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Collective effects in linear spectroscopy of dipole-coupled molecular arrays
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We present a consistent analysis of linear spectroscopy for arrays of nearest-neighbor dipole-coupled two-level
molecules that reveals distinct signatures of weak- and strong-coupling regimes separated for infinite-size arrays
by a quantum critical point. In the weak-coupling regime, the ground state of the molecular array is disordered,
but in the strong-coupling regime, it has (anti)ferroelectric ordering. We show that multiple molecular excitations
[odd (even) in the weak- (strong-) coupling regime] can be accessed directly from the ground state. We analyze
the scaling of absorption and emission with system size and find that the oscillator strengths show enhanced
superradiant behavior in both ordered and disordered phases. As the coupling increases, the single-excitation
oscillator strength rapidly exceeds the well-known Heitler-London value. In the strong-coupling regime we show
the existence of a unique spectral transition with excitation energy that can be tuned by varying the system
size and that asymptotically approaches zero for large systems. The oscillator strength for this transition scales
quadratically with system size, showing an anomalous one-photon superradiance. For systems of infinite size,
we find a novel singular spectroscopic signature of the quantum phase transition between disordered and ordered
ground states. We outline how arrays of ultracold dipolar molecules trapped in an optical lattice can be used to
access the strong-coupling regime and observe the anomalous superradiant effects associated with this regime.
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I. INTRODUCTION

Quantum correlations between light-absorbing pigments
can enhance light-matter interaction, resulting in superra-
diance, i.e., in extraordinarily fast spontaneous emission
[1,2]. In most materials where superradiance is observed, the
interaction energy between chromophores is smaller than the
single-chromophore excitation energy. However, systems with
interactions that significantly exceed those typical in organic
chromophore aggregates are common in today’s quantum
technology. Arrays with intersite interaction strengths that
are comparable to or greater than the single-site excitation
energy can be emulated using ion traps [3–6], superconducting
circuits [7], and optical traps for neutral atoms [8] or molecules
[9–12]. Systems with stronger interactions between sites
can form a correlated quantum phase, separated for infinite
systems from the weak interaction regime by a quantum
critical point. We show that this strong-coupling regime is
characterized by qualitatively new spectroscopic properties,
including an anomalous one-photon superradiance that scales
quadratically with system size. We propose arrays of ultracold
dipolar molecules trapped in an optical lattice as a candidate
system where the strong-coupling regime can be emulated.
Development of materials that possess such properties opens
new prospects for the efficient capture and sensing of light.

Consider a one-dimensional array of M two-level chro-
mophores with excitation energy ε that are coupled by dipole-
dipole interactions b between nearest neighbors. This system
is described by the Hamiltonian of Krugler, Montgomery, and
McConnell (KMM) [13],

H =
M∑

m=1

[εP †
mPm + b(P †

m + Pm)(P †
m+1 + Pm+1)]. (1)

Here P
†
m creates and Pm annihilates an excitation at site m (we

work with unit lattice spacing). Each of these operators is a
product of a pair of electron creation and annihilation operators
in the molecular basis. Since charge transfer is not allowed,
pairs of the operators P

†
m,Pn commute off site; on site we have

P
†
mPm + PmP

†
m = 1.

KMM found significant cooperative effects in the ground
state of Eq. (1). As B = 2|b|/ε is increased through unity,
a transition from a nondegenerate to a twofold degenerate
ground state is seen for systems of infinite size. KMM
conjectured that this reflects a transition from a paraelectric
ground state with no electronic polarization to one showing
electronic (anti)ferroelectric polarization, resulting from long-
range (anti)ferroelectric ordering of the transition dipole
moments. This corresponds to the transition from the para-
magnetic to the (anti)ferromagnetic phase for the equivalent
quantum Ising Hamiltonian,

Hspin = ε

M∑
m=1

(
1 + σ z

m

)
/2 + b

M∑
m=1

σx
mσ x

m+1, (2)

that is obtained by treating Pm as a spin lowering operator
for a chain of spin-1/2 entities, i.e., P †

m + Pm = σx
m. Quantum

fluctuations do not destroy the ordering in the Hamiltonian
ground state for B > 1: This was first confirmed for XY

models with Z magnetic fields in the seminal paper of McCoy
[14]. For M → ∞, the ordered regime at strong couplings is
separated from the disordered regime at weak couplings by a
quantum critical point at B = 1 [15]. From now on we will
restrict our attention to the case of b < 0 [16].

For crystals and aggregates of molecular chromophores,
the dipole-dipole coupling |b| is typically smaller than the
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excitation energy ε by an order of magnitude or more [17],
so that B � 1. Studies of excitonic energy transfer and
spectroscopy of such systems in this very weak-coupling limit
generally invoke the Heitler-London (HL) approximation to
Eq. (1). This approximation ignores the double excitation
P

†
mP

†
n and double deexcitation PmPn terms in the Hamiltonian,

despite the matrix elements for these terms in Eq. (1) being
equal to those for the hopping terms P

†
mPn and PmP

†
n . The

HL approximation adequately reproduces observed optical
spectra for B � 1 [17] but ignores collective effects in the
ground state and is thus intrinsically inconsistent. This can be
illustrated by considering the KMM Hamiltonian for M = 2.
Its matrix representation in the basis of isolated chromophore
states is block diagonal with two 2×2 blocks: one involving
the single-excitation states with eigenvalues ε ± b, the other
involving states with zero and two excitations with eigenvalues
ε ± [ε2 + b2]1/2. On the other hand, in the HL approximation
to the Hamiltonian, the zero-excitation and two-excitation
states are uncoupled, yielding eigenvalues 0 and 2ε, which
are identical to those of two noninteracting chromophores and
are clearly incorrect.

Several authors have analyzed the differences from HL
spectra that arise when double-excitation and deexcitation
terms are included in Eq. (1) for the limit of very weak
coupling B � 1 [17–19]. Such non-HL terms have also been
shown to play a role in the spectroscopy of small clusters
of polar molecules, which are described by considerably
more complex Hamiltonians than Eq. (1) [20,21]. Prior
studies of spectra deriving from Eq. (1) did not address
the interesting strong-coupling regime of (anti)ferroelectric
ground-state polarization. Furthermore, they focused either on
numerical calculations for finite systems with fixed boundary
conditions [17,18] or on perturbative analysis for periodic
boundary conditions [19]. Consequently, these studies have not
revealed the signature of a quantum phase transition, for which
exact analysis of the spectroscopic response of an infinite chain
is required.

Modern quantum technology offers possibilities for analog
simulation of the transverse Ising Hamiltonian Eq. (1) for a
wide range of B values [3,7–9]. This motivates interest in the
spectroscopic properties of both the paraelectric (B < 1) and
the (anti)ferroelectric (B > 1) phases that can be realized in
such systems.

Although KMM predicted the energetics and the structure
of eigenstates for systems described by Eq. (1) [13], they
did not determine the optical spectra that result from this
Hamiltonian. The present study addresses this key issue by
taking advantage of new relevant techniques in order to develop
an exact solution for the linear absorption spectrum at arbitrary
B values for both infinite- and finite-size systems. Since the
eigenstates predicted by the HL approximation are incorrect
for all but extremely small couplings, the spectroscopic
analysis of Eq. (1) reveals spectroscopic behavior that cannot
be described within the HL approximation, both for strong-
coupling (B > 1) and weak-coupling (B < 1) regimes. For
0 < B < 1, we find that optical transitions between the ground
state and the states with any odd number of excitations may be
observed, whereas for B > 1 optical transitions between the
ground state and the states with even excitation numbers are

permitted. We analyze the scaling of absorption and emission
with system size and find that the oscillator strengths show
enhanced superradiant behavior in both ordered and disordered
phases. Of particular note is the finding of a quadratic scaling
of absorption with system size in the strong-coupling regime,
corresponding to enhanced emission that exceeds the well-
known linear scaling of one-photon superradiance seen for
both noninteracting systems [22,23] and molecular aggregates
in the Heitler-London limit [24,25]. This change from linear
to quadratic scaling of one-photon absorption and emission
constitutes a one-photon analog of the anomalous size scaling
of superradiance, termed hyperradiance, that is seen in phase-
locked soliton oscillators [26]. Our analysis of infinite systems
M → ∞, reveals a novel singular spectroscopic signature of
the quantum phase transition between disordered and ordered
ground states. Finally, for B > 1, we show the existence of a
transition with excitation energy that can be tuned by varying
the system size M and that asymptotically approaches zero as
M → ∞.

In Secs. II–IV we present the general spectroscopic analysis
of Eq. (1). In Sec. V, we outline an implementation of the
Hamiltonian given by Eq. (1) that uses arrays of ultracold
dipolar molecules trapped in an optical lattice. This imple-
mentation permits access to the strong-coupling regime B > 1
and the observation of hyperradiant effects associated with this
regime. Section VI provides a summary and conclusions.

II. REVIEW OF THE EIGENSTATE CALCULATION

Since the eigenstates of Eq. (1) are critical for our
spectroscopic analysis, we first summarize the key features
of the analytic diagonalization of this Hamiltonian that was
carried out by KMM [13]. The first step is a Jordan-Wigner
transformation of {Pm},

f1 = P1, fm = Qm−1Pm, Qm =
m∏

j=1

(1 − 2P
†
j Pj ) (3)

for 2 � m � M .
The operators {fm,f

†
m} have lattice-fermionic anticom-

mutation relations, so Eq. (1) becomes a quadratic form
in fermions, except for the boundary term, which gives
the expected form in fermions, but multiplied by −QM .
Since [H,QM ] = 0, the Hamiltonian can be decomposed
into two quadratic forms H+ and H− by projection onto
orthogonal subspaces: H = Q+H+ + Q−H−, where Q± =
(1 ± QM )/2. H+ and H− are then diagonalized separately,
after applying a discrete Fourier transformation,

F †(k) = M−1/2
M∑

m=1

eikmf †
m, (4)

where for H±: eikM = ∓1, 0 � k < 2π . The allowed values
of the wave number k are denoted α = 2π (m − 1)/M for H−
and β = π (2m − 1)/M for H+.

The Bogoliubov-Valatin transformation,

G†(k) = cos θ (k)F †(k) − i sin θ (k)F (−k) (5)
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diagonalizes H+(H−) for k = β(α), yielding

H± = E± +
∑

k: exp(ikM) = ∓1,

0 � k < 2π

E(k)G†(k)G(k), (6)

where

tan θ (k) = (2b sin k)−1[E(k) − E0(k)], (7)

E(k) = [E0(k)2 + 4b2 sin2 k]1/2, (8)

and E0(k) = ε + 2b cos k is the HL dispersion relation.
The ground states |�±〉 of H± resemble the Bardeen-

Cooper-Schrieffer ground state and have energies [13],

E± = −1

2

∑
k: exp(ikM) = ∓1,

0 � k < 2π

[E(k) − E0(k)]. (9)

All eigenstates of Eq. (1) are then given by the eigenstates of
H+ produced by applying an even number of G†(β) operators
to |�+〉, together with the eigenstates of H− produced by
applying an odd (B < 1) or even (B > 1) number of G†(α)
operators to |�−〉 (see Appendix A). The ground state of H is
always |�+〉.

III. EXACT CALCULATION OF DIPOLE MATRIX
ELEMENTS FOR FINITE ARRAYS

Consider the interaction of the chromophore arrays studied
here with light in the electric dipole approximation. Since
the dipole excitation operator σx

m = P
†
m + Pm anticommutes

with the parity operator, (−1)
∑M

m=1 P
†
mPm , some immediate

predictions about the linear spectra can be made.
First, the ground state is coupled to all states of opposite

parity. This is in contrast with the HL approximation for which
the only allowed transitions from the ground state are to single-
excitation states [17,18].

Second, from Eq. (9) it follows that for B > 1 the energy
of the lowest excitation |�+〉 → |�−〉 is

E− − E+ = 1

2

⎡
⎣ ∑

0�β<2π

E(β) −
∑

0�α<2π

E(α)

⎤
⎦ , (10)

since E0(k) is an even function and, consequently,∑
0�α<2π

E0(α) −
∑

0�β<2π

E0(β) = 0. (11)

Equation (10) can be evaluated as

E− − E+ = 2Mε(2B)1/2

π

∫ ∞

v0

dv
e−Mv

1 − e−2Mv

× (cosh v − cosh v0)1/2, (12)

where cosh v0 = (B + B−1)/2 (see Appendix B). From
Eq. (12) it follows that as M → ∞, the lowest-excitation
energy is E− − E+ → 0. Provided the matrix element for
this transition is nonzero, photon absorption at arbitrarily
low frequencies is expected for an array of strongly coupled
chromophores.

Third, it should be noted that for one-dimensional systems,
quantum fluctuations do not necessarily destroy long-range

order, but a system dimensionality of two or greater is
needed to stabilize ordered states against thermal fluctua-
tions. Writing |�±〉 = (|+〉 ± |−〉)/√2, where PM |+〉 = |−〉
and 〈+|σx

1 |+〉 → (1 − 1/B2)1/8 as M → ∞, we see that
excitations are formed by introducing domains of reversed
polarization that result from applying pairs of local “flip”
operators. Excitations are thus generated in pairs in the
strong-coupling regime: The fact that only even numbers
are allowed here is a topological constraint imposed by the
periodic boundary conditions (see Appendix A).

We now describe the calculation of transition ma-
trix elements in the strong-coupling regime B > 1. With-
out loss of generality, we restrict our attention to
〈�−|G(α2nt) · · ·G(α1)σx

1 |�+〉 since all allowed excitations
may be generated from σx

1 by making use of the translational
symmetry of Eq. (1): T PmT † = Pm−1, 2 � m � M with
T P1T

† = PM . In the strong-coupling regime, the Hamilto-
nian ground state |�+〉 has even parity, and the ground
state of H−,|�−〉 has odd parity. Consequently, the allowed
optical transitions from |�+〉 are to |�−〉 and to states
with an even number of excitations generated from the
latter state with corresponding transition dipole moments
〈�−|G(α2n) · · · G(α1)σx

1 |�+〉. Using an extension of Wick’s
theorem [27], these matrix elements can be shown to satisfy∑

α1

(α1,β)1〈�−|G(α2n) · · · G(α1)σx
1 |�+〉

=
2n∑

j=2

(−1)j−1(−αj ,β)2	1j 〈�−|G(α2n) · · · G(α1)σx
1 |�+〉,

(13)

(α,β)l = [eiθβ,α ei(α−β) − (−1)le−iθβ,α ]/M[ei(β−α)−1], l =1,2,
where θβ,α = θ (β) − θ (α), θ (k) is defined by Eq. (7), and
	1j denotes removing the operators G(α1) and G(αj ) from
the matrix element that follows it.

Equation (13) can be solved analytically for M → ∞ using
the methods of Ref. [28] and numerically for finite systems as
follows. Setting n = 1 in Eq. (13) and dividing both sides
by 〈�−|σx

1 |�+〉 results in a set of M2 linear equations with
complex coefficients,∑

α1

(α1,β)1K(α1,α2) = −(−α2,β)2, (14)

which can be grouped into M sets (indexed by α2) with
M linear equations (indexed by β) in each set. Each set is
equivalent to a matrix equation for a column of the matrix,

K(α1,α2) = 〈�−|G(α2)G(α1)σx
1 |�+〉/〈�−|σx

1 |�+〉, (15)

with fixed index α2 that can be solved by Gaussian elimination
using a lower-upper factorization [29].

The denominator 〈�−|σx
1 |�+〉 in Eq. (15) is determined by

the completeness argument,

Nmax∑
n=0

1

(2n)!

∑
(α)2n

∣∣〈�−|G(α2n) · · · G(α1)σx
1 |�+〉∣∣2 = 1, (16)

where Nmax = M/2 for even M or Nmax = (M − 1)/2 for
odd M . The matrix elements in Eq. (16) can be recursively
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expanded using Eq. (13). We then substitute

K(α1,α2) = −iei[θ(α1)+θ(α2)]e−i(α1+α2)
X(α1,α2t), (17)

where θ (α) is defined by Eq. (7) and X (α1,α2) are real. The
unimodular prefactors cancel out, and Eq. (16) reduces to

∣∣〈�−|σx
1 |�+〉∣∣2

Nmax∑
n=0

1

(2n)!

∑
(α)2n

[Pf((α)2n)]2 = 1, (18)

where the Pfaffian satisfies the relation [Pf((α)2n)]2 =
det[X(αl,αm)], 1 � l,m � 2n [30]. Using a standard theorem
(see Chap. 6 in Ref. [30]), it now follows that

1 = ∣∣〈�−|σx
1 |�+〉∣∣2

det(I + X), (19)

where I is the identity and X is an M×M real matrix
with elements X(αl,αm). This expression can be evaluated by
finding the eigenvalues of X. Since X = −X†, the spectrum
of X is purely imaginary. Let Xuj = iλjuj : Then Xu∗

j =
−iλju

∗
j , where λj is real. When M is odd, λj = 0 is allowed.

Since the eigenvalues with λj 
= 0 come in complex-conjugate
pairs for odd M , there will be an odd number of zero
eigenvalues. Equation (19) reduces to

1 = ∣∣〈�−|σx
1 |�+〉∣∣2

Nmax∏
j=1

(1 + λ2
j ). (20)

The solution of Eqs. (14) and (19) completely defines the
matrix element 〈�−|G(α2)G(α1)σx

1 |�+〉. Higher-order matrix
elements can then be calculated recursively using the Pfaffian-
type solution [28] generated by Eq. (13). The solution is thus an
algorithm that relates 2n-particle matrix elements to ones with
2n − 2 particles. Iterating n times yields a sum of products
of n contraction functions, resulting in a generalized form
of Wick’s theorem in which the initial and final states are
expressed naturally in terms of two different representations
of the underlying Hilbert space.

The above procedure for evaluating dipole matrix elements
between the eigenstates of Eq. (1) is polynomial in the
system size M , scaling as M3. This is the same as the
complexity of diagonalization of the one-excitation subspace
in the HL approximation and is significantly better than
the numerical effort for diagonalizing the complete KMM
Hamiltonian Eq. (1) (which scales as 23M ) [29]. Here we use
this technique for obtaining exact solutions of the generalized
transition matrix elements 〈�−|G(α2n) · · · G(α1)σx

1 |�+〉 for
finite system sizes.

In the weak-coupling regime B < 1, it is necessary to
calculate matrix elements between the ground state |�+〉 and
the states with an odd number of excitations. They can be
expressed as

〈�−|G(α2n+1) · · · G(α1)σx
1 |�+〉

=
2n+1∑
j=1

(−1)(j−1)K(αj )	j 〈�−|G(α2n+1) · · · G(α1)|�+〉,

(21)

where 	j denotes removing the operator G(αj ) from the
matrix element that follows it. The one-particle function

K(αj ) = 〈�−|G(αj )σx
1 |�+〉/〈�−|�+〉 in Eq. (21) is con-

structed by setting n = 0 and is calculated from K(α1,α2) =
〈�−|G(α2)G(α1)|�+〉/〈�−|�+〉 as follows:

K(αj ) = M−1/2
∑
α0

ei[α0−θ(α0)][K(α0,αj ) + δα0,−αj
]. (22)

Matrix elements of the type 〈�−|G(α2n) · · · G(α1)|�+〉 can
be expanded using Wick’s theorem analogously to Eq. (13).
However, they can also be obtained from matrix elements in the
strong-coupling regime by a duality argument. We introduce
two unitary transformations D±�mD

†
± = �m+1 for 1 � m �

2M − 1 and D±�2MD
†
± = ∓�1 that shift the spinors �2m−1 =

f
†
m + fm and �2m = −i(f †

m − fm). The spinors �2m−1 and
�2m satisfy the anticommutation relations for a Clifford
algebra: [�n,�m]+ = 2δnm. Applying D± to H±, we obtain
H ′

± = D±H±D
†
± where the transformed Hamiltonian is of

KMM type but with b and ε interchanged. The procedure
for finding the ground-state overlap 〈�−|�+〉 is analogous to
that used for 〈�−|σx

1 |�+〉 in the strong-coupling regime.

IV. LINEAR SPECTROSCOPY

This approach now allows a consistent calculation of the
linear absorption spectra of dipole-coupled molecular arrays
for any coupling strength B. We first consider the total
oscillator strength χi for absorption from the ground state to
the lowest-excitation manifold i. In the weak-coupling regime,
the lowest-energy dipole-allowed transitions are from |�+〉 to
one-excitation states, and we have

χ1 =
∑

α

∣∣∣∣∣〈�−|G(α)
M∑

m=1

σx
m|�+〉

∣∣∣∣∣
2

. (23)

In the strong-coupling regime, the lowest-energy transition is
from |�+〉 to |�−〉, and we have

χ0 =
∣∣∣∣∣〈�−|

M∑
m=1

σx
m|�+〉

∣∣∣∣∣
2

. (24)

These expressions can be simplified using the translational
symmetry of Eq. (1). By translational invariance, Eq. (23)
reduces to

χ1 = M2
∣∣〈�−|G(0)σx

1 |�+〉∣∣2
. (25)

From Eqs. (5), (7), and (8) it follows that the energy in the
α = 0 mode is E0(0)F †(0)F (0). To satisfy Eq. (24), as B

increases through unity, the new ground state of H−, i.e., the
lowest excited state for B > 1, must incorporate an α = 0
excitation, G†(0) = F †(0). The right-hand side of Eq. (25)
then goes smoothly to

χ0 = M2
∣∣〈�−|σx

1 |�+〉∣∣2
. (26)

Thus, the oscillator strength χ0 for B > 1 scales quadratically
with M . The linear M scaling for B < 1 is a consequence
of the correct scaling of the matrix element which absorbs a
single power of M .

Equations (23) and (24) can be explicitly evaluated using
the matrix elements for finite M derived above. The results are
shown by black squares in Fig. 1. Solutions for M → ∞ may
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FIG. 1. (Color online) Total oscillator strength (a) χ1 vs B for
excitation to the one-excitation manifold in weak coupling (B < 1)
and (b) χ0 vs B for excitation to the lowest excited state in
strong coupling (B > 1) for a system of size M = 200 (black
squares) and M → ∞ [red (gray) lines]. The infinite-size values
are given by Eqs. (27) and (28) for weak- and strong-coupling
regimes, respectively. Inset: comparison of χ1 from KMM with values
from HL.

be obtained using the analytic methods of Ref. [27], which
yields

A[B] = lim
M→∞

M−1χ1 = (1 − B)−(3/4)(1 + B)1/4, (27)

and

Ã[B] = lim
M→∞

M−2χ0 = (1 − 1/B2)1/4. (28)

These solutions reveal the size scalings χ1 ∝ M, χ0 ∝ M2

and are plotted as red (gray) lines in Fig. 1. We find excellent
agreement with the finite-size values for M = 200 everywhere
except very close to B = 1 where in the infinite-size limit
M−1χ1 diverges and M−2χ0 goes to 0 (see Appendix C).

Our analysis shows that only the lowest excited state
α = 0 contributes to the oscillator strength χ1, whereas χ0

is determined by the single transition from |�+〉 to |�−〉.
The inset in Fig. 1(a) shows that in the weak-coupling regime
the absorption to and hence the emission from the lowest
excited state scales linearly with M for both finite M and
M → ∞. This is consistent with a one-photon superradiance
[22]. Superradiance with linear scaling is also seen in the
HL limit with a prefactor AHL ≡ 1 that is independent of
coupling strength B [31]. However χ1 has a prefactor that
is equal to the HL value only when B is extremely small and
that increases with B, indicating an excess superradiance. This
excess superradiance diverges for M → ∞ as the critical point
at B = 1 is approached from below.

The strong-coupling regime shows an even more interesting
superradiant behavior since here the excited state |�−〉 is
superradiant with a rate ∝M2, and M−2χ0 is asymptotic to
1 for B → ∞. This anomalous scaling does not correspond
to that of a one-photon superradiance but rather to the scaling
normally associated with the maximum superradiance possible
in an ensemble of two-level systems where all two-level
systems are excited [22]. Thus, it constitutes a more radical
enhancement of one-photon superradiance than the prefactor
enhancement seen in the weak-coupling regime. The latter
can also be engineered for noninteracting two-level systems
by making use of conditioned state preparation [23] and
has been termed “super superradiance.” Given the dipolar
interactions in the array, it is perhaps not surprising to find

enhanced prefactors for one-photon superradiance or super
superradiance. The increasing enhancement with B and its
divergence as B approaches unity reflects the change in the na-
ture of the eigenstates as the transition to the (anti)ferroelectric
ordered phase is approached. However, beyond this transition,
in the ordered phase, we find the remarkable result that
a single excitation can give rise to a superradiance that
shows the scaling characteristic of a noninteracting system
with M excitations. This constitutes a one-photon analog
of hyperradiance [26] and reflects the radical change in
the nature of the eigenstates on going from the disordered
paraelectric phase B < 1 to the (anti)ferroelectric states
for B > 1.

We already specified that in the limit M → ∞, M−1χ1

diverges as B → 1−. It is informative to analyze
this quantity as a fluctuation sum of pair cor-
relations of transition dipole moments C(m − n) =∑

α〈�+|σx
mG†(α)|�−〉〈�−|G(α)σx

n |�+〉 (B < 1) for which
the correlation propagates solely through single excitations.
Carrying out the sum over α and then using translational
symmetry, we find

lim
M→∞

M−1χ1 = C(0) + 2
∞∑

m=1

C(m), (29)

with

C(m) = (1 − B2)1/4

2π

∫ 2π

0
dk

eimk

(1 + B2 − 2B cos k)1/2
. (30)

Evaluation of the integral for large m reveals that the
correlations decay on a length scale (1 − B)−1, which diverges
at the quantum critical point B = 1. In contrast, for the
HL approximation, C(m) = δm0. Thus not only does HL
underestimate the oscillator strength and hence the extent of
superradiance for B < 1, but also it shows no divergence at
the critical point [see the inset in Fig. 1(a)]. HL is furthermore
inapplicable in the strong-coupling regime where it gives an
incorrect energy spectrum.

Another unusual aspect of linear spectroscopy with the
KMM eigenstates is the presence of finite oscillator strength
from the ground state to manifolds of states with multiple
excitations. As explained above and noted in earlier papers
focused on the extremely weak-coupling limit B � 1 [17,19],
such excitations are not allowed in the HL description and
are a signature of the double-excitation and deexcitation
terms P

†
mP

†
m+1 and PmPm+1 in Eq. (1). Our spectroscopic

analysis allows one to extract the contribution of a manifold
with any given number of excitations to the total oscillator
strength for arbitrary B. These contributions (per molecule)
are shown in Fig. 2 as a function of the system size M . In both
weak- and strong-coupling regimes, the contributions of the
higher-excitation manifolds are most significant close to the
critical point B = 1. We note however, that even at B = 0.98
and B = 1.02, the contributions of all excitation manifolds
beyond the third or fourth, respectively, are negligible. The
M → ∞ limit analysis [27] of oscillator strengths from the
ground state |�+〉 to higher-excitation number manifolds, i.e.,
χ2n+1 (weak coupling) and χ2n (strong coupling) can be shown
to possess the same linear M scaling and critical exponent
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FIG. 2. (Color online) Total contribution (per molecule) of man-
ifolds with different numbers of excitations to the total oscillator
strength from the ground state |�+〉. (a) Weak-coupling regime:
B = 0.4 [green (light gray)], 0.9 [red (dark gray)], and 0.98 (black).
Dashed (solid) lines represent the contribution of the one- (three-)
excitation manifolds. (b) Strong-coupling regime: B = 1.02 [red
(dark gray)] and 1.4 [green (light gray)]. Dotted lines represent the
contribution of the |�−〉 → |�+〉 transition, and dashed (solid) lines
represent the contribution of excitations from the ground state |�+〉
to the two- (four-) excitation manifold. Points represent the calculated
values for specific system size M .

−3/4 as χ1. This agrees well with the finite-size calculation
results for larger M values shown in Fig. 2.

Since the number of states in higher-excitation manifolds
is large [e.g., 19 900(1313 400) two- (three-) excitation states
for M = 200], we sum over individual transitions in a given
k and E interval to obtain a linear absorption density per unit
momentum transfer and energy, ρA (k,E), which displays the
key features of the multiexcitation transitions. The absorption
density is defined as ρA(k,E) = ∑ |μn(k′,E′)|2δk−1δE−1,
where μn(k′,E′) is a transition matrix element to a state in the
n-excitation manifold with total momentum k′ and total energy
E′, and the summation is over all states in that manifold with
k′ ∈ [k,k + δk), E′ ∈ [E,E + δE). The intervals δk and δE

define the momentum and energy resolution, respectively, of
Figs. 3 and 4. Figure 3 shows ρA(k,E) from the ground state
to the three-excitation manifold (B < 1) and two-excitation
manifold (B > 1) for an array of M = 200 chromophores.
It is evident from Fig. 2 that the absorption density for the

FIG. 4. (Color online) Linear absorption density ρA (k,E) from
the ground state |�+〉 of an array with M = 200 to the four-excitation
manifold G†(α1)G†(α2)G†(α3)G†(α4)|�−〉 for B = 1.02. Energy is
in units of ε; wave number is in radians per lattice constant of the
chromophore array. Calculations were performed on a 639×480 grid
over k ∈ [−10,10)×E ∈ [0,6).

four-excitation manifold is only appreciable for B → 1+.
Figure 4 shows the absorption density to this manifold for
B = 1.02. Note, however, that even at this B value the
maximum absorption density for the two-excitation manifold
is three orders of magnitude higher than for the four-excitation
manifold (see Appendix C). Absorption densities for all
excitation manifolds beyond the fourth are very small.

Just as for absorption to the single-excitation manifold,
the single-photon absorption to multiexcitation manifolds is
very different in the strong- and weak-coupling regimes. In
the weak-coupling regime [Figs. 3(a) and 3(b)] the absorption
density from the ground state |�+〉 to three-excitation states
G†(α3)G†(α2)G†(α1)|�−〉 increases with B [note the different
range of the color bar scale for panels (a) and (b)]. Whereas
the transitions with maximum oscillator strengths are always
located at k = 0 for b < 0, the maximum value of ρA (k,E) is
nevertheless located close to k = ±π as a result of the higher
density of states there. At B = 1, the parity of the eigenstates
of H− changes (see Sec. II) so that in the strong-coupling
regime transitions from |�+〉 to the two-excitation manifold
G†(α1)G†(α2)|�−〉 are now allowed [Fig. 3(c)]. In contrast

FIG. 3. (Color online) Linear absorption density ρA(k,E) from the ground state |�+〉 of an array with M = 200 to the three-excitation
manifold G†(α1)G†(α2)G†(α3)|�−〉 for (a) B = 0.40 and (b) 0.90, and to the two-excitation manifold G†(α1)G†(α2)|�−〉 for (c) B = 1.40.
Black lines in panels (a) and (b) indicate the dispersion curve of the one-excitation manifold G†(α1)|�−〉. In the strong-coupling regime the
lowest-excitation manifold collapses to a single transition |�+〉 → |�−〉, indicated in panel (c) by the black dot and red (gray) arrow. Energy
is in units of ε; wave number is in radians per lattice constant of the chromophore array. Calculations were performed on a 639×480 grid over
k ∈ [−10,10)×E ∈ [0,6).
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to the weak-coupling regime, as B increases beyond unity,
transitions to the higher-excitation manifolds are increasingly
suppressed until |�+〉 → |�−〉 becomes the only allowed
transition and saturates the oscillator strength. Because of the
asymptotic degeneracy of |�±〉 for M → ∞, the energy of this
transition decreases to zero as M increases, implying strong
absorption for arbitrarily small E− − E+.

V. REALIZATION WITH TRAPPED
DIPOLAR MOLECULES

The spectral features predicted in Sec. IV can be observed
by emulation with currently available quantum technology.
The transverse Ising Hamiltonian of Eq. (2) has already
been implemented for a broad range of B values spanning
both weak- and strong-coupling regimes in experiments using
finite-size chains of trapped ions [3–6], and simulations in
the strongly correlated phase B > 1 have also been performed
with neutral atoms in optical lattices [8]. Theoretical studies
have shown that a variety of related spin-lattice Hamiltonians
can also be simulated using the ground and first excited
rovibrational states of the ground electronic potential of polar
diatomic molecules trapped in an optical lattice [9–11], and
recently the XY lattice spin model in a three-dimensional
lattice was implemented using cold KRb molecules [32].

Here we describe a possible implementation of Eq. (1)
that utilizes 2� ground-state molecules in an optical lattice,
together with a static magnetic field, an off-resonant near-IR
continuous wave (cw) laser field, and two near-resonant cw
fields [12]. In such a system the Hamiltonian is of the form

H =
∑

i

Hi +
∑
j<i

Vdd(Rij ,θi,φi,θj ,φj ), (31)

where Rij is the intermolecular separation vector, θi and φi

are the azimuthal and polar angles of molecule i with respect
to the spin-quantization axis, and Hi is the single-molecule
Hamiltonian. The latter is of the form

Hi = BeN2
i + γsrNi · Si + gSμBB0Sz,i

− 	α|E0|2
4

C0
2 (θi) ⊗ Is, (32)

where Be is the rotational constant, N is the rotational angular
momentum, γsr is the spin-rotation constant, S and Sz are
the electron spin angular momentum and its projection along
the z axis, gS ≈ 2 is the electron spin g factor, μB is the
Bohr magneton, B0z is the applied magnetic field, 	α is the
polarizability anisotropy, E0 the applied cw field amplitude,
C0

2 (θi) = (3 cos2 θi − 1)/2 is a Racah normalized spherical
harmonic, and Is is the identity in the electron spin subspace.
Pairs of molecules will interact via the electric dipole-dipole
interaction,

Vdd = d2

r3
ij

(1 − 3 cos2 �)di
0d

j

0 , (33)

where d is the electric dipole moment in the molecule-
fixed frame, rij = |Rij | is the intermolecular distance, �

is the (fixed) angle between the spin-quantization axis and

the intermolecular separation vector, and di
q (q = −1,0,1) is

the dimensionless dipole moment operator.
Defining the states |g〉 = |N = 0,MN = 0〉|↑〉 and |g′〉 =

|N = 0,MN = 0〉|↓〉, where |N,MN 〉 is an eigenstate of the
operators N and Nz, we introduce the following states [12]:

|D〉 = cos φ|g〉 − sin φ|g′〉, (34)

and

|e〉 = √
1 − a|N = 1,MN = 0〉|↓〉

−√
a|N = 1,MN = −1〉|↑〉, (35)

where a ≈ η2/2, η = γsr/gSμBB0, and φ is the mixing angle
between the high- and the low-field seeking states |g′〉 and |g〉,
respectively, in the absence of the cw laser fields.

We utilize the states given by Eqs. (34) and (35), prepared
according to the procedure described in Ref. [12], as our two-
level system and identify the excitation energy ε of Eq. (1)
with the single-molecule energy difference εe between states
|D〉 and |e〉. In this basis, the dipole-dipole interaction Vdd is
given by

Vij = bij [|eiej 〉〈DiDj | + |eiDj 〉〈Diej | + H.c.], (36)

with

bij = 1

3

d2

r3
ij

(1 − 3 cos2 �)(1 − η2)(1 − δ2), (37)

where δ = |π/2 − φ|, subject to η � 1 and δ � 1.
Implementing the Hamiltonian of Eq. (1) using open-shell

diatomic polar molecules also allows tuning the site energy
ε to values well below the strength of the nearest-neighbor
dipole-dipole interaction bij ≡ b [12]. This makes it possible
to prepare a one-dimensional molecular array with B spanning
the entire range of values from B � 1 in the extreme weak-
coupling regime, through the critical point at B = 1, to deep
in the strongly correlated phase B � 1. We note that in a
realistic optical lattice, the array size M is always small enough
to keep the energy gap E− − E+ [see Eq. (12)] finite for
all achievable values of B � 1. Energy scales on the order
of hertz can be resolved spectroscopically [33], and typical
values of bij are tens of kilohertz, so E− − E+ needs only
to be reduced to within this order of magnitude in order
to see the effects predicted in Sec. IV. Moreover, currently
available nanoplasmonic lattices [34] on a chip have opened
the possibility to reduce the intermolecular separation distance
by an order of magnitude compared with optical lattices,
which would enhance the interaction energy bij by a factor
of 103. Under these conditions, the spectral gap E− − E+ in
the regime B � 1 is on the order of megahertz for finite arrays
and thus still readily accessible with radio frequencies.

The intrinsically slow radiative decay of the rotational state
|e〉 may be overcome, and the hyperradiant emission from
the array may be detected by mixing in a small amount of a
short-lived electronically excited rotational state |f 〉 into the
single-molecule states |e〉. This can be achieved by irradiation
with a weak cw laser to adiabatically form the single-molecule
superposition state |ψ〉 = √

1 − x|e〉 − √
x|f 〉 with mixing

coefficient 0 < x � 1. When a weakly allowed transition
|e〉 ↔ |f 〉 is then combined with a fast decay |f 〉 → |D〉,
the one-excitation decay rate of the superposition state |ψ〉
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for large M can be calculated as follows. In the weak-
coupling regime, γM = A[B]Mxγf , where A[B] � 1 is given
by Eq. (27). We find that A[B] increases with B, significantly
exceeding the constant value AHL[B] ≡ 1 that is predicted by
the HL approximation as B = 1 is approached, e.g., A[0.98] ≈
22. In the strong-coupling regime, the one-excitation decay
rate scales quadratically with the size of the system γM =
Ã[B]M2xγf , where Ã[B] � 1 is given by Eq. (28). We
find Ã[1.02] ≈ 0.44 and Ã[1.4] ≈ 0.84. If M = 200, this
corresponds to enhancements by a factor of 88 for B = 1.02
and a factor of 168 for B = 1.4 relative to the B-independent
HL emission rate in the weak-coupling regime. For alkaline-
earth monohalides, typical electronic excited-state decay rates
are γf ∼ 10–50 MHz [35]. This yields radiative lifetimes of
1/γM ∼ 0.05–0.25 ns for x = 0.1, M = 200, and B = 0.98,
and ∼0.005–0.03 ns for B = 1.4 (with the same x and M),
implying that such an emulator can emit with a size-enhanced
rate at optical frequencies.

Such experiments will be interesting for investigation of the
effects of molecular dipole interaction coupling sites beyond
nearest neighbors, which are not included in Eq. (1). The fact
that the dipolar interaction is formally short ranged in one-
dimensional systems [36] means the critical properties are very
similar to those of a nearest-neighbor dipolar-coupled model
[37]. We may therefore expect that the main B-dependent
features of the spectroscopy predicted from Eq. (1) will
be maintained in the presence of beyond nearest-neighbor
interactions. Future papers will address the detailed effects
of such longer-range interactions.

VI. SUMMARY AND CONCLUSIONS

The current paper presents a consistent study of linear
spectroscopy for both infinite and finite arrays of dipole-
coupled two-level molecules, described by the Hamiltonian
given by Eq. (1). We propose an exact method of calculating
transition matrix elements for finite numbers of molecules M

and arbitrary coupling strength B between molecules in an
array. We also perform analytical calculations of transition
matrix elements for M → ∞.

Our analysis reveals distinct spectroscopic signatures of
weak- (B < 1) and strong- (B > 1) coupling regimes, sep-
arated for infinite-size arrays by a quantum critical point.
This is a consequence of the different many-body natures of
energy eigenstates for the two regimes: For B < 1, the ground
state of the molecular array is disordered, but for B > 1 it
has (anti)ferroelectric ordering. Direct optical transitions from
the ground state to states with multiple molecular excitations
(odd excitation numbers for 0 < B < 1 and even excitation
numbers for B > 1) are permitted. We analyze the scaling of
absorption and emission with system size and find that the
oscillator strengths show enhanced superradiant behavior in
both ordered and disordered phases. As the coupling increases,
the single-excitation oscillator strength rapidly exceeds the
well-known Heitler-London value. For M → ∞, we find a
novel singular spectroscopic signature of the quantum phase
transition between disordered and ordered ground states. In
the strong-coupling regime we show the existence of a unique
spectral transition with excitation energy that can be tuned by
varying the system size and that asymptotically approaches

FIG. 5. (Color online) Total oscillator strength close to the crit-
ical point B = 1: (a) χ1 vs B for excitation to the one-excitation
manifold in weak coupling (B < 1) and (b) χ0 vs B for excitation to
the lowest excited state in strong coupling (B > 1) for a system of
size M = 200 (black squares) and M → ∞ [red (gray) lines].

zero for M → ∞. The oscillator strength for this transition
scales quadratically with system size. The change from linear
to quadratic scaling of one-photon absorption and emission as
the coupling strength is increased beyond the quantum critical
point at B = 1 constitutes a one-photon analog of the anoma-
lous size scaling of superradiance, termed hyperradiance, that
is seen in phase-locked soliton oscillators [26]. Finally, we
show how arrays of ultracold dipolar molecules trapped in an
optical lattice can be used in a quantum emulation of Eq. (1) to
access the strong-coupling regime and observe the anomalous
superradiant effects associated with this regime.

The theoretical approach presented here may be readily
extended and applied to the analysis of nonlinear spectroscopy
for dipole-coupled nonpolar chromophore arrays with arbi-
trary coupling strength [38].
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APPENDIX A: TRANSLATIONAL SYMMETRY

Since all molecules in the arrays that we study are identical
and are coupled to their neighbors in the same way, the
Hamiltonian given by Eq. (1) has translational symmetry when
periodic boundary conditions are assumed. The translation
operator T is such that T PmT † = Pm−1, 2 � m � M with
T P1T

† = PM . Using this translational symmetry and the
definition of F † (k), Eq. (4), the following result may be derived
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FIG. 6. (Color online) Linear absorption density ρA(k,E) from the ground state |�+〉 of an array with M = 200 to the three-excitation
manifold G†(α1)G†(α2)G†(α3)|�−〉 for (a) B = 0.02, (b) 0.1, (c) 0.2, (d) 0.6, (e) 0.8, and (f) 0.98. Black lines indicate the dispersion curve of
the one-excitation manifold. Energy is in units of ε; wave number is in radians per lattice constant of the chromophore array. Calculations were
performed on a 639×480 grid over k ∈ [−10,10)×E ∈ [0,6).

FIG. 7. (Color online) Linear absorption density ρA(k,E) from the ground state |�+〉 of an array with M = 200 to (a)–(c) the two-excitation
manifold G†(α1)G†(α2)|�−〉 and to (d) and (e) the four-excitation manifold G†(α1)G†(α2)G†(α3)G†(α4)|�−〉 for (a) and (d) B = 1.02, (b) and
(e) 1.2, and (c) and (f) 1.4. The black dot and red (gray) arrow indicate the |�+〉 → |�−〉 transition. Energy is in units of ε; wave number is in
radians per lattice constant of the chromophore array. Calculations were performed on a 639×480 grid over k ∈ [−10,10)×E ∈ [0,6).
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[39]: If exp(iMkj ) = (−1)n−1 for 1 � j � M , then

T F †(k1) · · ·F †(kn)|0〉

= exp

⎛
⎝i

n∑
j=1

kj

⎞
⎠ F †(k1) · · · F †(kn)|0〉. (A1)

This is the origin of the rather curious periodic and antiperiodic
wave numbers that arise in the analysis of the KMM Hamilto-
nian. Applying Eq. (A1), we see that T |�+〉 = |�+〉 and that
for the strong-coupling regime B = 2|b|/ε > 1, T |�−〉 =
|�−〉, where |�−〉 is an eigenvector both of the Hamiltonian H

and of H−. However, when B < 1, T |�−〉 
= |�−〉, and |�−〉
is an eigenvector of H− but not of H . In this case, G†(α)|�−〉
is an eigenvector of H and of T with eigenvalue exp(iα). For
the three-particle states, we have

T G†(α1)G†(α2)G†(α3)|�−〉
= exp[i(α1 + α2 + α3)]G†(α1)G†(α2)G†(α3)|�−〉. (A2)

APPENDIX B: LOWEST-EXCITATION ENERGY
IN THE STRONG-COUPLING REGIME

The energy of the lowest excitation E− − E+ can be
calculated using the Cauchy integral formula with appropriate
kernels to implement the summations in Eq. (10). This
procedure uses the properties that E(k) = E(k + 2π ) and that

E(k) is analytic for |Im k| < v0, with cosh v0 = (B + B−1)/2.
After some transformations, we arrive at

E− − E+ = M

π

∫ π+iε

−π+iε

dk
E(k) exp(iMk)

1 − exp(2iMk)
. (B1)

Here E(k) has a branch point at k = ±iv0, and the plane
may cut along (iv0,∞) and its mirror image in the real
axis (mod 2π ). Deforming the contour for the line integral
in Eq. (B1) into a “hairpin” on the upper half plane cut, where
E (k) is purely imaginary and reverses sign on crossing the
cut, leads to Eq. (12), a useful integral representation.

APPENDIX C: TOTAL OSCILLATOR STRENGTH
TO THE LOWEST-EXCITATION MANIFOLD AND
ABSORPTION DENSITIES FOR TRANSITIONS TO

HIGHER-EXCITATION MANIFOLDS

The total oscillator strength close to the critical point B = 1
is shown in Fig. 5. It shows a divergence for M → ∞ but not
for finite M values.

Absorption densities ρA(k,E) for transitions from the
KMM ground state |�+〉 to higher-excitation manifolds for
values of B = 2|b|/ε beyond those presented in Figs. 3 and 4
are shown in Figs. 6 (B < 1) and 7 (B > 1). The resolution is
the same as for Figs. 3 and 4. Note that for a given B value the
maximum absorption density in the four-excitation manifold is
always several orders of magnitude smaller than the maximum
absorption density in the two-excitation manifold.
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