 〉. The matrix representation of
Ĥ (t) is referred to as the CI-matrix in the following.

The CI-matrix elements are conveniently determined using
the language of second quantization. In the occupation number
representation |n〉 and |m〉, the matrix elements are then given
by [47]

〈n|Ĥ |m〉 =
∑
pq

hpq(t)
∑

σ

〈n|ĉ†pσ ĉqσ |m〉

+ 1

2

∑
pqrs

wpqrs

∑
στ

〈n|ĉ†pσ ĉ†rτ ĉsτ ĉqσ |m〉, (6)

where a spin-free Hamiltonian, i.e., the same spatial orbital
for α and β spin is assumed, and where ĉpσ (ĉ†pσ ) denotes the
annihilation (creation) operator of the spin orbital |ϕp〉 ⊗ |σ 〉.
Here, the one-electron integrals,

hpq = tpq + vpq(t), (7)

of the kinetic and potential energy contributions to the single-
particle part are given by

tpq = −1

2

∫
d r ϕ∗

p(r)∇2ϕq(r),

(8)

vpq(t) =
∫

d r ϕ∗
p(r)v(r; t)ϕq(r),
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with v(r; t) = v(r) + F(t)r , and the two-electron integrals of
the interaction by (note that we use chemist notation of the
integrals [47])

wpqrs =
∫∫

d r1d r2 ϕ∗
p(r1)ϕ∗

r (r2)w(r1,r2)ϕq(r1)ϕs(r2).

(9)

Especially the nature of the two-electron integrals (9) imposes
practical restrictions on the underlying single-particle basis,
since for general basis sets the number of matrix elements
scales as O(N4

b ) with Nb being the number of spatial orbitals
ϕi(r) [corresponding to 2Nb spin orbitals φi(z), z = (r,σ )].
A way to cure this unfavorable scaling in the context of
photoionization-related problems, which involves the elec-
tronic continuum and hence necessarily a large Nb, is described
in Sec. III.

Up to this point, Eq. (5) is exact and inherits the full
complexity of the MEP, and the approach is referred to as
full CI (FCI). The number of configurations nconf [or number
of Slater determinants in Eq. (4)] spanning VFCI scales as

nconf =
(

2Nb

Nel

)
. (10)

In principle, a reduction by some factor by exploiting sym-
metries of the system, such as spin and spatial symmetries, is
possible [46]. In the following, we assume conservation of the
total spin for our spin-independent Hamiltonian (2) and (3).
Still FCI calculations are only feasible for a very limited
number of spin orbitals 2Nb and few electrons [48,49] and
therefore are mostly used to benchmark other approximative
methods.

To overcome this fundamental barrier, the CI expansion (4)
has to be truncated at a certain level. Frequently used are
CIS, CISD, and so on, in which one takes into account only
singly, doubly, or higher excited determinants with the hope
to capture the dominant correlation contributions. Especially
in the context of photoionization and related phenomena, the
truncation at the singles level has some tradition [6,7,50–57],
since photoionization into a structureless continuum can often
be described accurately in a single-electron picture.

In this work, we take a more general approach by par-
titioning the single-particle basis into physically motivated
subsets and choosing determinants that are expected to be most
relevant for the processes under consideration. This concept
is known as generalized (or restricted) active space (GAS
or RAS) in the quantum chemistry literature [30,31]. A TD
realization based on a time-independent spin-orbital basis was
presented in Ref. [32] and in an SCF setting in Refs. [27–29].
The idea of selecting determinants by their importance, and
thus truncating the CI expansion, has a long tradition in atomic
and molecular physics [58].

B. GAS scheme

The configuration space is determined by two arrays of
numbers. The first array, Nb, contains information about the
partition of the single-particle spin-orbital basis into the G

subspaces of the GAS. We may order the single-particle basis
in any desired way. For the present discussion it is convenient
to assume that the spin orbitals are ordered according to their

FIG. 1. Schematic of the generalized-active-space (GAS) method
with G subspaces GAS-1 to GAS-G. The spin-orbital partition is
given by Nb = [1,n2

b, . . . ] and the allowed number of electrons
in each subspace by Nel = [(n1

1, . . . ), . . . ,(nG
1 , . . . )]. The energy

eigenvalues of the single-particle orbitals are labeled by E
α,β

1 , where
α and β denote the spin coordinate. For the nonrelativistic studies in
this work, these are degenerate, Eα

i = E
β

i .

energy. The lowest orbital is indexed by 1, the next (possibly
degenerate) by 2, etc., until the highest-lying spin orbital,
which is indexed by 2Nb, the total number of spin orbitals. The
notation n1

b = 1 means that subspace 1 in the GAS partitioning
contains spin orbitals from the lowest one, 1. Then n2

b denotes
the value of the spin-orbital index for the lowest-lying spin
orbital in the second subspace, n3

b the index of the lowest-lying
spin orbital in the third subspace, and so forth (Fig. 1). This
information is summarized in Nb, containing the string of
indices

Nb = [
n1

b ≡ 1,n2
b, . . . ,n

G
b

]
. (11)

The second array specifies the number of occupied spin orbitals
that we allow in each subspace of the GAS partitioning,

Nel = [(
n1

1,n
1
2, . . .

)
, . . . ,

(
nG

1 ,nG
2 , . . .

)]
. (12)

As an illustrative, but not practical, relevant example, consider
a single-particle basis with only six spin orbitals corresponding
to three different spatial orbitals and three different energies
for a two-electron system, which are degenerate with respect
to spin projection. Let G = 2, such that we have two active
subspaces denoted by GAS-1 and GAS-2. Assume we choose
the first subspace to include only the two lowest degenerate
spin orbitals and the second to include the remaining four.
In this case Nb = [n1

b = 1,n2
b = 3]. The specification of Nel

determines the amount of correlation that is taken into account
between these orbitals. For example, we could consider Nel =
[(n1

1 = 2,n1
2 = 1),(n2

1 = 0,n2
2 = 1)], which allows two or one

occupied orbital in GAS-1 and zero or one occupied orbital in
GAS-2. The set of occupation numbers with subscript 1, i.e.,
the combination [(n1

1 = 2),(n2
1 = 0)], corresponds to config-

urations with both lowest-lying spin orbitals occupied in the
lowest subspace, GAS-1, and no occupied spin orbitals in the
other subspace, GAS-2. The other set of occupation numbers
with subscript 2, i.e., the combination [(n1

2 = 1),(n2
2 = 1)],
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FIG. 2. Schematic of the GAS partitioning mainly used in this
work. The scheme is denoted by CAS∗(NC

el ,K) and consists of a fixed
core with Nel − NC

el electrons in the same number of spin orbitals (this
space is empty if NC

el = Nel) and an active space with NC
el electrons

in 2K spin orbitals, from which one electron can be removed and
excited into GAS-G describing the one-electron continuum.

describes one-particle excitation out of GAS-1 into GAS-2. In
both cases,

∑G
j n

j

i = Nel for all i, as it should be. If we had
chosen Nel = [(n1

1 = 2,n1
2 = 1,n1

3 = 0),(n2
1 = 0,n2

2 = 1,n2
2 =

2)], we would have included double excitation out of GAS-1
(doubles) in addition to the singles of the previous example.
It is clear that such partitioning in the general case allows
the realization of any excitation scheme. It is also clear that
the introduction of restrictions on the excitation between the
different GASs dramatically reduce nconf .

In the context of this work, we focus mainly on excitation
phenomena with one-electron continua, i.e., excitations, where
we allow one electron to be removed from the bound-state part
of the spectrum, described, for example, by the GAS-1, GAS-2,
and GAS-3 in Fig. 1 and excited to the GAS describing the
continuum, GAS-G. To relate to the commonly used notation
in quantum chemistry, we denote this case by CAS∗(NC

el ,K).
Here CAS refers to “complete-active-space,” NC

el denotes the
number of electrons in the active space, and K is the number of
single-particle spatial orbitals in the active space. Finally, the
star indicates that single excitations out of the active space have
been added compared to the usual CAS scheme (sometimes
also written as [NC

el ,K]-CAS [59]).
The CAS∗ scheme is illustrated in Fig. 2. The lowest

GAS-1 describes a fixed core with Nel − NC
el electrons, where

each electron occupies one spin orbital. This space is empty
if one chooses to include all electrons in the active space,
corresponding to the specification CAS∗(Nel,K). GAS-2 is the
active space with NC

el electrons occupying 2K spin orbitals,
for which all possible configurations are constructed, and in
this sense a FCI description is maintained in this space. On top
of that, we allow for single excitations from GAS-2 to GAS-3;
i.e., we remove one electron from GAS-2, resulting in NC

el − 1
electrons in GAS-2, and create it in GAS-3. The number of
electrons in the individual subspaces and the corresponding
partition of the single-particle spin-orbital basis are given in
Fig. 2, right columns. Although some of the electrons may be
kept frozen within the GAS scheme, i.e., some spin orbitals
are always occupied, we emphasize that their interaction
potential with all other electrons contributes to the sum in

the Hamiltonian (6) and no pseudopotentials for the explicitly
active electrons need to be set up.

Using the GAS concept, the CI expansion (4) reduces in
size,

|�GAS(t)〉 =
∑

I∈VGAS

CI (t)|�I 〉, (13)

where only configurations within the specified Fock space
VGAS contribute. The corresponding set of differential equa-
tions for the amplitudes reads

i
∂

∂t
CI (t) =

∑
J∈VGAS

H GAS
IJ (t)CJ (t). (14)

All limiting cases for CI calculations, such as SAE, CIS,
CISD, etc., up to FCI can be realized by the appropriate GAS
scheme [32].

The solution of Eq. (14) requires a choice of a single-
particle spin-orbital basis |ϕi〉 ⊗ |σ 〉, which allows for an
efficient GAS expansion in terms of Slater determinants.
Once the single-particle basis is constructed and the one-
and two-electron integrals, Eqs. (8) and (9), respectively, are
evaluated, the GASCI matrix H GAS

IJ (t) can be calculated. A
straightforward way to evaluate Eqs. (8) and (9) is to apply
Slater-Condon rules [47], but this approach is in practice
limited to a rather small determinantal space due to the high
degree of sparsity of the Hamiltonian and the unavoidable
“calculation” of zero elements in H GAS

IJ (t). An alternative
efficient way already proposed in the 1980s in the original
formulation of RAS-CI [30] overcomes the latter problem by
decomposing the excitations into α and β spin strings and
employing a lexicographical ordering of the determinants. This
approach was also taken in Ref. [32], and variations thereof
were taken in Refs. [27–29]. In this work, we use a generalized
scheme based on the construction and manipulation of types
of excitation classes, which is particularly suited for GAS
calculations and which has previously been successfully
applied in coupled-cluster theory [60,61]. In this approach
the zero parts of the CI matrix are identified and omitted
from the calculation and only the remaining nonzero blocks
are calculated and stored in a sparse matrix format. Besides,
the scheme offers a very efficient way of setting up the CI
matrix with a minimal number of evaluation of the electron
integrals and provides a strategy for parallelization. Additional
information and a detailed description of the reformulated
integral direct method and algorithm is to be found in a
forthcoming publication [62].

C. Time propagation

To solve Eq. (14), we first set up H GAS
IJ (t). The solution

of Eq. (14) is given by discretization of the time variable
t = Nt�t into Nt time steps and successive application of the
time-evolution operator U (t,t + �t) = exp[−iH (t + �t)�t]
to the vector of coefficients CI (t). In order to avoid a
diagonalization of the (large) CI matrix H GAS

IJ (t) at each time
step, we employ an Arnoldi-Lanczos procedure and propagate
the matrix equation in the corresponding Krylov subspace
(we typically use a Krylov dimension of 10), which results
in a unitary and stable propagation scheme. Details of the
time-propagation algorithm can be found in Refs. [63,64].
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This method involves only matrix multiplications of H GAS
IJ (t)

with the coefficient vector CI (t), often referred to as the
“σ -vector step” in the CI literature [31], and can be performed
efficiently using sparse matrix algebra and by exploiting
block structures of the CI matrix. The initial condition
|�GAS(t = 0)〉 ≡ |�GAS

0 〉 for Eq. (13) [or CI (t = 0) ≡ C0
I for

Eq. (14)] is prepared through imaginary time propagation
(ITP) by replacing t → it ; see, e.g., Refs. [65,66]. To obtain
the correctly correlated initial state, it is crucial to use
exactly the same parameters with respect to the single-
particle basis and the GASCI scheme as in the real time
propagation.

III. BASIS SETS

In this section, we discuss the spatial part of the single-
particle basis functions. For the convergence of truncated CI
expansions, the choice of the single-particle basis plays a
crucial role. Roughly speaking, the single-particle basis used
to form the Slater determinants for the many-particle basis
should closely resemble the physical one- and many-electron
excitations of the system. For ground-state CI calculations, it
can be shown that the CI expansion converges fastest using
natural orbitals [67]. The most common approach is the use
of HF reference states or improved orbitals which incorporate
part of the e-e correlation contribution on the single-particle
level. However, all of these orbital-based expansions with
good properties for the ground- and bound-state CI expansions
become essentially inapplicable in the limit of spatially
extended systems. This is caused by the highly nonfavorable
scaling of the two-electron integrals with the number of
single-particle basis functions, O(N4

b ).

A. Partially rotated basis

In order to allow for photoionization processes with large
computational grids, we follow a different strategy [32] and
use a partially rotated [68] basis set. In the following, we
work out the formulas for the one-dimensional (1D) case.
Analogous expressions in 3D spherical coordinates [46] or
prolate spheroidal coordinates [69] are straightforward and
pose no conceptual difficulties. In short, the technique can
be summarized by using localized HF-like orbitals for the
description of the bound part of the spectrum and a gridlike
representation for the continuum part. A similar technique was
developed in Ref. [70].

Let us consider a single-particle basis composed of finite-
element discrete-variable representation (FE-DVR) func-
tions [71]. Similar expressions and strategies can be developed,
e.g., with B splines [72]. The FE-DVR basis consists of Ne

elements, which discretize the simulation box ranging from
[−xs,xs] into partitions,

− xs = x0 < · · · < xi < xi+1 < · · · < xNe = xs. (15)

Each element, [xi,xi+1], is spanned by ng DVR functions.
The basis functions are given by (we follow the notation in
Refs. [11,73])

χi
m =

f i
ng−1(x) + f i+1

0 (x)√
wi

ng−1 + wi+1
0

for m = 0 (bridge), (16)

−0.5

−0.25

0

0.25

0.5

-25 −xc 0 xc 25

10−12

10−8

10−4

100

i de
ns

it
y

n(x)

FE-DVR orb. i density

v(x)

outer
central

ϕ

ϕ outer

FIG. 3. (Color online) Schematic view of the partially rotated
basis set with pseudo-orbitals ϕi in the central region [−xc,xc]
(solid blue lines) close to the minimum of the binding potential
(dashed black line). In addition, a correlated single-particle density,
cf. Eq. (34), for the ground state of a model for beryllium (see
Sec. IV B) calculated for the complete computational grid [−xs,xs]
is given by the dashed red line (logarithmic scale to the right). The
asymptotics is indicated by the thin black lines labeled “n(x)”; cf.
Eq. (26). The underlying FE-DVR grid (all functions are included
in the calculation) is sketched in gray. Parameters in the figure are
xs = 30 and xc = 10. We used 30 elements with eight DVR functions
per element. Quantities on the abscissa are given in atomic units (a.u.).

χi
m = f i

m(x)√
wi

m

else (element), (17)

with the Lobatto shape functions

f i
m(x) =

∏
m̄ 
=m

x − xi
m̄

xi
m − xi

m̄

(18)

and the Gauß-Lobatto quadrature points xi
m and weights wi

m.
The lower index m labels the DVR function and the upper index
i the corresponding element. The bridge functions (16) connect
adjacent elements i and i + 1 and assure communication
between both elements and the continuity of the wave function.
The overall basis is schematically drawn in Fig. 3 with gray
lines. The bridge functions (16) have spiky shape.

The FE-DVR matrix elements of Eqs. (8) and (9) possess a
simple form [11,71,74],

vpq = v(xp)δpq, (19)

wpqrs = w(xp,xr )δpqδrs, (20)

tpq ≡ t i1i2
m1m2

= (δi1i2 + δi1i2±1)

2

∫
dx

(
d

dx
χi1

m1
(x)

)(
d

dx
χi2

m2
(x)

)
, (21)

where we combined element indices i and DVR function
indices m to multi-indices p,q,r,s, in analogy to Eqs. (8)
and (9). We point out that the number of nonvanishing
two-electron integrals (20) scales as O(N2

b ), and not O(N4
b ) as

for arbitrary sets, which is of high practical importance for the
present approach.
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Unfortunately, a single Slater determinant constructed di-
rectly from the FE-DVR functions represents a poor reference
state for the CI expansion. We therefore follow Ref. [32] and
partition the basis set interval [−xs,xs] into a central part
[−xc,xc] close to the nuclei and a remaining outer part for
|x| > xc; cf. Fig. 3. The partition point xc is chosen such that
it coincides with an FE-DVR element partition xi between
elements i and i + 1. The FE-DVR basis set is thus partitioned
as

χ c
p(x) ≡ χj

m(x) ∀ j,m : xj
m ∈ (−xc,xc) [central],

(22)
χo

p(x) ≡ χj
m(x) else [outer].

Note that the division of space into an inner and an outer region
is also central in (TD) R-matrix theory [16–19,75].

In the following ϕk(x) [ϕo
k (x)] denotes an orbital localized

in the central (outer) region. For x ∈ (−xc,xc), orbitals (solid
blue lines in Fig. 3) with good reference properties, such as
HF orbitals, are constructed; cf. Sec. III B. In terms of the
FE-DVR functions, these are expressed as

ϕk(x) =
∑

l

bc
lkχ

c
l (x) with (23)

bc
lk =

∫ xc

−xc

ϕk(x)χ c
l (x)dx. (24)

By excluding the bridge functions connecting the central with
the outer region |x| > xc from the basis set in (−xc,xc), all
orbitals are zero at |x| = xc by construction; i.e., ϕk(x) ≡ 0
for |x| > xc. In particular, ϕi(x) ⊥ ϕj (x) and ϕi(x) ⊥ ϕo

p(x) =
χo

p(x) holds. The matrix elements are thus transformed by the
matrix bc from Eq. (24).

Returning to the whole grid of [−xs,xs], i.e., including all
functions ϕo and the bridge functions at ±xc into the basis
set, this transformation is continued such that the outer part
remains unchanged,

b =
⎛
⎝1

bc

1

⎞
⎠ . (25)

The upper left corner corresponds to x < −xc, the lower right
to x > xc. In practice, it is beneficial to sort the basis such that
the central part bc is in the upper left corner; cf. Appendix A.

Using the unitary transformation (25) leaves the wave func-
tion unchanged (see Appendix A). Exploiting the δ structures
of the FE-DVR matrix elements Eqs. (19)–(21), very efficient
scaling properties of the transformed integrals are obtained.
Details of the calculation and the storage scheme for one- and
two-electron integrals are given in Appendix B. This approach
allows for an accurate treatment of e-e interactions based on
the CI expansion including well-chosen single-particle basis
functions close to the nuclei as well as an efficient description
of wave packets in the continuum through the outer FE-DVR
grid. We point out that in contrast to the R-matrix approach,
no special attention is needed for assuring physical properties
of the wave function across ±xc separating the central and
outer regions. The communication between the regions is
automatically assured by the bridge functions (16), which
are constructed from the Lobatto points at |x| = xc of the
underlying FE-DVR basis set.

To demonstrate the smoothness of the wave function at the
connection points after the basis transformation and that the
density has the correct asymptotic form, we show the single-
particle density of the ground state of a model for beryllium
(see Sec. IV B) after ITP of the TDSE in Fig. 3, (red) dashed
line. No “jumps” or discontinuities can be found, especially
not at ±xc and the density decays smoothly over the whole
simulation grid (note the logarithmic scale of the right axis).
The figure confirms that the asymptotic form of the density is

n(x) ∝ N exp(−2�|x|), (26)

with the parameter � determined by Ip = �2/2, Ip the first
ionization potential, and N a proportionality constant. As a
remark, we note that the well-known Brillouin theorem, which
states that singly excited determinants do not lower the HF
ground-state energy, holds only for the central part (−xc,xc)
for our scheme. Increasing the grid to [−xs,xs] and relaxing
the GAS-CI wave function on the whole space lowers the
ground-state energy also if only single excitations into the
nonrotated part of the basis are included. Illustrative examples
are discussed in Secs. IV A 1 and IV B 1.

B. On the choice of single-particle orbitals in the central region

The central region, situated close to the nucleus (−xc,xc),
is described within a bound-state orbital basis set. In Ref. [32]
occupied HF orbitals and pseudo-orbitals ϕi(x) ≡ ϕ

p1
i (x)

constructed from the interaction-free Hamiltonian ĥ0 = t̂ + v̂

were used, with v̂ the Coulomb attraction with the nucleus.
The pseudo-orbitals are obtained from the eigenvalue problem

(t̂ + v̂)ϕp1
i (x) = E

p1
i ϕ

p1
i (x) (27)

and a subsequent orthonormalization onto the occupied HF
orbitals. They give an improved description of the virtual,
i.e., unoccupied orbitals, compared to the virtual HF orbitals,
which tend to be too delocalized (Fig. 4). It turns out, however,
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FIG. 4. (Color online) Single-particle orbitals in the central re-
gion [−xc,xc] for 1D beryllium (Nel = 4, xc = 10). Comparison of
pseudo-orbitals ϕ

p1
i , ϕ

p2
i [cf. Eqs. (27) and (28)] and natural orbitals

ϕn
i [Eq. (32)]. The HF virtuals are additionally plotted in gray for

comparison. The parameters are the same as in Fig. 3.
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that for situations with Nel > 2, these hydrogenlike orbitals are
strongly confined to the nucleus and do not describe valence
orbitals well. This defect could possibly explain convergence
issues related with photoionization of neon in Ref. [33].

One way around would be the use of an effective charge
of the nucleus or a corresponding quantum defect. However,
this approach would need proper adjustments according to
the considered target. In order to obtain a flexible theory, we
propose to use generalized orbitals ϕ

p2
i , which are defined by(

t̂ + v̂ + v̂
Nel−2
H

)
ϕ

p2
i (x) = E

p2
i ϕ

p2
i (x), (28)

with the Hartree potential of the Nel − 2 system, v̂
Nel−2
H . In

coordinate space, it has the form

v
Nel−2
H (x) =

∫
dx ′nHF−2(x ′)w(x,x ′), (29)

with the single-particle density nHF−2(x) [see also Eq. (33)],
which is obtained from a HF iteration with Nel − 2 electrons. A
subsequent orthogonalization of these orbitals to the occupied
Nel HF orbitals (from a different HF calculation with Nel

electrons) gives the improved pseudo-orbitals ϕ
p2
i (x).

This choice is guided by physical intuition as for systems
with one electron in the continuum (relevant for this study),
a second electron in the vicinity of the nucleus moves in
the effective potential of the Nel − 2 remaining electrons. We
point out that for two-electron systems the choice of orbitals
of noninteracting electrons, cf. Eq. (27), coincides with our
improved version (v̂Nel−2

H ≡ 0 for two electrons).
As a third type of orbitals, we construct the natural

orbitals, ϕn
i (x), which incorporate e-e correlation effects on the

single-particle level. They are constructed by first calculating
the single-particle density matrix ρpq within the central
region from a highly accurate GASCI (or, if possible, FCI)
calculation. The single-particle density matrix is defined as

ρσ
pq(t) = 〈�(t)|ĉ†pσ ĉqσ |�(t)〉. (30)

For spin-free Hamiltonians, the spatial density matrix is
constructed by the spin summation,

ρpq(t) =
∑

σ

ρσ
pq(t) = ρα

pq(t) + ρβ
pq(t). (31)

The natural orbitals are then obtained by a diagonalization
of the matrix ρ formed by the elements ρpq obtained under
time-independent field-free conditions,

ρϕn
i (x) = νiϕ

n
i (x), (32)

where νi are the natural occupation numbers of the spatial
orbitals (νi � 2, for HF νi = [2,0]) and ϕn

i (x) are the cor-
responding natural orbitals. It is well known for electronic
ground-state calculations that CI expansions have favorable
convergence properties using the basis set formed by natural
orbitals [67,76].

The four lowest-lying orbitals (i = 1, . . . ,4) of ϕ
p1
i (x),

ϕ
p2
i (x), and ϕn

i (x) for a 1D beryllium model (see Sec. IV B)
are plotted in Fig. 4 together with the virtual orbitals of the HF
method (gray, i = 3,4). For the occupied orbitals (i = 1,2,
bottom panels), there exists, by construction, no difference
between the HF and the pseudo-orbitals. Only the natural

orbitals show a slight modification. For the convergence of TD-
GASCI calculations, however, the virtual orbitals (top panels,
i = 3,4) are important because of their strong influence on the
construction of excited determinants in the CI expansion.

Whereas the HF virtual orbitals are strongly delocalized, all
other types of orbitals remain localized close to the nucleus.
As expected, the highest localization is achieved for the
hydrogenlike orbitals ϕ

p1
i (x) (dashed blue lines). The improved

pseudo-orbitals ϕ
p2
i (x) show a stronger delocalization (dotted

red lines); the natural orbitals are in between (black solid
lines). For a discussion of the convergence properties of the
TD-GASCI method with respect to the choice of the orbitals,
see Sec. IV B. All these orbitals describe a rotated basis for the
GASCI expansion and are equivalent regarding completeness
(with respect to the underlying FE-DVR basis set). Thus, if
results are converged with respect to the e-e correlation, the
actual choice of these orbitals is not important. The choice
influences, however, the size of the GAS expansion needed for
convergence, and therefore, for challenging calculations, the
accuracy of the simulation.

C. Observables

In the following, we demonstrate the extraction of several
observables of relevance for ionization studies from the
GASCI wave function.

The simplest way to extract (single-particle) observables
such as densities in real or momentum space from the GASCI
wave function is to construct the single-particle density matrix
ρ, Eq. (30) or Eq. (31). The single-particle spatial density is
given by

n(r,t) =
∑
p,q

ρpq(t)ϕ∗
p(r)ϕq(r), (33)

which transforms to

n(x,t) =
∑
p,q

ρpq(t)ϕ∗
p(x)ϕq(x) (34)

for the case of the 1D partially rotated basis set.
The momentum distribution of one particle can similarly

be computed by [46]

n(k,t) =
∑
p,q

ρpq(t)ϕ̃∗
p(k)ϕ̃q(k), (35)

with the Fourier transform of the basis functions ϕ̃p(k).
For the 1D FE-DVR basis functions, Eqs. (16) and (17), the

transformed functions are given for the bridge functions by

ϕ̃i
m(k) =

√
wi

ng−1 + wi+1
0√

2π
exp

( − ikxi
ng−1

)
(36)

and by

ϕ̃i
m(k) =

√
wi

m

2π
exp

( − ikxi
m

)
(37)

for the element functions.
Since we are interested in the momentum or energy

distributions of photoelectrons, it is necessary to remove the
influence of the potentials of the nuclei. To this end, we
assume a large separation of the electronic wave packet from its
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binding potential and include only functions outside a certain
radius rion into the calculation of Eq. (35). This corresponds
to the projection onto plane waves ignoring the central region.
This method is asymptotically exact [77] and applicable since
we deal only with single continua in our CAS∗ schemes.
Double continua drastically increase the complexity of the
problem [78]. Further, the momentum representation of the
transformed orbitals for |x| < xc does not need to be calculated
because typically rion � xc.

While the total ionization probability can be obtained by
integration of the photoelectron spectrum, it is often practical
to obtain this quantity by the usage of a complex absorbing
potential added to the total Hamiltonian,

H CAP(t) = H (t) − iVCAP. (38)

Throughout, we use a CAP of the form [27]

VCAP(x) = 1 − cos

[
π (|x| − rCAP)

2(xs − rCAP)

]
(39)

for |x| > rCAP with rCAP the distance from the simulation
grid center at which the CAP is turned on. The normalization
N (t) = 〈�(t)|�(t)〉 of the wave function as function of time
provides then a measure of the total ionization probability [5].
For sufficiently long propagation times tf after the end of the
pulse, the continuum part of the wave function has passed rCAP

and been absorbed and the total ionization yield is given by

P(tf ) = 1 − N (tf ). (40)

Of course, when using such an approach, it is not possible to
discriminate between different ionization channels or single,
double, or multiple ionization.

We mention in passing that HHG spectra can be conve-
niently obtained from the dipole momentum in the acceleration
form [27] and the matrix elements of relevance are calculated
in analogy to the single-particle potential energy.

D. Summary of simulation method

In total, the TD-GASCI scheme works as follows.
(1) Set up FE-DVR basis (weights wi and points xi) and

matrix elements for t̂ , v̂, and ŵ for x ∈ [−xc,xc].
(2) Construct (pseudo) orbitals in [−xc,xc] by HF calcu-

lations or CI ground-state calculations for the case of natural
orbitals.

(3) Construct FE-DVR basis and matrix elements for t̂ , v̂,
and ŵ for x ∈ [−xs,xs].

(4) Rotate the parts of hpq that belong to the central region
and parts of wpqrs ; see Appendix B.

(5) Construct GASCI initial state for x ∈ [−xs,xs] by ITP.
(6) Perform TD-GASCI calculation in real time.
(7) Construct single-particle density matrix ρ(t) and ex-

tract observables.

IV. NUMERICAL EXAMPLES

To test and validate the TD-GASCI approach for photoex-
citation and ionization phenomena of few-electron atoms, we
follow a long tradition in TD calculations and apply the theory
to 1D models of atoms [11,12,26–29,73,79–82]. This allows

us to study the convergence properties in direct comparison
with accurate simulations of the TDSE.

In our model, the Coulomb binding potential of the nucleus
is given by the regularized potential

V (xi) = − Z√
x2

i + s2
. (41)

The interaction between two electrons at positions xi and xj

is analogously given by

V (xi,xj ) = 1√
(xi − xj )2 + s2

. (42)

For all situations considered in this work, we use a softening
parameter of s = 1. Further, we describe the interaction with
the external field in the dipole approximation and use the length
gauge, cf. Eqs. (2) and (3), either with a Gaussian half-cycle
pulse,

F (t) = F0 exp

[
− (t − t0)2

2σ 2

]
, (43)

or with an electric field with a Gaussian envelope,

F (t) = F0 exp

[
− (t − t0)2

2σ 2

]
cos[ω(t − t0) + ϕCEP]. (44)

The maximum amplitude is denoted by F0, the pulse duration
by σ , the photon frequency by ω, and the carrier-envelope
phase (CEP) by ϕCEP.

A. Two-electron model atom (heliumlike)

Let us start with Nel = 2,Z = 2, which results in a
heliumlike model system for which the TDSE is exactly
solvable without further approximations. The exact results are
compared with the results of the TD-GASCI approach. We
solve the two-particle TDSE by discretizing the two-electron
coordinates x1 and x2 in the same FE-DVR basis set as for the
TD-GASCI using product states (in analogy to Ref. [74]) to
exclude any influence from a difference in basis sets. For these
brute-force TDSE simulations, no partial rotation of the basis
is employed. For the TD-GASCI, we perform the rotation.

1. Ground state

The (small) simulation box ranges from xs = ±15 with a
rotated basis to described the central region within xc = ±10
for the GAS case. The total interval is discretized in Ne = 30
elements, each of which has ng = 8 DVR functions. This gives
a total of 209 FE-DVR functions, of which 139 are rotated to
pseudo (or natural) orbitals. The relevant GAS partitions for
this two-electron system are sketched in Fig. 5 together with a
description of the nomenclature; see also Sec. II B.

The ground-state energies (GSEs) for different GASCI
approximations obtained by ITP are summarized in Table I. As
expected, the HF approximation GSE is larger than the exact
TDSE value. We further note that the HF results are mostly
converged with respect to the central region (“center” vs “all”)
and only the last digit differs. By applying the simplest GAS
approximations (SAE and CIS), we retain the well-known
Brillouin theorem by recovering the HF energy of the whole
simulation range [−xs,xs] exactly.
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FIG. 5. GAS partitions for the two-electron model. The acronyms
of the different approximations are SAE, single-active electron; CIS,
configuration-interaction singles; CAS*(2,K), complete active space
with a CAS including K spatial orbitals and single excitations outside.
See Fig. 1 and Sec. II B for notations.

Adding more pseudo-orbitals to the lowest GAS, resulting
in a CAS with double excitations up to including 2K spin
orbitals and single excitations above this level [CAS∗(2,K)],
lowers the GSE. Convergence is achieved for the case
CAS∗(2,27) with 10557 configurations in the expansion. This
value for the GSE is limited by the choice of xc. By including
also the nonrotated part for double excitations, we recover
the TDSE limit exactly up to machine precision (FCI) with
43 681 configurations. We note that with about 10 times less
configurations an excellent approximation for the GSE is
achieved.

2. Ionization yields and photoelectron spectra

As pointed out in Ref. [32], the TD-RASCI approach allows
for an accurate calculation of photoionization cross sections
including the relevant multiple-excited states. A systematic
investigation of the influence of the partially rotated basis was,
however, not carried out. To test the method against TDSE
simulations, we prepare the 1D heliumlike model in its ground
state and shine a long Gaussian-shaped pulse [Eq. (44)] of
length σ = 100 and strength F0 = 0.001 centered at time

TABLE I. Ground-state energy as function of GAS for the two-
electron heliumlike model. “Center” refers to a HF calculation for
|x| � xc and “all” for |x| � xs . The total number of spin orbitals is
2Nb = 2 × 209. See Fig. 5 and Sec. II B for a definition of the GAS
spaces and the notations.

Method Nel Nb nconf Energy [a.u.]

HF center 1 −2.224 209 54
HF all 1 −2.224 209 55
SAE [(1),(1)] [1,2] 209 −2.224 209 55
CIS [(2,1),(0,1)] [1,3] 417 −2.224 209 55
CAS∗(2,2) [(2,1),(0,1)] [1,5] 832 −2.236 176 24
CAS∗(2,3) [(2,1),(0,1)] [1,7] 1245 −2.237 477 55
CAS∗(2,11) [(2,1),(0,1)] [1,23] 4477 −2.238 202 92
CAS∗(2,27) [(2,1),(0,1)] [1,55] 10 557 −2.238 257 72
FCI [(2)] [1] 43 681 −2.238 257 82
TDSE −2.238 257 82

t0 = 400 and with ϕCEP = 0. Note that the electric field
strength of the rather long pulse is clearly in the perturbative
regime to avoid saturation of the ionization yield also in the
case of resonant excitation. We propagate to a final time
of tf = 4000 to allow for a reasonable decay of all excited
resonances.

To facilitate a large number of calculations for different
photon frequencies, we choose a rather small system size of
xs = ±40 with the atom centered at x = 0. The central region
is connected at xc = ±10 and a total FE-DVR basis set of 40
elements with seven DVR functions has been used. The total
ionization yieldP(tf ,ω) is extracted from Eq. (40) with a CAP
starting at rCAP = 20 in Eq. (39).

In addition to the photoionization with a rather long pulse,
we, in a different calculation, excite the system with a δ-like
[σ = 0.1,t0 = 1,F0 = 0.001 in Eq. (43)] dipole kick and
record the dipole response 〈x(t)〉 over a long time (tf = 3000).
A Fourier transform with respect to the time,

S(ω) = |F{x(t)}|2, (45)

gives the dipole excitation spectrum [82]. For better visibility
of the positions of the resonances, we apply a Blackman
window [83] to the data before applying the discrete Fourier
transform.

The ionization yields P(tf ,ω) as a function of the photon
energy ω for different GAS approximations and the corre-
sponding TDSE result are shown in Fig. 6 together with the
dipole spectrum S(ω) from a TDSE calculation (gray line). The
resulting peaks in Fig. 6(a) can be classified into two groups:
(i) single excitations up to ω ≈ 0.9 and (ii) double excitations
above ω ≈ 1.2. Group (i) corresponds to the excitations of
one electron into higher states, where the other electron is still
bound in its ground-state orbital. These are labeled by 1eno,
where e (o) denotes an orbital that is even (odd) under the parity
operation. This series converges to the first ionization threshold
I (1)
p for n → ∞ and is visible in all GAS approximations,

ranging from SAE to the fully converged TDSE result at
approximately the correct position. We note, however, that the
SAE approximation (lower dashed orange line labeled “SAE”)
underestimates the yield by about a factor of 2, whereas CIS
overestimates the yield (dashed blue line).

Figure 6(b) shows a magnification of the region relevant
for single excitations (1eno) and compares the results obtained
using different types of orbitals in the central region. We find
that pseudo-orbitals ϕp1(x) (dashed blue lines) and natural
orbitals ϕn(x) (dash-dotted red lines) describe the single
excitations well and perfect agreement with the TDSE (black
solid line) is achieved for CAS∗(2,6), where the GAS consists
of an active space of six spatial orbitals and single excitations
above, and practically no difference is visible. Further, for
the smaller CAS∗(2,2) calculation with nonconverged e-e
correlation contributions, the differences between pseudo- and
natural orbitals are only marginal (dotted blue vs dash-dotted
red lines).

A slightly different picture arises for the two-electron
resonances (ii). A magnification of the 2one series, i.e., the
simultaneous excitation of one electron into the first excited
state and of the other electron to all possible higher states, is
shown in Fig. 6(c). These resonances are absent for the SAE
and CIS approximations and appear only if double excitations
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FIG. 6. (Color online) Ionization probability P(tf = 4000,ω), cf. Eq. (40), of the heliumlike model for different GAS approximations as
a function of the photon energy for a fixed pulse duration. The results for pseudo-orbitals ϕp1 , Eq. (27), and natural orbitals ϕn, Eq. (32), in the
rotated basis are compared. The left panel (a) shows the whole range of frequencies on a logarithmic scale and the right panels magnifications
of the one-electron excitations (1eno, b) and the first two-electron resonances (2one, c) on a linear scale. The dipole-excitation spectrum S(ω)
[cf. Eq. (45)] for an infinitesimally short pulse from a fully correlated TDSE simulation is drawn in gray to help identify the positions of the
excited states. The field parameters are F0 = 0.001,σ = 100,t0 = 400, ϕCEP = 0 in Eq. (44).

are included into the GAS. Again, good agreement with the
TDSE is achieved for large CAS∗(2,6); however, it turns
out that there is a difference in the convergence behavior
for natural and pseudo-orbitals for small CAS∗(2,2), i.e., not
fully correlated calculations. Where the natural orbitals ϕn

i (x)
(dash-dotted red lines) have problems in describing the correct
energy position of the resonances, the pseudo-orbitals ϕ

p1
i (x)

overestimate the overall ionization yield (dotted blue lines) but
predict better excitation energies.

This behavior is even more pronounced for calculations
of the photoelectron spectra, which are shown in Fig. 7. The
spectra were obtained with the method described in Sec. III C
(see also Ref. [46]), and a radius of rion = 20 was used for
ionization.

Calculations were performed for F0 = 0.01, σ = 5, ϕCEP =
0, and ω = 2.1 in Eq. (44), which results in a rather broad
excitation bandwidth. The results for pseudo-orbitals are
shown in Fig. 7(a) and for natural orbitals in Fig. 7(b),
together with the TDSE result (black line). The insets show
a magnification of the correlation satellites (“shake-up”) at
lower photoelectron energy, which are nearly invisible in
the total spectra. In these processes, the photon energy is
shared between the photoelectron and a second, still bound
electron. The result is a slower photoelectron, which gives the
correlation peak in the energy distribution, and an ion in an
excited state.

The main peak at an energy of 1.3 is well described in
position and shape by both types of orbitals and the different
CAS∗ approximations considered. For small active spaces
as in CAS∗(2,2) (dashed blue line), this peak is drastically
underestimated for both types of orbitals. An even more
pronounced influence of the CI truncation can be observed

in the satellites below an energy of about 0.8 (insets). Note
that the case of CAS∗(2,2) has been scaled by a factor of 0.1
in the insets.

For a limited active space the choice of the orbitals becomes
vital and natural orbitals describe the shape of the peak and
its magnitude better. Especially the excitations for CAS∗(2,6)
into higher orbitals (lower resulting photoelectron energy) is
significantly closer to the TDSE result than the CAS∗(2,2)
results. Since both choices of orbitals represent rotations in the
space of virtual (i.e., unoccupied) HF orbitals and both form a
complete single-particle basis, the results converge toward the
TDSE solutions in the limit of a large active space [red dotted
lines for CAS∗(2,11)].

B. Four-electron model atom (berylliumlike)

We now consider the more complex model with Nel = Z =
4 in Eq. (41), which results in a berylliumlike 1D model. It can
be solved exactly only for very special situations, e.g., with
TD-FCI or TDSE simulations for very small simulation boxes
and single-particle basis sets.

The relevant GAS partitions are shown in Fig. 8. In
contrast to helium, the four electrons occupy the two lowest-
lying spatial orbitals, which we refer to as “core” (c)
and “valence” (v) orbitals in the following. Thus, we can
define SAE approximations for the core and the valence
orbitals, respectively. In analogy, we can define CIS-like
approximations and active spaces with two [CAS∗(2,K)] or
all four [CAS∗(4,K)] electrons being active. For CAS∗(2,K),
the inner-shell electrons are frozen and for the outer-shell
electrons, double excitations up to spatial orbital K are
included. For CAS∗(4,K), analogously, all electrons can
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FIG. 7. (Color online) Photoelectron spectra of the 1D heliumlike model for a short pulse [Eq. (44)] with σ = 5, F0 = 0.01, ϕCEP = 0 and
a photon energy of ω = 2.1 using (a) pseudo-orbitals ϕ

p1
i (x) and (b) natural orbitals ϕn

i (x). The CAS∗(2,2) results are scaled by a factor of
1/10 in the insets.

occupy the K spatial orbitals, which also includes fourfold
excitations. For both situations, single excitations out of the
CAS are included.

1. Ground state

The GSEs as a function of the GAS partition are collected
in Table II for different pseudo-orbitals ϕ

p1
i (x) and ϕ

p2
i (x) [cf.

Eqs. (27) and (28)] and a multiconfiguration time-dependent
Hartree-Fock (MCTDHF) calculation [13]. The parameters for

FIG. 8. Schematics of the GASs for the four-electron beryllium-
like model. The label v (c) refers to an active valence (core) orbital.
CAS∗(2,K) and CAS∗(4,K) are active spaces with two and four
electrons, respectively, with single excitations out of the CAS. The
case CIS-v equals CAS∗(2,1). See also Fig. 2 and Sec. II B.

the simulation box (xs and xc) and the FE-DVR basis are the
same as for helium; see Sec. IV.A.

As expected, the HF GSE is above the fully correlated refer-
ence result. The two SAE approximations give an impression
of the influence of the choice of xc. Where an active core
orbital (SAE-c) gives exactly the same GSE as the HF result
up to numerical precision (which is a manifestation of the
Brillouin theorem), an active valence orbital (SAE-v) lowers
the GSE. This can be understood by the larger spatial extension
of the valence orbital in comparison to the core orbital. The
former exceeds the central region, for which the HF calculation
was performed, while the strongly localized core orbital is
completely captured within the region ±xc. During the ITP of
the TD-GASCI equations, the initial wave function constructed
from the valence orbital is allowed to relax on the increased
grid. This results in a lower GSE, even if only single excitations
are included. The error in the GSE due to the choice of xc is on
the order of 10−5 for these parameters. A similar observation

TABLE II. The same as Table I but for beryllium. The energies E1
0

and E2
0 correspond to the pseudo-orbitals ϕ

p1
i and ϕ

p2
i , respectively.

Approximation nconf E1
0 E2

0

HF (−xc,xc) 1 −6.739 419 16
SAE-v 208 −6.739 434 39 −6.739 434 39
SAE-c 208 −6.739 419 16 −6.739 419 16
CIS-v 415 −6.739 449 60 −6.739 449 60
CIS-c 415 −6.739 419 16 −6.739 419 16
CIS 829 −6.739 449 61 −6.739 449 61
CAS∗(2,2) 828 −6.770 020 39 −6.769 608 58
CAS∗(2,3) 1239 −6.773 753 20 −6.772 660 39
CAS∗(2,21) 8295 −6.774 867 86 −6.774 867 57
CAS∗(2,41) 15375 −6.774 868 25 −6.774 868 25
CAS∗(4,3) 3717 −6.777 932 24 −6.774 281 36
CAS∗(4,4) 9876 −6.783 253 75 −6.779 407 15
CAS∗(4,10) 181125 −6.784 912 05 −6.784 395 62
MCTDHF [13] 10a −6.7851

aIn this method, the orbitals and thus the configurations are TD.
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can be made for the CIS-v and -c approximations with an
active valence or core orbital. The lowest energy for CIS is
obtained when all four electrons are allowed to relax on the
entire simulation grid.

For the GAS partitions with only single excitations, the
choice of the virtual space, i.e., the rotated orbitals within
(−xc,xc) is unimportant because all orbitals are included
on the same level. Therefore, both types of pseudo-orbitals
give exactly the same value for the GSE. The account for
correlations, either by two or by four active electrons, changes
this picture. Two limits of e-e correlations can be defined:
(i) with frozen core [CAS∗(2,K)] and (ii) with all electrons
active [CAS∗(4,K)]. For (i), the lowest energy is reached for
about K = 41, where both types of pseudo-orbitals converge
to the same result and an increase of the active space does
not change the GSE. For smaller active spaces, however,
we observe a better, i.e., lower, ground state using the
hydrogenlike pseudo-orbitals ϕp1 (x). This effect is seen most
clearly for the first correction to the CIS result, CAS∗(2,2). For
(ii) with four active electrons, the number of configurations
increases dramatically due to the exponential scaling [cf.
Eq. (10)], and the GSE is lowered significantly. Again, better
results are obtained with the pseudo-orbitals of type ϕp1 (x).

Finally, we note that our method with 181125 config-
urations, CAS∗(4,10), does not reach completely the fully
correlated GSE of the MCTDHF calculation, where in addition
to the expansion coefficients of the wave function also the
single-particle orbitals are allowed to relax. In contrast to
TD-GASCI, the MCTDHF method considers a FCI approach
with TD orbitals. Thus, for advancing in time, in addition to
the expansion coefficients CI (t), like in TD-GASCI, also the
orbitals need to be propagated. This results in a nonlinear,
numerically complex and demanding scheme of which the
properties for TD calculations in the context of photoionization
remain to be fully explored. Further, MCTDHF calculations
are feasible for Nel � 10 with highly optimized codes.
Currently, progress towards larger systems is made using a
combination of restricted-active spaces and TD orbitals in the
TD-RASSCF theory [27–29].

2. Excitation spectra

We now turn our attention to the TD properties of TD-
GASCI by considering the dipole excitation spectrum S(ω)
[cf. Eq. (45)] of the 1D four-electron berylliumlike model.
The spectra are calculated by exciting the system with a small
δ kick of the ground-state wave function and the Fourier
transform of the TD dipole 〈x(t)〉; cf. Sec. IV A 2 for method
and parameters.

The results for various GAS partitions are compiled in
Fig. 9. We define ionization potentials, I v

p and I c
p, for the

valence and the core orbitals, respectively. In first approxi-
mation, they are according to Koopman’s theorem given by
the corresponding energy of the occupied HF orbitals. For the
SAE approximations, the ionization potentials are recovered in
the dipole spectrum by a series of excitations, which converge
toward I

v/c
p (dashed vertical lines in Fig. 9). A similar behavior

is found for the CIS approximation of the valence and the core
electrons. For the complete CIS calculation, both series are
resolved; i.e., excitation from the core and the valence orbital
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FIG. 9. (Color online) Dipole excitation spectrum S(ω) [cf.
Eq. (45)] of the 1D four-electron berylliumlike model for an
excitation of σ = 0.1, t0 = 1, F0 = 0.001 [Eq. (43)] in different GAS
approximations; shown is the total energy range from the GSE to
full fourfold ionization (I 4

p = −E0). The first ionization potentials
for ionization from the valence orbital, I v

p , and core orbital, I c
p , are

indicated by dashed vertical lines. The labels “v” and “c” refer to
the valence and core orbitals, respectively. Red lines (higher energy,
limited by I c

p) correspond to core electrons only; blue is for the valence
shell (lower energy, I v

p ).

is possible, but not two electrons simultaneously, which results
in structureless continua between I v

p and I c
p and above I c

p.
In these regions, multielectron resonances appear as a

consequence of the allowance for multiple excitations in
the GAS partition. For frozen-core calculations, CAS∗(2,K),
additional peaks arise above I v

p due to the simultaneous
excitation of two valence electrons into a doubly excited state
and its subsequent decay with one electron in the continuum.
The spectra become much more complex if all four electrons
are active, CAS∗(4,K). For these, doubly, triply, and quadruply
excited states are accessible and appear as multiple-excited
resonances in the dipole spectrum. These excitations converge
towards an energy where all four electrons are liberated (I (4)

p =
−E0 � 6.78). Thus, besides its computational advantages and
systematic approach to e-e correlation effects, TD-GASCI
allows additionally for a clear interpretation of excitation
spectra in terms of systematic adding of configurations to the
expansion (13).

3. Orbital influence on TD-GASCI convergence

In Sec. IV B 1, we discussed the influence of the type of
the pseudo-orbitals on the GSE of the system and found that
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FIG. 10. (Color online) Parts of the dipole excitation spectrum S(ω) of the four-electron berylliumlike model for different GAS
approximations and orbital basis sets in the central region. (a) Fixed core; (b) all electrons are active. Dashed vertical lines are guides to
the eye for reference to the best [CAS∗(2,11) for (a) and CAS∗(4,7) for (b)] approximation (bottom line). The individual lines are vertically
shifted for better visibility. The full spectrum and parameters are given in Fig. 9.

ϕp1 (x) [Eq. (27)] outperform ϕp2 (x) [Eq. (28)] for ground-state
calculations. In Fig. 10, the dipole spectra S(ω) for different
CAS∗ approximations and the three types of orbitals, ϕp1 (x),
ϕp2 (x), and ϕn(x) [Eq. (32)], are shown. Figure 10(a) shows
GAS approximations with two active electrons in the spectral
region below the excitation energy of core electrons (cf. Fig. 9)
in which the energies of the single- and double excitations of
the valence electrons are located. The lowest black line shows
the converged result obtained by a CAS∗(2,11) calculation and
dashed vertical lines the lower threshold energy of each series
as a guide to the eye.

The first series corresponds to the one-electron excitations
and is well represented in all CAS∗ approximations for
each type of orbitals. We notice, however, that the ϕp2 (x)
pseudo-orbitals of type 2 (dash-dotted red lines) have better
convergence properties and reproduce the correct position in
energy already in the lowest CAS∗ approximation. For the two-
electron resonances the influence of the orbital choice becomes
more pronounced. For all considered approximations, the
pseudo-orbitals ϕp2(x) perform better, and the higher-lying
series are closer to the converged result. A similar statement
can be made for natural orbitals with respect to the first
double-excitation series; however, higher series are more off
the correct result. The worst result is obtained with the pseudo-
orbitals of type ϕ

p1
i (x), which are only able to reproduce

resonances at the correct positions if the active space is much
larger than that of the other orbitals.

The case of four active electrons above I c
p is shown in

panel (b), where higher excited resonances appear in the
spectrum. Again, the best result for CAS∗(4,7) is shown
in the bottom. Here, due to the complex spectrum, a clear
classification of the orbitals is difficult. However, we find
that also for this case the improved orbitals ϕp2 (x) perform
well and predict excitations at the correct positions. For the
calculation of fourfold excitations, the choice of the orbitals
is less important and active spaces chosen too small result
in wrong excitation energies for all orbitals, as well as the
improved ones. However, we note that ϕp2 (x) are especially

designed for double excitations of the valence electrons by
considering the Nel − 2-electron problem for the calculation
of an effective potential. Generalizations of this scheme to
orbitals calculated from Nel − 3 or Nel − 4 potentials in
order to describe the removal of two or more electrons in
combination with excited states of the ion are difficult. The
main problem is that such generalized single-particle orbitals
need to describe the removal of a single electron accurately in
addition to the above-mentioned effects.

In total, the pseudo-orbitals of type ϕp2(x) outperform
natural ϕn(x) and type ϕp1(x) pseudo-orbitals in TD excitation
scenarios if two-electron excitations are considered. We expect
this favorable property of the ϕp2-type orbitals to improve 3D
calculations for real atoms and molecules as well.

C. Molecular model systems

To demonstrate the generality of the TD-GASCI approach,
we present in the following a study of the GSE and the
nonperturbative dynamics of a diatomic molecule in a strong
field.

Consider, for each electron, the 1D diatomic potential
consisting of two atomic species,

V (x,R) = − Z1√(
x − R

2

)2 + 1
− Z2√(

x + R
2

)2 + 1
, (46)

with x the electron coordinate, R the internuclear distance, and
Zi (i = 1,2) the nuclear charges. A two-electron hydrogenlike
molecule is then defined by Z1 = Z2 = 1 and a four-electron
lithium-hydride equivalent by Z1 = 3 and Z2 = 1. Such mod-
els are well established in the literature, e.g., [11,12,26,73,84].
We point out that for xc � R, the choice of the grid reference,
i.e., center of mass, center of charge, or the geometric center
of the molecule, does not influence the calculations. For
the calculation of absolute values for dipoles, however, this
reference has to be taken into account.
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FIG. 11. (Color online) Total energy of the 1D four-electron LiH-
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two active [CAS∗(2,.)] electrons, blue lines converging to Ed for all
four being active [CAS∗(4,.)]. The TDSE result (full black line) is for
a smaller FE-DVR basis set [11].

1. Ground-state properties

The total energy of the system, corresponding to the Born-
Oppenheimer energy surface, is calculated by

Et = Eel + Z1Z2√
R2 + 1

, (47)

where Eel denotes the total electronic GSE. We note that,
in contrast to Ref. [11], the internuclear repulsion is also
regularized. This is necessary to treat both interactions on
a similar footing and obtain a correct convergence towards the
dissociation limit, Ed .

The total energy of the 1D four-electron LiH-like model as
function of the internuclear distance R is shown in Fig. 11.
Parameters for the calculation are xs = ±50 and xc = ±10.
The box is discretized by 50 elements, of which each contains
eight DVR functions. The GAS nomenclature is as for the
four-electron atomic model; see Fig. 8. For this prototype
four-electron model molecule, reference results are available in
the literature [11]. As expected, the closed-shell restricted HF
code does not predict the correct dissociation threshold Ed for
Li and H in their corresponding ground state. Similar behavior
is observed for the SAE-v and CIS(-v) approximations in this
basis (not shown in the figure). Including more configurations
in the central region, however, repairs this behavior and
the potential energy curve converges quickly (for only four

additional spatial orbitals in the active space) towards the
four-particle reference TDSE results.

Two different dissociation thresholds, i.e., the GSE of the
fragments at infinite internuclear distance, are indicated in
Fig. 11: Ed corresponds to a FCI calculation of Li (|Z| =
Nel = 3) and Ev

d to a calculation, where the 1s level in Li was
fixed and only the unpaired valence electron was allowed to
relax. For GAS calculations with fixed inner-shell electrons
and only two active, CAS∗(2,K), the dissociation limit of the
LiH molecule corresponds to the energy Ev

d and is correctly
reproduced by including about six spatial orbitals in the active
space.

2. Strong-field ionization

In this section, we illustrate the potential of the TD-GASCI
method by studying the influence of e-e correlation on the
preferred direction of electron ejection with respect to the
external field and molecular orientation in the heteronuclear
polar diatomic LiH-like 1D model molecule subject to strong-
field ionization at 800 nm. There is currently a strong interest
in the elucidation of this question. For example, in the OCS
molecule, experiments with circularly polarized light and
theory show that ionization occurs most readily from the
O end, i.e., when the field points towards the S end [85–
87]. For linearly polarized light, on the other hand, one
experiment reports most ionization from the S end [88], while
another most perpendicular to the molecular axis [89]. For
the CO molecule, as another example, strong-field ionization
experiments performed in the tunneling regime report that
ionization occurs most readily when the external field has a
component pointing from the C to the O end, and the electron
leaves from the C end [90–92].

This is in contrast with the results from application [87,93]
of SAE approximation tunneling theory [84], which predicts
that ionization is most likely when the field points from the
O to the C end. Recently, many-electron effects expressed in
terms of dynamic core polarization as accounted for at the
TDHF mean-field level of theory were shown to improve
the agreement between experiment and theory [94]. Also,
in the future, many-electron effects may be addressed by
application of many-electron tunneling theory [95]. Clearly,
the TD-GASCI approach is particularly well suited for
an investigation of many-electron effects on the preferred
electron ejection direction since e-e correlation can be added
in a controllable manner by suitably extending the active
space.

We begin the study by preparing the LiH-model molecule
in its electronic ground state at the equilibrium distance of
R = 3; cf. Sec. IV C 1. A short Gaussian-shaped single-cycle
[Eq. (44)] 800-nm pulse (ω = 0.57) of duration σ = 30 with
electrical field amplitudes of (i) F0 = 0.025 and (ii) F0 = 0.05
excites the system. For a fixed orientation of the molecule, the
peak of the field can be oriented towards the nucleus of either Li
or H, depending on on the CEP, ϕCEP. In Fig. 12 the considered
cases ϕCEP = 0 and ϕCEP = π are sketched.

To calculate the total ionization yield P(tf ), cf. Eq. (40),
for a given ϕCEP, a CAP [Eq. (39)], which removes liberated
electrons from the simulation box of size |xs | = 200, is placed
at a distance of rCAP = 100 from the center of the grid. We
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checked carefully for the influence of the CAP parameters on
the observable and compared to simulations with very large
box sizes without a CAP (cf. Fig. 13) and no significant change
of the results presented were observed. Results are shown for
pseudo-orbitals of type 1 with |xc| = 10. We redid part of the
calculations with type 2 orbitals and obtained similar results
for the limit of large CAS∗ spaces.

The equations of motion are propagated to a final time
of tf = 15 000, which allows for slow electrons to reach the
absorber and thus record the total ionization yields, P±, for
positive (+) and negative (−) peak electric field amplitudes.
We define the ratio

η = P−

P+ , (48)
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FIG. 13. (Color online) Single-particle density n(x) [cf. Eq. (34)]
of the 1D four-electron LiH-like molecule exposed to single-cycle
pulses (i) after a propagation of t = 500.

TABLE III. Parameter η of Eq. (48) for single-cycle ionization of
the 1D four-electron LiH-like model molecule for peak electrical field
strength (i) F0 = 0.025, (ii) F0 = 0.05. For η < 1 (η > 1) ionization
is more likely when F0 points in the direction of Li (H). The left-hand
side of the table shows GAS results with active valence and fixed core
electrons. The right-hand side of the table shows GAS results where
all four electrons are active.

GAS (i) (ii) GAS (i) (ii)

SAE-v 0.12 0.27 CIS 0.16 0.31
CIS-v 0.16 0.31 CAS∗(4,3) 0.30 0.48
CAS∗(2,2) 0.29 0.44 CAS∗(4,4) 0.24 0.43
CAS∗(2,3) 0.22 0.39 CAS∗(4,5) 0.22 0.44
CAS∗(2,6) 0.23 0.42
CAS∗(2,11) 0.23 0.42
CAS∗(2,21) 0.23 0.42

which is smaller (larger) than 1 if it is more (less) likely to
ionize for the situation in the top panels in Fig. 12 than in the
bottom panels. Furthermore, η = 1 is obtained in the case of
equal ionization probability P+ = P−, which is the case for
the homonuclear molecules.

The results for η for different GAS approximations ranging
from SAE to including up to 21 orbitals in the active space
are given in Table III for both electrical field strengths (i) and
(ii). Let us first discuss LiH at the lower intensity (i). For all
approximations, ionization is favored when ϕCEP = 0 and F (t)
is positive at its maximum. In this case the electron is liberated
in the direction of Li [Fig. 12(a)]. This preference for ionization
in this relative geometry is largest for the simplest possible
and most commonly used SAE approximation. Correlation
effects shift this result toward more symmetry in the ionization
dynamics by a factor of approximately two. We further note
that an active core orbital [CAS∗(4,K), right in Table III] does
not strongly impact the results since the active core and fixed
core [CAS∗(2,K), left in Table III] results are quite similar.

By increasing the laser intensity, case (ii), a corresponding
behavior is observed, but with a much less pronounced favored
direction of ionization (η is larger). This can be explained
by the drastically increased total ionization yield compared
to (i) due to a field strength |F0| = 0.05 which is above the
over-the-barrier field strength of about I 2

p/4 = 0.034 for the
valence orbital. For that case, any preference of direction of
the electron emission is suppressed.

To learn more about the effect of e-e correlation, we
additionally performed calculations on a large numerical grid
and calculated the single-particle densities for the case of SAE
and the converged result of two active electrons, CAS∗(2,21),
for the lower laser intensity (i). The results are given in Fig. 13
for both CEPs of the field after the field is turned off (t = 500).
In the logarithmically scaled density plot, it becomes apparent
for the SAE approximation that ionization is favored if the
field points toward the H atom (“+”, blue). Correlation has
nearly no effect on the single-particle density in this direction
but changes the density emitted in the opposite direction (“−”,
red). Here the small fraction for the SAE case is drastically
enhanced for the correlated case (dashed line), which, in turn,
results in an increase of the asymmetry parameter η.
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V. CONCLUSIONS AND OUTLOOK

In this paper, we described and applied the time-dependent
generalized-active-space configuration-interaction scheme to
solve the multiparticle TDSE. The key for the efficient use
of TD-GASCI for photoionization of atoms and molecules
involving continua is the use of a partially rotated basis set
with HF and pseudo-orbitals to describe the confined bound-
state orbitals. Using 1D heliumlike and berylliumlike models,
we gave a detailed analysis of the convergence behavior with
respect to the considered orbitals used for the rotation and
found that improved pseudo-orbitals based on the Nel − 2 HF
problem are well suited for TD calculations involving single-
electron continua.

We applied the TD-GASCI method to the strong-field
ionization of the 1D four-electron LiH-like model and found
a strong dependence of the observed ionization yield as a
function of the orientation of the molecule with respect to the
peak electric field direction and in particular on the included
level of e-e correlation. The e-e interaction increases the
ionization yield in the direction of H. We expect these effects
to play a role also in 3D systems.

Although our presented results are for 1D systems, the
method is completely general and can be applied “as is” in
arbitrary coordinates. The restriction in dimensionality in this
work allowed for a detailed validation of the method through
comparison with fully converged correlated calculations based
on the TDSE. The usability of the similar TD-RASCI approach
to single-photon absorption in beryllium and neon in a
spherical basis set was demonstrated in [32,33], with the focus
on the comparison with experimental photoionization cross
sections. Generalizations to diatomic molecules in 3D, such as
LiH and CO, are currently in progress based on single-particle
orbital expansions in prolate spheroidal coordinates.
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APPENDIX A: PARTIAL ROTATION OF THE
SINGLE-PARTICLE BASIS

Let us start with the FE-DVR basis functions {|χi〉}, cf.
Eqs. (16) and (17), which span the complete simulation region
x ∈ [0,xs]. For simplicity, we consider only x � 0. For the
interval [−xs,xs], the basis can be sorted accordingly.

We partition the basis into a central part i ∈ [1,Nc] and an
outer part i ∈ [Nc + 1,Nb]. Because of the orthonormality of
the FE-DVR functions, we can expand any wave function in
the central and the outer parts,

|�(t)〉 =
Nc∑
i=1

cc
i (t)|χi〉

︸ ︷︷ ︸
|�c(t)〉

+
Nb∑

i=1+Nc

co
i (t)|χi〉

︸ ︷︷ ︸
|�o(t)〉

. (A1)

Especially, |χi〉 ⊥ |�o〉 for any i � Nc.
Consider the unitary basis transform

b =
(

bc

1

)
, (A2)

which is similar to a rotation of the basis to new basis functions

|φα〉 =
Nc∑
i=1

〈χi |φα〉|χi〉 ≡
Nc∑
i=1

biα|χi〉, (A3)

|χi〉 =
Nc∑

α=1

〈φα|χi〉|φα〉 ≡
Nc∑

α=1

b∗
αi |φα〉, (A4)

for α,i � Nc and χi ≡ φi else.
The rotated wave function can be written, analogously to

Eq. (A1), as

|�rot(t)〉 = ∣∣�c
rot(t)

〉 + ∣∣�o
rot(t)

〉
. (A5)

The outer part of the wave function, |�o
rot〉, is thus transformed

as

∣∣�o
rot(t)

〉 =
Nb∑

α=Nc+1

〈φα|�(t)〉|φα〉

=
Nb∑

α=Nc+1

∑
i,j

〈φα|χi〉︸ ︷︷ ︸
δαi

〈χi |�(t)〉 〈χj |φα〉︸ ︷︷ ︸
δjα=δij

|χj 〉

=
Nb∑

i=Nc+1

〈χi |�(t)〉|χi〉

= |�o〉. (A6)

Using a transform of type Eq. (A2), therefore, does not change
the outer part of the wave function. The inner part transforms
as

∣∣�c
rot(t)

〉 =
Nc∑

α=1

〈φα|�(t)〉|φα〉

=
Nc∑

α=1

Nc∑
i=1

〈φα|χi〉〈χi |�(t)〉|φα〉

=
Nc∑

α=1

Nc∑
i=1

b∗
αici(t)|φα〉. (A7)

Thus, for the central region, α,i < Nc, the coefficient vector
ci is transformed to the rotated basis, which is a standard
technique in quantum chemistry calculations.

Of course, only the single-particle wave function is invariant
under such rotations (and so is the FCI many-particle wave
function). For truncated CI expansion this is not true, because
the truncation error depends on the accuracy of the single-
particle orbitals. Therefore, the best unitary transformation
matrix with the constraint of the boundary at the central and
the outer region has to be found. Up to now, no straightforward
method to determine this matrix for arbitrary TD problems is
available; thus, the choice of the transformation matrix b is
guided by physical and mathematical intuition.

062508-16



TIME-DEPENDENT GENERALIZED-ACTIVE-SPACE . . . PHYSICAL REVIEW A 90, 062508 (2014)

APPENDIX B: TRANSFORMATION AND STORAGE OF
ELECTRON INTEGRALS

A crucial part for the numerical performance of TD-GASCI
calculations is the efficient transformation and storage of the
one- and two-electron matrix elements from the FE-DVR to
the partially rotated basis. Extending ideas from [46], we
evaluate the transformations analytically by exploiting the δ

structure of the FE-DVR matrix elements and the transforma-
tion matrix b which results in fast transformations and offers a
strategy for the efficient storage of the transformed integrals.
Similar strategies can be applied for 3D spherical coordinates
and prolate spheroidal coordinates.

1. Transformation of one-electron integrals

Let 〈i| and |j 〉 be basis functions from the original FE-DVR
set, i.e., with analytically known matrix elements hij = 〈i|h|j 〉
of the single-particle part h of the Hamiltonian. Let 〈α| and
|β〉 denote the rotated mixed basis set, which can be expanded
in the FE-DVR basis as

〈α| =
Nb∑
i=1

b∗
αi〈i| and |β〉 =

Nb∑
j=1

bβj |j 〉. (B1)

The transformation matrix from the FE-DVR basis |i〉 to
the mixed basis |α〉 is given by Eq. (A2), i.e., for i,α ∈
[1,Nc], bα,i corresponds to the expansion coefficients of the
pseudo-orbitals in the FE-DVR set, and when i,α > NH bα,i

is diagonal, bα,i ≡ δα,i . The latter case corresponds to the
situation |β〉 = |j 〉 and 〈α| = 〈i| outside the central region.

The task is to find the matrix elements of h in the new basis,
i.e., 〈α|h|β〉 ≡ hα,β . Using Eq. (B1), we straightforwardly
arrive at

hαβ =
Nb∑
i=1

Nb∑
j=1

b∗
αi〈i|h|j 〉bβj . (B2)

For numerical performance [46,96], at the cost of slightly
increased memory consumption, it is favorable to split this
transformation into two parts with a temporary matrix h1:

h1
iβ =

Nb∑
j=1

bβjhij ,

(B3)

hαβ =
Nb∑
i=1

b∗
αih

1
iβ .

These results can be further simplified by exploiting the
diagonal structure of the transformation matrix b for α,i > Nc,
cf. Eq. (A2),

h1
iβ =

Nc∑
j=1

bβjhij

︸ ︷︷ ︸
if β�Nc,0 else

+ hiβ︸︷︷︸
if β>Nc,0 else

(B4)

hαβ =
Nc∑
j=1

b∗
αih

1
iβ

︸ ︷︷ ︸
if β�Nc,0 else

+ h1
αβ︸︷︷︸

if α>Nc,0 else

.

Additional straightforward use of symmetry properties of the
FE-DVR matrix elements, such as the diagonal or banded
structure of the kinetic and the potential energies, reduces the
computational and memory costs further.

2. Transformation of two-electron integrals

For the four-indexed two-electron integrals wijkl , we use
a similar approach. Here the transformation is split into
three parts [46,96]. Greek letters α,β,γ,δ denote transformed
indices; Latin letters i,j,k,l correspond to the untransformed
FE-DVR basis:

(1) wijkl → w
(1)
ijγ δ ,

w
(1)
ijγ δ =

Nb∑
k=1

b∗
γ k

Nb∑
l=1

bδlwijkl ; (B5)

(2) w
(1)
ijγ δ → w

(2)
iβγ δ ,

w
(2)
iβγ δ =

Nb∑
j

bβjw
(1)
ijγ δ; (B6)

(3) w
(2)
iβγ δ → w

(m)
αβγ δ ,

w
(m)
αβγ δ =

Nb∑
i=1

b∗
αiw

(2)
iβγ δ. (B7)

Due to the special structure of the transformation matrix
bαi , which is δαi for α,i > Nc and the structure of the
FE-DVR matrix elements wijkl ∝ δij δkl , the above transfor-
mations (B5)–(B7) can be simplified (wF

ik denotes the diagonal
FE-DVR interaction wF

ik = wijklδij δkl),

w
(1)
ijγ δ =

⎧⎪⎨
⎪⎩

δij

∑Nc

k=1 b∗
γ kbδkw

F
ik γ,δ � Nc,

δij δγ δw
F
iγ γ,δ > Nc,

0 else,

(B8)

which can be decomposed into a central part w
(1C)
iγ δ =∑Nc

k b∗
γ kbδkw

F
ik of dimension Nb × Nc × Nc and a diagonal

part, which corresponds to the FE-DVR matrix elements and
does not need to be stored.

The second transformation evaluates to

w
(2)
iβγ δ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

bβiw
(1C)
iγ δ i,β,γ,δ � Nc,

bβiw
F
iγ δγ,δ γ,δ > Nc; i,β � Nc,

bβiw
(1C)
iγ δ δβi γ,δ � Nc; i,β > Nc,

wF
iγ δiβδγ δ i,β,γ,δ > Nc,

(B9)

which gives a central four-indexed part w
(2C)
iβγ δ of dimension

Nc × Nc × Nc × Nc, two “mixed” parts w(2F1) and w(2F2)

of dimension Nc × Nc × NF , with NF = (Nb − Nc), and the
“outer” diagonal part, which again corresponds to the FE-DVR
matrix elements.
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The transformation can be simplified to

w
(m)
α,β,γ,δ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑Nc

i=1 b∗
αiw

(2C)
iβγ δ α,β,γ,δ � Nc,

δγ δ

∑Nc

i=1 b∗
αiw

(2F1)
iβγ α,β � Nc; γ,δ > Nc,

w
(2F2)
αγ δ δαβ α,β > Nc; γ,δ � Nc,

δαβδγ δw
F
αγ α,β,γ,δ > Nc.

(B10)

Assuming real-valued orbitals, such as the FE-DVR
functions in 1D, the symmetry relation for the two-electron

integrals, wαβ,γ δ = wγδ,αβ , reduces the storage requirements
to wC

αβ,γ δ [first row of Eq. (B10)] and either wF1 or wF2 [second
or third row of Eq. (B10)]. Thus, in total two arrays have to
be stored. The central array wH

α,β,γ δ for α,β,γ,δ � NH of
dimension Nc × Nc × Nc × Nc and one mixed, three-indexed,
array wF1

α,γ,δ or wF2
α,β,γ of dimension NF × Nc × Nc. This

allows for an efficient storage scheme of the two-electron
integrals in the mixed basis set approach and with that for the
application of GASCI to large extended systems (e.g., pho-
toionization) without approximation of the interaction matrix
elements.
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[3] B. Schütte, S. Bauch, U. Frühling, M. Wieland, M. Gensch,

E. Plönjes, T. Gaumnitz, A. Azima, M. Bonitz, and M. Drescher,
Phys. Rev. Lett. 108, 253003 (2012).

[4] S. Bauch and M. Bonitz, Phys. Rev. A 85, 053416 (2012).
[5] K. C. Kulander, Phys. Rev. A 35, 445 (1987).
[6] P. Krause, T. Klamroth, and P. Saalfrank, J. Chem. Phys. 123,

074105 (2005).
[7] N. Rohringer, A. Gordon, and R. Santra, Phys. Rev. A 74,

043420 (2006).
[8] F. Wilken and D. Bauer, Phys. Rev. A 76, 023409 (2007).
[9] M. Brics and D. Bauer, Phys. Rev. A 88, 052514 (2013).

[10] S. Kvaal, J. Chem. Phys. 136, 194109 (2012).
[11] K. Balzer, S. Bauch, and M. Bonitz, Phys. Rev. A 81, 022510

(2010).
[12] K. Balzer, S. Bauch, and M. Bonitz, Phys. Rev. A 82, 033427

(2010).
[13] D. Hochstuhl, S. Bauch, and M. Bonitz, J. Phys.: Conf. Ser. 220,

012019 (2010).
[14] M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman,

M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, Th.
Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist,
J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger,
U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev,
Science 328, 1658 (2010).

[15] T. Mercouris, Y. Komninos, and C. A. Nicolaides, Adv. Quantum
Chemistry 60, 333 (2010).

[16] H. W. van der Hart, M. A. Lysaght, and P. G. Burke, Phys. Rev.
A 76, 043405 (2007).

[17] M. A. Lysaght, P. G. Burke, and H. W. van der Hart, Phys. Rev.
Lett. 101, 253001 (2008).

[18] M. A. Lysaght, H. W. van der Hart, and P. G. Burke, Phys. Rev.
A 79, 053411 (2009).

[19] H. W. van der Hart, Phys. Rev. A 89, 053407 (2014).
[20] D. Hochstuhl and M. Bonitz, J. Chem. Phys. 134, 084106 (2011).
[21] J. Caillat, J. Zanghellini, M. Kitzler, O. Koch, W. Kreuzer, and

A. Scrinzi, Phys. Rev. A 71, 012712 (2005).
[22] M. Nest, T. Klamroth, and P. Saalfrank, J. Chem. Phys. 122,

124102 (2005).
[23] T. Kato and H. Kono, Chem. Phys. Lett. 392, 533 (2004).
[24] H.-D. Meyer, U. Manthe, and L. S. Cederbaum, Chem. Phys.

Lett. 165, 73 (1990).

[25] D. J. Haxton, K. V. Lawler, and C. W. McCurdy, Phys. Rev. A
86, 013406 (2012).

[26] T. Sato and K. L. Ishikawa, Phys. Rev. A 88, 023402 (2013).
[27] H. Miyagi and L. B. Madsen, Phys. Rev. A 87, 062511 (2013).
[28] H. Miyagi and L. B. Madsen, J. Chem. Phys. 140, 164309

(2014).
[29] H. Miyagi and L. B. Madsen, Phys. Rev. A 89, 063416 (2014).
[30] J. Olsen, B. O. Roos, P. Jørgensen, and H. J. Aa. Jensen, J. Chem.

Phys. 89, 2185 (1988).
[31] T. Fleig, J. Olsen, and C. M. Marian, J. Chem. Phys. 114, 4775

(2001).
[32] D. Hochstuhl and M. Bonitz, Phys. Rev. A 86, 053424 (2012).
[33] D. Hochstuhl and M. Bonitz, J. Phys.: Conf. Ser. 427, 012007

(2013).
[34] J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. A

45, 4998 (1992).
[35] K. C. Kulander, K. J. Schafer, and J. L. Krause, Int. J. Quantum

Chem. 40, 415 (1991).
[36] K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander, Phys.

Rev. Lett. 70, 1599 (1993).
[37] K. T. Taylor, J. S. Parker, D. Dundas, K. J. Meharg, B. J. S.

Doherty, D. S. Murphy, and J. F. McCann, J. Electron. Spectrosc.
Relat. Phenom. 144-147, 1191 (2005).

[38] J. S. Parker, B. J. S. Doherty, K. T. Taylor, K. D. Schultz, C. I.
Blaga, and L. F. DiMauro, Phys. Rev. Lett. 96, 133001 (2006).

[39] R. Nepstad, T. Birkeland, and M. Førre, Phys. Rev. A 81, 063402
(2010).
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