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Convergence of the Breit interaction in self-consistent and configuration-interaction approaches
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Much discussion in relativistic atomic physics and quantum optics has related to the interaction of gauge and
perturbation of the Hamiltonian or Dirac operator. It has been commented that Lorentz and gauge independence
requires different forms of the perturbation operator in shifting from one gauge to another. Equally, it has been
commented that gauge convergence is not possible without different operator forms in different bases and without
the operator being embedded within the self-consistent kernel. We explore the logic and self-consistency of these
arguments, applied to the well-known Breit operator in an area of continuing discussion. We find that convergence
is now possible to a remarkable degree including a Breit interaction operator in a form consistent with the gauge
for length and velocity relativistic forms of the multipole operator, implemented at the configuration-interaction
level. Excellent convergence is obtained for Breit interaction energies, interaction mixing coefficients, interaction
transition probabilities and eigenenergies and transition probabilities in complex open shells (transition metal K
α transitions and shake satellites), and forbidden transitions.
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I. INTRODUCTION

Relativistic quantum mechanics has been a powerhouse
and mainstay for the development of science since Dirac
and Sommerfeld. As a cornerstone of atomic physics it
has led via quantum electrodynamics to one of the two
beautiful theories of our natural world [1]. Recently, this
has gained dramatic recognition in small-molecule inorganic
theoretical and quantum chemistry as a tool for molecular
dynamics. Transition energies, probabilities, and profiles have
been predicted with outstanding accuracy, especially for the
hydrogen atom [2–4].

In the VUV and x-ray regimes the dominant bound-bound
transitions are the characteristic inner-shell transitions of Kα

and Kβ for 1s − 2p and 1s − 3p transitions. Not only are these
the most recognizable features of the spectra, but also they
evince complex questions of relativistic quantum mechanics
which remain unresolved to date. If we begin with the Dirac
operator, we recognize early on that the three-body problem of
a helium nucleus with two electrons is a formidable challenge
and that a neutral or singly ionized system of medium atomic
number is an immense challenge to theoretical computation.
High-accuracy experimental data are a starting point, but com-
plex shake processes and transition probabilities lead to the
need for multiconfigurational Dirac-Hartree-Fock (MCDHF)
approaches to begin to address the interesting complexity of
the spectra, which, in a nonrelativistic perspective, can be
represented by two diagram lines (Kα1 and Kα2) at a ratio of
2:1. Not so in reality.

At the heart of the problem is the determination to
convergence and self-consistency of perhaps 1000 to 200 000
configuration state functions (CSFs), the effective and ex-
change potentials, and the treatment of correlations within
that framework. This has been a target of many people
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for many years, including I. P. Grant, C. Froese-Fischer,
P. Jonsson, and the GRASP atomic code package; for two-
electron systems it has been a particular concern of groups
such as those of G. W. F. Drake. Despite the long-standing
need to understand these transitions, due to the difficulty
of atomic structure calculations in complex atoms we have
only recently been able to properly investigate these processes
theoretically, taking into account such effects as relativity and
electron-electron correlation [5,6]. For complex, open-shell
atoms, these calculations are discrepant from experiment by
up to an order of magnitude. For example, Anagnostopoulos
found that the 3p satellite contributes 15% to the scandium
Kα spectrum, compared to Kochur’s ab initio calculation of
6.0% [7], and Mukoyama’s 7.8% [8]. The 3d satellite was
found experimentally to contribute 38%, compared to the 5.0%
predicted by the two previous sources. At present it is not clear
whether the theoretical values or the experimental analysis
needs further work, but a reasonable expectation is that both
need further investigation [9]. A recent paper has provided a
new approach to shake-off calculations [10]. Large, relativistic,
multiconfiguration calculations have been performed for the
3 d-transition metal series. These atomic models have been
used in a multiconfiguration shake-off calculation and have
provided new ab initio shake-off intensities which appear to
be in better agreement with experiment than anything prior
[9]. One of the first key observations within this framework is,
of course, the treatment of correlation and, ergo, the derivation
of the Moller or Breit interaction.

II. THE BREIT INTERACTION

In the MCDHF method, the atomic wave function becomes
a linear combination of solutions to the central-field problem
CSFs (symmetrized products of one-electron spinors) corre-
sponding to different electron configurations,

ψ =
∑

r

crψr , (1)
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where cr is a set of mixing coefficients that are determined
by diagonalizing the Dirac-Coulomb Hamiltonian (qi = qj =
−e):

H =
∑

i

⎛
⎝cαi · pi + qiφ(ri ) + (βi − 1)mic

2 +
∑
i�j

qiqj

4πε0rij

⎞
⎠.

(2)

The solutions of the self-consistent central-field Dirac
equation form a complete, infinite basis set. As we let
r → ∞, the volume contains all significant amplitudes of
the wave functions for all bound states of interest and so
ψ should tend towards the exact solution of the Dirac
equation. The Dirac-Coulomb Hamiltonian is the usual starting
place for most relativistic atomic structure calculations. For
example, the first-order relativistic corrections of this to the
nonrelativistic Hamiltonian include the relativistic correction
to the kinetic energy, the spin-orbit coupling, and the Darwin
term.

Many authors have noted that the Dirac-Coulomb Hamilto-
nian, which includes only the instantaneous component of the
Coulomb interaction, is both inconsistent with QED [11–13]
and not covariant [14]. Breit [15,16] originally introduced
additional terms to the Coulomb potential as a relativistic
correction to the Gaunt interaction [17]. The original, clas-
sically derived “Breit interaction” (which includes the Gaunt
interaction) is

Bij = − e2

4πε0

1

rij

(
αi · α j − (αi · pi )(α j · p j )

�2mimj

)
(3)

or

Bij = e2

2πε0

[(
αi · α j

2rij

− (αi · ri j )α j · ri j

2r3
ij

)
− αi · α j

rij

]
(4)

in the Coulomb gauge. Equation 4 is usually interpreted as ac-
counting for magnetic interactions between electrons (second
term) and retardation of the electromagnetic interaction due
to propagation at the speed of light (first term). As such, it
includes orbit-orbit interactions (between the dipole moments
of electrons or particles), spin-spin interactions (between the
spins of electrons or particles), and spin-other-orbit interac-
tions (between the spin of one electron or particle and the
orbital angular momentum of another), as presented in many
elementary atomic physics texts on the helium spectrum. Any
complete relativistic formulation should be Lorentz covariant,
so that the frame of reference can transform without the
physical result being dependent upon the reference frame.

By treating the quantized electromagnetic field to lowest
order in perturbation theory, the nonlocal generalization of the
Breit interaction describing the exchange of a single transverse
photon is

BijC(ω) = − e2

4πε0

{
αi · α j

cos(ωrij /c)

rij

−
[

(αi · pi )

�mi

(
(α j · p j )

�mj

cos(ωrij /c) − 1

ω2rij /c2

)]}
, (5)

where ω is the angular frequency of the virtual photon
[18]. In the low-frequency limit this reduces to the original

Breit interaction, however, the matrix elements are different
in the Coulomb or transverse gauge (∇A(r,t) = 0) and the
Lorenz (sometimes Feynman) gauge (∇A(r,t) + 1

c2
∂φ

∂t = 0),
where

BijL(ω) = e2

4πε0

(
cos(ωrij /c) − 1

rij

− αi · α j
cos(ωrij /c)

rij

)
.

(6)

Hata and Grant [19] applied this to simple configurations in
F and B isoelectronic sequences and found that the interaction
regains gauge invariance if applied to wave functions that
satisfy the Dirac equation in a local potential and, also,
compared the convergence of the approach and the contribution
of the frequency-dependent component of the transverse
photon correction to the QED contributions. They found that
the frequency-dependent correction can contribute up to 10%
of that from the frequency-independent Breit contribution
[20]. The Coulomb gauge reduces easily to the nonrelativistic
limit, whereas other gauges introduce terms that are only
corrected in higher orders of QED. Hence almost all SCF
calculations use the Coulomb gauge. For correlation orbitals
the frequency of the exchange photon cannot be approximated
by the eigenvalues of the orbitals; for them Koopman’s
theorem does not hold because they are only Lagrange
parameters required by normalization constraint. A recent
text discusses approaches to the formalism in some detail
(Secs. 6.4.2 and 10.11 [21]), including imaginary contributions
(mainly by using the exponential form rather than the real
component).

The Dirac-Coulomb-Breit Hamiltonian contains all effects
up to order α2. The Breit interaction is the largest contributor
to the Hamiltonian that is not included in the self-consistent
optimization process. Early authors believed that inclusion of
the Breit interaction in self-consistent field calculations would
prove extraordinarily difficult [22,23]. In the late 1950s, Bethe
and Salpeter [22] argued that the Breit interaction should not
be included self-consistently, as the Breit interaction is invalid
in matrix form when negative energy states are included. Kim
[23] had problems now known to be due to his choice of basis
set; his spinor components were not kinetically matched, so
that he experienced all the traditional pathologies, although his
Z was low enough for them to appear puzzling but not fatal
to the computation. Much later, a number of groups argued
that it was possible for the Breit interaction to be included
self-consistently [14,24] as imagined by Grant [25]. This has
been shown to be true, and the matrix elements have been given
in forms suitable for computation [14,26,27] for the frequency-
independent contribution. Other authors have argued that the
negative-energy states could be regularized using projection
operators, but this led to very large computational challenges.
Lindroth [28] argued that the previously observed problems
with self-consistent inclusion of the Breit interaction were a
symptom of “variational collapse” and not the cause of the
problem.

Arguments have been applied that the frequency-dependent
contribution is small, can be treated in perturbation, and
must be treated in perturbation since it relates to virtual
photons and virtual photon cancellation with QED Feynman
diagrams in the same order, which will tend to be of
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TABLE I. Convergence of the total and Breit energy contribution to the ground state of several noble gases and alkaline metals calculated
using the perturbative approach described in the text. Results are compared to the self-consistent results of Ishikawa et al. [29] and Parpia et al.
[30]. Ncsf is the number of configuration state functions, EDC is the Dirac-Coulomb energy, EDC+B is the Dirac-Coulomb-Breit energy, and EB

is the Breit energy. The Breit contributions agree to within 5% and, in many cases, to approximately 1%. Values are given in atomic units, and
the speed of light used in these calculations was 137.0370 a.u.

Ncsf EDC EDC+B EB Discrepancy

10 Ne 2p 1 128.69193051 128.67529063 0.01663988
3p 38 128.82217580 128.80559593 0.01657987
4p 130 128.86147359 128.84570363 0.01576995
5p 277 128.87224391 128.85649251 0.01575140

Ishikawa 128.69177653 128.67513577 0.01664076 5.3%
Parpia 128.69193 128.67529 0.01664364 5.4%

12 Mg 3s 1 199.9350669 199.9032457 0.0318212
3p 27 199.9669607 199.9351365 0.0318241
4p 138 200.0774388 200.0457316 0.0317071

Ishikawa 199.9347886 199.9029617 0.0318269 3.8%
Parpia 199.93506 199.90323 0.0318336 4.0%

18 Ar 3p 1 528.6837624 528.5515487 0.1322137
4p 103 528.7913500 528.6595800 0.1317699
5p 380 528.8371574 528.7054259 0.1317314
6p 832 528.8750996 528.7460524 0.1290471

Ishikawa 528.6833606 528.5510378 0.1323228 2.5%
Parpia 528.68379 528.55147 0.1323647 2.5%

20 Ca 4s 1 679.710160 679.5193798 0.1907802
4p 63 679.737280 679.5464537 0.1908264
5p 343 679.837809 679.6476017 0.1902079

Ishikawa 679.709594 679.5186001 0.1909940 0.4%
Parpia 679.71022 679.51922 0.1910617 0.5%

36 Kr 4p 1 2788.860581 2787.4410847 1.419496
4f 591 2789.257121 2787.839085 1.418036
5f 3578 2789.719095 278.307393 1.411702

Ishikawa 2788.856297 2787.430523 1.425874 1.0%
Parpia 2788.8622 2787.4362 1.426806 1.1%

38 Sr 5s 1 3178.079907 3176.370006 1.709901
5d 1410 3178.495333 3176.787028 1.708305
6d 4356 3178.754645 3177.056160 1.698485

Ishikawa 3178.074209 3176.355672 1.718537 1.2%
54 Xe 5p 1 7446.894386 7441.183726 5.71066

5d 345 7446.981879 7441.267993 5.713885
6d 3223 7447.357717 7441.655062 5.702654

Ishikawa 7446.894950 7441.125194 5.769756 1.2%
Parpia 7446.9032 7441.1333 5.775339 1.3%

greater magnitude. In the Breit (long-photon-wavelength)
approximation—it is useful to make the distinction between
Breit’s interaction and the full transverse photon interaction—
the interelectronic potential does not depend on the orbital
eigenvalues, so that the self-consistent calculation is simi-
lar in scope to that using only the Coulomb potential. If
the electron-electron interaction depends on the frequency
(eigenvalue difference) of the exchanged virtual photon, one
has a very complicated iterative problem and no idea if
there is a true mathematical solution of the coupled SCF
equations. Moreover, it does not sit very well within the
usual Furry picture, which assumes that there is a well-defined
complete set of orbital spinors which forms the scaffold on
which everything hangs. SCF calculations define the effective

one-body potential generating the space spanned by these
spinors.

Several atomic structure packages have included the
frequency-independent Breit interaction in the Coulomb gauge
at the radial optimization stage [28–32]. Interestingly, the
popular and successful RCCC method implemented a Breit
component only in 2009, using the Feynman or Lorenz
gauge and hence the Moller interaction [33]. Interestingly, this
Moller implementation appears to include the full frequency-
dependent transverse photon operator [34]. Inclusion of
the Breit interaction has been implemented in the GRASP

packages at the configuration-interaction (perturbation) level.
Further discussion of the detailed background is given in
[21] and [35].
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III. CONVERGENCE OF BREIT
INTERACTION ENERGIES

In the work presented here we include the Breit interaction
at the configuration-interaction level. In other words, we
optimize the radial wave functions without considering the
effect of Eq. (5), but following optimization we compute the
eigenfunctions of the full Hamiltonian including the Breit
interaction and QED effects. In the limit that the CSF basis
approaches completeness these two methods are equivalent. In
the present section, we wish to consider how the perturbative
inclusion of the Breit interaction in the GRASP2K package
compares to (such) self-consistent implementations.

Ishikawa et al. [29,31] performed relativistic self-consistent
calculations with the Breit interaction using Gaussian basis
sets. They investigated a number of Be-like and Ne-like
atoms. Parpia et al. [30] also look at the Breit interaction
self-consistently, using Gaussian basis sets and including finite
nuclei. Their results agree quite closely with those of Ishikawa.
In Table I we compare the Breit interaction as calculated in
GRASP2K with the results of Ishikawa.

When correlation orbitals are not included in the calcu-
lation, it is clear that the Breit interaction calculated using
GRASP2K is highly discrepant. As we increase the number
of correlation orbitals, however, the energy contribution of
the Breit interaction quickly converges to the values in [31].
The maximum fractional discrepancies occur in systems where
the Breit contribution is small—in neon our value differs from
Ishikawa by 5%. The maximum absolute discrepancies occur
in strontium and krypton, where the discrepancy is ≈0.5 eV,
however, in both cases uncertainty in the energy convergence
is greater, and it is probable that a larger basis set will improve
these values. In other words, this discrepancy is not the factor
limiting accuracy, and the dominant contribution to uncertainty
and systematic error is the completeness and convergence of
the wave function and not the form of the implementation of
the Breit operator.

IV. CONVERGENCE OF BREIT INTERACTION
MIXING COEFFICIENTS

Indelicato et al. [32] point out that the inclusion of the Breit
interaction during radial optimization not only affects energies,
but also affects mixing coefficients. This can be vital for weak
or forbidden transition rates and other values not related to
energy. Indelicato et al. compare the mixing coefficients of the
1s2p 3P1 state in the J − J coupled basis calculated using no
Breit interaction and using a self-consistent Breit interaction.
In the J − J representation, the 1s2p3P1 state can be written

|1s2p 3P1〉 = c1|1s2p1/2J = 1〉 + c2|1s2p3/2J = 1〉, (7)

with the ratio c1:c2 being strongly influenced by the Breit
interaction at high Z.

Indelicato et al. test this using two methods of calculation.
In the first the Breit interaction is not included, and in the
second it is included self-consistently. We have reproduced
Indelicato et al.’s results in which the Breit interaction is
excluded and have extended this by also considering the
inclusion of the Breit interaction as a perturbation. The results
are presented in Fig. 1. Our results for the mixing coefficients

FIG. 1. (Color online) Comparison of the c2 mixing coefficient
for the 1s2p 3P1 level of helium-like ions calculated with self-
consistent [32] and perturbative inclusion of the Breit interaction
(present work). Values calculated using only the Coulomb interaction
are very similar to those of Indelicato et al., suggesting an accurate
reproduction of their wave functions. The c2 mixing coefficient
differs slightly using a perturbative Breit interaction compared to
the self-consistent calculation of Indelicato et al., which could have
implications for the calculation of highly sensitive weak or forbidden
transition rates. Top: Reproduced from Indelicato et al. [32]: Variation
with Z of the mixing c2 coefficient for the 1s2 3P1 level of helium-like
ions. BP: only the Coulomb interaction is used in the SCF process.
BSC: the full Breit interaction is used in the SCF process. Bottom:
Variation with Z of the mixing c2 coefficient, from the present
work. BP: only the Coulomb interaction is used in the SCF process.
BSC: the Breit interaction is added perturbatively after wave-function
optimization.

calculated using only the Coulomb interaction (omitting the
Breit interaction) are nearly identical to those of Indelicato
et al. The mixing coefficients that we have determined using
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a perturbative Breit interaction differ only very slightly from
those calculated by Indelicato et al. self-consistently.

Figure 1 provides no support for the conclusion of Indel-
icato et al. that the mixing coefficients can be significantly
altered due to the Breit interaction’s effect on wave functions
when included during radial optimization. Since the wave
functions used in our work use a different basis from those used
by Indelicato et al., we expect there to be small differences in
the mixing coefficients, but these appear negligible. In order to
determine whether these possible differences have any impact
on predictions of physical values—or are just a manifestation
of using a slightly different basis set—we need to investigate
further.

In principle, past work can be updated to include the
additional interaction in perturbation or to just compute the
relevant Breit interaction. However, we note that such a
correction will mainly work if (and only if) the original
CSF array is the same as in the recalculation; otherwise, the
correlated correction will be different, as seen in the current
example. A full recomputation to convergence is often needed.

V. CONVERGENCE OF BREIT INTERACTION
(RELATIVISTIC) TRANSITION PROBABILITIES

In order to test the influence of the Breit interaction on
transition rates, we consider next the Kα hypersatellites
(arising from the 1s−2 → 1s−12p−1 transition). The Breit
interaction is of significant importance in the calculation of
the Kα hypersatellites: partial cancellation of the Coulomb

interaction results in the Breit interaction’s contributing more
significantly than in most transitions [36,37]. The transitions
are also strongly influenced by QED effects, and the intensity
ratio is influenced by both relativistic contributions and the
Breit term.

Consequently, the transitions have been the focus of many
theoretical and experimental investigations. Their sensitivity
to the Breit interaction makes them a useful test for the
perturbative implementation. The ratio is especially useful
for testing whether the perturbative inclusion of the Breit
interaction has any effect on transition rates, as the Breit
interaction contributes up to 70% of the transition ratio.

In Fig. 2 we compare our calculations of the Kαh
1 /Kαh

2
intensity ratio to the theoretical and experimental results of
other authors. Our results are in good agreement with both
the theoretical and the experimental results. This agreement,
in a system highly sensitive to the Breit effect, evinces that
perturbative inclusion of the Breit interaction is sufficient for
accurate determination of transition rates in this system.

Costa et al. [38] have recently carried out a determination of
the Kαh intensity ratio using a self-consistent implementation
of the Breit interaction. The Breit interaction alters the
intensity ratio by up to 70%, and we have plotted the relative
contribution of the Breit interaction calculated using our own
implementation and as reported by Costa et al. (Fig. 3).
Despite the large contribution from the Breit interaction and
the differences in the two methods, the results are in excellent
agreement. The maximum discrepancy occurs at Z = 12,
where the contribution of the Breit interaction differs by ∼2.5

FIG. 2. (Color online) The Kαh
1 /Kαh

2 intensity ratio as calculated in the present work, compared to theoretical predictions using both
self-consistent and perturbative Breit interactions and experiment. The Kαh intensity ratio is highly sensitive to contributions from the Breit
interaction. Our results, using a perturbative approach, are consistent with all experimental values and are in good agreement with all other
theoretical values.
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FIG. 3. (Color online) Effect of the Breit interaction on the
Kαh

1 /Kαh
2 ratio. The present results, calculated using a perturbative

Breit interaction, are compared to the recent results of Costa et al. [38],
who used a self-consistent implementation of the Breit interaction.
Although the ratio is significantly affected by the Breit interaction,
the results of the two methods are practically identical.

percentage points (Fig. 4). In all other cases we obtain nearly
identical contributions from the Breit term.

The results of this section have shown that, in most
cases, calculating the Breit interaction using a self-consistent
approach yields only a small difference from the configuration-
interaction approach, and indeed there is a high likelihood
that these small differences are due to the completeness and
convergence of the wave functions and hence not to the form
of implementation of the perturbative terms. In a beautiful
study, Derevianko et al. [39] point out that gauge invariance
requires the inclusion of negative-energy sates, at least with
their basis set for transition probabilities for helium-like
magnetic transitions. That study also discussed how some
frameworks (basis sets) led to the negative-energy contribution
vanishing. Earlier work discussed using projection operators
to bypass difficulties with such an approach. Of course, ideal
convergence also requires an infinite basis and an infinite set

FIG. 4. (Color online) Discrepancy between the present calcula-
tion of the Breit interaction contribution to the Kαh

1 /Kαh
2 ratio and

the self-consistent calculation by Costa et al. [38]. The discrepancy
is never large (2.5% at Z = 12), however, the agreement is better at
higher atomic numbers.

of continuum states, but these are not usually required for any
state-of-the-art convergence of gauge forms.

Although the mixing coefficients determined by Indelicato
et al. [32] using a self-consistent approach differ slightly
from our perturbative approach, we have found that neither
eigenstate energies nor transition rates are affected by this
difference. The error introduced by the Breit interaction
approximations are much smaller than other sources of error
such as convergence of transition energies with basis set
expansion, even in the Kαh transitions, where the Breit
interaction is the dominant contributor.

We note that in most cases we have demonstrated that
any higher order terms (e.g., from the SCF approach) are
quite small, especially compared to current convergence and
computational limitations. Of course, these real additional
terms including the frequency-dependent term are nonzero
and should be observable in particular studies.

VI. CONVERGENCE OF THE BREIT INTERACTION IN
X-RAY Kα, FORBIDDEN, AND UV-VIS TRANSITIONS

It has often been said that the relativistic many-body
equations must be Lorentz covariant and that this requires com-
putation of the frequency-dependent contributions to the full
transverse photon operator rather than the low-frequency limit
Breit operator. With no packages having investigated this in a
detailed manner, we must currently abstain from appropriate
conclusions, especially as the self-consistent implementation
of QED terms often represents larger contributions to the
energies.

It is well known that operators of relativistic Hamiltonians
should be Lorentz covariant and, hence, that gauge trans-
formations of operator forms must be completed between
gauges, as evinced by Eqs. (5) and (6). However, claims have
been made that the gauge convergence of length (Babushkin)
and velocity (Coulomb) forms of the relativistic (electric
multipole) transition matrix operators is (also) impossible
without transformation of the operator form of the Breit
interaction [40]. It should be remembered that the Coulomb
or Lorenz (Feynman) gauge requires this transformation for
convergence and that these choices are quite independent of
the transition operator form. The convergence and accuracy
of any computation between the length and the velocity forms
depend upon the completeness of the wave function rather than
the Breit operator form.

A similar claim relates to the difficulty of convergence of
the characteristic x-ray spectra including complex satellites,
such as for copper Kα or titanium Kα; and to VUV forbidden
transitions at low energies. A third claim relates to electric
dipole (i.e., allowed) transitions of oxygen at low energies.

We find in recent studies [5,6,10,41] that the convergence
of the length and velocity gauge forms is consistent and
appears to find excellent agreement with experiment to a
remarkable level, apparently unobstructed by the form of the
Breit implementation. Similarly, we find, for the forbidden E2
and M1 557.7- and 297.2-nm emission lines in oxygen [42],
that dramatic improvements in convergence are possible and
to an apparently arbitrary level subject to the completeness
of the wave function. While it is inevitable that the form
of the terms in the Hamiltonian and the methodology for
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implementation must limit the final accuracy, we do not yet
see these limitations. A separate methodical investigation of
oxygen I and oxygen III electric dipole transition probabilities
in different gauges also revealed the potential for dramatically
improved gauge convergence, with no limitation yet from the
perturbative versus self-consistent approaches [43]. In fact,
for a set of these transitions we find reliable convergence
to 0.02% in energies. We find that the forbidden (higher
multipole) transitions are necessarily more strongly affected
by the differences of the gauge form (Babushkin or Coulomb)
than electric dipole operators and that, indeed, this is also likely
to be due to the completeness of convergence of the relativistic
wave functions over the active grid range.

VII. DISCUSSION

It remains true that development of relativistic atomic and
molecular packages must increasingly investigate significant
relativistic and higher order effects, especially including QED
contributions [44], and in light of this, we particularly refer
to Drake’s accurate work on helium-like systems [35,45]. In
part, they comment that the Breit-Pauli operators are dominant,
followed by the lowest order QED Lamb shift self-energy,
anomalous magnetic moment, and vacuum polarization terms,
reduced mass corrections, and Wichmann-Kroll and higher-
order Breit terms. Hence it is increasingly important to
have reliable implementation of self-energy terms to compare
many-electron atomic predictions of transition energies and
amplitudes to a higher level of accuracy.

The electron-electron interaction in QED takes a different
form depending on the gauge. Physical quantities should
be gauge independent, but the fact that practical calculation
involves approximation means that this is often far from
achievable. Nonrelativistic calculations are a good starting
point; here the Coulomb interaction dominates. In relativistic
calculations this suggests adopting the Coulomb gauge, where
the Coulomb interaction is supplemented by relativistic correc-
tions (i.e., those vanishing in the nonrelativistic limit), which
are usually treated as a perturbation to the DC Hamiltonian.
The Breit interaction (ω = 0) can, in principle, either be treated
simply as a perturbation or be incorporated in SCFs. The
DCB SCF is computationally time-consuming and difficult to
program in GRASP-style calculations using integrodifferential
equations. It is much more straightforward to do the calculation
using matrix methods. We identify transitions which are
sensitive to the Breit interaction. Some calculations have been
done using DCB, but it is not clear that it is necessary to
treat the construction of trial wave functions in this way; the
effect of self–consistency on wave functions is small in all
cases treated so far. This investigation supports the idea that

most problems can be treated satisfactorily using DC + B
wave functions.

The effect of using the Breit operator in configuration
interactions compared to a self-consistent implementation is,
at most, equivalent to a higher order correction of perturbation
theory. Currently we are able to compute (with challenges)
transition rates to better than 1% accuracy, and transition rates
to 2.5% in extreme cases where the rate is fully dominated
by the Breit interaction. Energies are generally more stable
for electric dipole allowed transitions, and, e.g., ground-state
energies are usually able to be obtained with accuracies
approaching or exceeding 1% and, in a number of cases,
possibly 0.02%. Complex characteristic energies of x-ray
spectra can now approach accuracies approaching 0.001%,
0.1 eV, or 10 ppm; and transition probabilities, accuracies
of 0.01%–0.03%. In general these levels of convergence can
only become accuracies with the inclusion of first-order Breit
and QED terms including self-energy terms, which can have
magnitudes in relevant transitions of 10–100 ppm or more. The
full transverse photon interaction can contribute up to 10% of
the frequency-independent Breit form. Self-consistent higher
order perturbative corrections may contribute at or below this
level. Stark and Zeeman effects can easily dominate over these
perturbations in relevant experiments, as can the hyperfine
structure.

At the current level of potential convergence, which surely
depends upon the quantum system of interest, it is most
commonly the extension in a stable manner to a converged
and complete wave function which remains the driving force
towards a higher accuracy. For one-electron and two-electron
systems, explicit and high-level computations of QED enable
significantly higher accuracies than these current levels but
remain an additional challenge.

The Breit interaction is the largest contributor to the atomic
Hamiltonian that is sometimes not included self-consistently.
Several other implementations of the MCDHF method have
implemented the Breit interaction self-consistently. We have
tested our implementation of the Breit interaction and found
that it produces energy results that are in excellent agreement
with self-consistent implementations. In the limit that the
number of CSFs tends to infinity our results will be virtually
identical to the results obtained through a self-consistent Breit
implementation, although the specific basis states and mixing
coefficients will differ.
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and M. Deutsch, Phys. Rev. A 79, 062511 (2009).
[38] A. M. Costa, M. C. Martins, J. P. Santos, P. Indelicato, and

F. Parente, J. Phys. B: Atom. Mol. Opt. Phys. 40, 57 (2007).
[39] A. Derevianko, I. M. Savukov, W. R. Johnson, and D. R. Plante,

Phys. Rev. A 58, 4453 (1998).
[40] H. M. Quiney, personal communication (2012).
[41] C. T. Chantler, J. A. Lowe, and I. P. Grant, J. Phys. B: Atom.

Mol. Opt. Phys. 46, 015002 (2013).
[42] C. T. Chantler, T. V. B. Nguyen, J. A. Lowe, and I. P. Grant,

Astrophys. J. 769, 84 (2013).
[43] T. V. B. Nguyen, C. T. Chantler, J. A. Lowe, and I. P. Grant,

Month. Notices Roy. Astron. Soc. 440, 3439 (2014).
[44] J. A. Lowe, C. T. Chantler, and I. P. Grant, Radiat. Phys. Chem.

85, 118 (2013).
[45] P. Mueller, L.-B. Wang, G. W. F. Drake, K. Bailey, Z.-T. Lu, and

T. P. O’Connor, Phys. Rev. Lett. 94, 133001 (2005).

062504-8

http://dx.doi.org/10.1103/PhysRevLett.107.203001
http://dx.doi.org/10.1103/PhysRevLett.107.203001
http://dx.doi.org/10.1103/PhysRevLett.107.203001
http://dx.doi.org/10.1103/PhysRevLett.107.203001
http://dx.doi.org/10.1016/j.physleta.2010.09.055
http://dx.doi.org/10.1016/j.physleta.2010.09.055
http://dx.doi.org/10.1016/j.physleta.2010.09.055
http://dx.doi.org/10.1016/j.physleta.2010.09.055
http://dx.doi.org/10.1103/PhysRevA.82.052505
http://dx.doi.org/10.1103/PhysRevA.82.052505
http://dx.doi.org/10.1103/PhysRevA.82.052505
http://dx.doi.org/10.1103/PhysRevA.82.052505
http://dx.doi.org/10.1088/0953-4075/35/2/315
http://dx.doi.org/10.1088/0953-4075/35/2/315
http://dx.doi.org/10.1088/0953-4075/35/2/315
http://dx.doi.org/10.1088/0953-4075/35/2/315
http://dx.doi.org/10.1103/PhysRevA.36.693
http://dx.doi.org/10.1103/PhysRevA.36.693
http://dx.doi.org/10.1103/PhysRevA.36.693
http://dx.doi.org/10.1103/PhysRevA.36.693
http://dx.doi.org/10.1103/PhysRevA.85.032513
http://dx.doi.org/10.1103/PhysRevA.85.032513
http://dx.doi.org/10.1103/PhysRevA.85.032513
http://dx.doi.org/10.1103/PhysRevA.85.032513
http://dx.doi.org/10.1103/PhysRevA.83.060501
http://dx.doi.org/10.1103/PhysRevA.83.060501
http://dx.doi.org/10.1103/PhysRevA.83.060501
http://dx.doi.org/10.1103/PhysRevA.83.060501
http://dx.doi.org/10.1103/PhysRevA.22.348
http://dx.doi.org/10.1103/PhysRevA.22.348
http://dx.doi.org/10.1103/PhysRevA.22.348
http://dx.doi.org/10.1103/PhysRevA.22.348
http://dx.doi.org/10.1103/PhysRevA.4.893
http://dx.doi.org/10.1103/PhysRevA.4.893
http://dx.doi.org/10.1103/PhysRevA.4.893
http://dx.doi.org/10.1103/PhysRevA.4.893
http://dx.doi.org/10.1088/0031-8949/36/2/015
http://dx.doi.org/10.1088/0031-8949/36/2/015
http://dx.doi.org/10.1088/0031-8949/36/2/015
http://dx.doi.org/10.1088/0031-8949/36/2/015
http://dx.doi.org/10.1088/0022-3700/20/7/010
http://dx.doi.org/10.1088/0022-3700/20/7/010
http://dx.doi.org/10.1088/0022-3700/20/7/010
http://dx.doi.org/10.1088/0022-3700/20/7/010
http://dx.doi.org/10.1103/PhysRev.34.553
http://dx.doi.org/10.1103/PhysRev.34.553
http://dx.doi.org/10.1103/PhysRev.34.553
http://dx.doi.org/10.1103/PhysRev.34.553
http://dx.doi.org/10.1103/PhysRev.39.616
http://dx.doi.org/10.1103/PhysRev.39.616
http://dx.doi.org/10.1103/PhysRev.39.616
http://dx.doi.org/10.1103/PhysRev.39.616
http://dx.doi.org/10.1098/rspa.1929.0037
http://dx.doi.org/10.1098/rspa.1929.0037
http://dx.doi.org/10.1098/rspa.1929.0037
http://dx.doi.org/10.1098/rspa.1929.0037
http://dx.doi.org/10.1002/andp.19324060506
http://dx.doi.org/10.1002/andp.19324060506
http://dx.doi.org/10.1002/andp.19324060506
http://dx.doi.org/10.1002/andp.19324060506
http://dx.doi.org/10.1088/0022-3700/17/5/001
http://dx.doi.org/10.1088/0022-3700/17/5/001
http://dx.doi.org/10.1088/0022-3700/17/5/001
http://dx.doi.org/10.1088/0022-3700/17/5/001
http://dx.doi.org/10.1088/0031-8949/21/3-4/030
http://dx.doi.org/10.1088/0031-8949/21/3-4/030
http://dx.doi.org/10.1088/0031-8949/21/3-4/030
http://dx.doi.org/10.1088/0031-8949/21/3-4/030
http://dx.doi.org/10.1103/PhysRev.154.17
http://dx.doi.org/10.1103/PhysRev.154.17
http://dx.doi.org/10.1103/PhysRev.154.17
http://dx.doi.org/10.1103/PhysRev.154.17
http://dx.doi.org/10.1088/0022-3700/20/4/006
http://dx.doi.org/10.1088/0022-3700/20/4/006
http://dx.doi.org/10.1088/0022-3700/20/4/006
http://dx.doi.org/10.1088/0022-3700/20/4/006
http://dx.doi.org/10.1098/rspa.1961.0139
http://dx.doi.org/10.1098/rspa.1961.0139
http://dx.doi.org/10.1098/rspa.1961.0139
http://dx.doi.org/10.1098/rspa.1961.0139
http://dx.doi.org/10.1080/00018737000101191
http://dx.doi.org/10.1080/00018737000101191
http://dx.doi.org/10.1080/00018737000101191
http://dx.doi.org/10.1080/00018737000101191
http://dx.doi.org/10.1088/0022-3700/8/5/010
http://dx.doi.org/10.1088/0022-3700/8/5/010
http://dx.doi.org/10.1088/0022-3700/8/5/010
http://dx.doi.org/10.1088/0022-3700/8/5/010
http://dx.doi.org/10.1088/0953-4075/22/16/004
http://dx.doi.org/10.1088/0953-4075/22/16/004
http://dx.doi.org/10.1088/0953-4075/22/16/004
http://dx.doi.org/10.1088/0953-4075/22/16/004
http://dx.doi.org/10.1103/PhysRevA.43.3270
http://dx.doi.org/10.1103/PhysRevA.43.3270
http://dx.doi.org/10.1103/PhysRevA.43.3270
http://dx.doi.org/10.1103/PhysRevA.43.3270
http://dx.doi.org/10.1088/0953-4075/25/1/007
http://dx.doi.org/10.1088/0953-4075/25/1/007
http://dx.doi.org/10.1088/0953-4075/25/1/007
http://dx.doi.org/10.1088/0953-4075/25/1/007
http://dx.doi.org/10.1002/qua.560382438
http://dx.doi.org/10.1002/qua.560382438
http://dx.doi.org/10.1002/qua.560382438
http://dx.doi.org/10.1002/qua.560382438
http://dx.doi.org/10.1140/epjd/e2007-00229-y
http://dx.doi.org/10.1140/epjd/e2007-00229-y
http://dx.doi.org/10.1140/epjd/e2007-00229-y
http://dx.doi.org/10.1140/epjd/e2007-00229-y
http://dx.doi.org/10.1103/PhysRevA.80.052708
http://dx.doi.org/10.1103/PhysRevA.80.052708
http://dx.doi.org/10.1103/PhysRevA.80.052708
http://dx.doi.org/10.1103/PhysRevA.80.052708
http://dx.doi.org/10.1103/PhysRevA.88.012711
http://dx.doi.org/10.1103/PhysRevA.88.012711
http://dx.doi.org/10.1103/PhysRevA.88.012711
http://dx.doi.org/10.1103/PhysRevA.88.012711
http://dx.doi.org/10.1103/PhysRevLett.32.447
http://dx.doi.org/10.1103/PhysRevLett.32.447
http://dx.doi.org/10.1103/PhysRevLett.32.447
http://dx.doi.org/10.1103/PhysRevLett.32.447
http://dx.doi.org/10.1103/PhysRevA.79.062511
http://dx.doi.org/10.1103/PhysRevA.79.062511
http://dx.doi.org/10.1103/PhysRevA.79.062511
http://dx.doi.org/10.1103/PhysRevA.79.062511
http://dx.doi.org/10.1088/0953-4075/40/1/006
http://dx.doi.org/10.1088/0953-4075/40/1/006
http://dx.doi.org/10.1088/0953-4075/40/1/006
http://dx.doi.org/10.1088/0953-4075/40/1/006
http://dx.doi.org/10.1103/PhysRevA.58.4453
http://dx.doi.org/10.1103/PhysRevA.58.4453
http://dx.doi.org/10.1103/PhysRevA.58.4453
http://dx.doi.org/10.1103/PhysRevA.58.4453
http://dx.doi.org/10.1088/0953-4075/46/1/015002
http://dx.doi.org/10.1088/0953-4075/46/1/015002
http://dx.doi.org/10.1088/0953-4075/46/1/015002
http://dx.doi.org/10.1088/0953-4075/46/1/015002
http://dx.doi.org/10.1088/0004-637X/769/1/84
http://dx.doi.org/10.1088/0004-637X/769/1/84
http://dx.doi.org/10.1088/0004-637X/769/1/84
http://dx.doi.org/10.1088/0004-637X/769/1/84
http://dx.doi.org/10.1093/mnras/stu511
http://dx.doi.org/10.1093/mnras/stu511
http://dx.doi.org/10.1093/mnras/stu511
http://dx.doi.org/10.1093/mnras/stu511
http://dx.doi.org/10.1016/j.radphyschem.2013.01.004
http://dx.doi.org/10.1016/j.radphyschem.2013.01.004
http://dx.doi.org/10.1016/j.radphyschem.2013.01.004
http://dx.doi.org/10.1016/j.radphyschem.2013.01.004
http://dx.doi.org/10.1103/PhysRevLett.94.133001
http://dx.doi.org/10.1103/PhysRevLett.94.133001
http://dx.doi.org/10.1103/PhysRevLett.94.133001
http://dx.doi.org/10.1103/PhysRevLett.94.133001



