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We report the implementation of the four-component spinor relativistic equation-of-motion (EOM) coupled-
cluster method within the single- and double-excitation approximation to calculate the ionization potential of
molecules. We have applied this method to calculate vertical ionization potentials of the molecules XH (X = F,
Cl, Br, I) along with Cl, and Br; in their closed-shell configuration. We have also presented intermediate results
using the second-order many-body perturbation-theory level in the EOM framework to understand the role of
electron correlation. All the calculated values are compared with the available experimental results. Our results
are found to be in good agreement with sophisticated experiments, and relative deviation of less than 1% is

achieved for all the considered systems.
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I. INTRODUCTION

It is always a hard task for the theoretical physicist to
come up with a method that can depict atomic and molecular
spectroscopic properties very precisely. The effects of electron
correlations as well as relativistic effects have to be taken into
consideration simultaneously, as they are intertwined [1]. The
Dirac—Hartree-Fock method in its four-component formalism
is the best possible way to include the effects of the relativity
within a single determinantal description. On the other hand,
coupled-cluster theory is known to be the most elegant to
effectuate the electron correlation [2,3]. It is, therefore, the
combination of these two methods that will surely be the
solution to the problem.

The first step put forward in this direction is by Kaldor and
coworkers. They implemented the relativistic counterpart of
the Fock-space multireference coupled-cluster theory (FSM-
RCC) for the cause and applied it extensively to both atomic
and molecular systems [4—8]. The original idea of FSMRCC
theory is based on the construction of an effective Hamiltonian
using the Bloch-Lindgren equation to extricate some of the
roots of the Hamiltonian matrix from the set of the entire
eigenspectrum [9—15]. The effective Hamiltonian variant of
FSMRCC theory works within a reduced dimensional space,
called model space, which is the part of the correlation
space chosen to construct the effective Hamiltonian, and
the rest of the space is known as orthogonal space. The
linear combination of suitably chosen active configurations
based on energetic criteria is used to construct the model
space. An operator, called wave operator is defined through
which the contribution of orthogonal space included, is
the tool to construct the effective Hamiltonian. Finally, the
diagonalization of the effective Hamiltonian matrix includes
the correlation contribution of the model space and results to
the set of desired eigenvalues. The problem associated with a
reduced dimensional effective Hamiltonian is the problem of
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an intruder state, which leads to the failure in convergence.
It appears that the effective Hamiltonian formalism of the
FSMRCC theory is not straightforward and is conceptually
difficult, and lot of complication is associated with it.

An alternative elegant approach to tackle the problem is
to use the equation-of-motion variant of the coupled-cluster
theory (EOMCC) [16-21]. The EOMCC is operationally a
two step process: (i) solution of the coupled-cluster equation
for the N electron determinant and (ii) construction and
diagonalization of the effective Hamiltonian matrix in the
(N — 1) electron determinantal space to get the desired set
of eigenvectors and eigenvalues. As EOMCC simultaneously
treats two Hilbert spaces (N and N — 1 electron space)
in a single problem; the effect of relaxation is also taken
into consideration, which plays a key role in the accurate
description of the electronic states. The dynamic part of the
electron correlation is taken care of by the exponential structure
of the CC operator, whereas the nondynamical part comes
through the diagonalization of the effective Hamiltonian in
the configuration space. We must admit that the EOMCC
for the single ionization problem is equivalent to the (0,1)
sector FSMRCC theory and produces identical results for
the principal peaks [22,23]. The superiority of the EOMCC
method over FSMRCC theory is that the numerical instability
due to the problem of intruder states in FSMRCC does not arise
in EOMCC, as it is an eigenvalue problem. The EOMCC is
capable of giving shake-up states, which play important roles
in explaining various photoionization spectra [24].

The EOMCC can be viewed as a multistate approach where
multiple states are obtained in a single calculation and are
treated on equal footing. It works within a single reference
description to describe the complex multiconfigurational wave
function. It is pertinent to say that EOMCC behaves properly
at the noninteracting limit but is not rigorously size exten-
sive [25,26]. The error due to the size extensivity is reduced
due to the presence of a higher-order block. Furthermore,
the eigenstates in the EOMCC method are obtained directly
in contrast to the propagator approaches, though both the
methods are of EOM structure [27,28].

©2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.90.062501

PATHAK, SASMAL, NAYAK, VAVAL, AND PAL

Recently, we stepped into the domain of fully four-
component relativistic EOMCC and employed it to calculate
single-ionization and double-ionization potentials, but that
was for the atomic systems in their closed-shell configuration
[29-31]. The molecular relativistic calculations are always
more tedious than the atomic ones. The spherical symmetry can
be exploited in the atomic case, which allows the separation of
the radial and angular part to use the reduced matrix elements.
The evaluation of radial integrals can be done using numerical
integration. This reduces computational scaling. However, the
method is less straightforward, as each of the radial integrals
has to be multiplied by the corresponding angular factor. The
use of antisymmetrized quantities (two-body matrix elements)
is common in molecular calculations, but is not suitable for
the spherical implementation in the atomic case, as different
angular factors will arise for the direct and exchange parts of
the radial integrals. The complexity associated with the atomic
calculations is more than compensated for by the need to solve
only for the radial equations. This allows the use of a very large
basis set and correlation of more electrons with numerically
evaluated radial integrals to achieve better accuracy of results.

The relativistic effective core potential (RECP) is routinely
used in molecular relativistic calculations [32]. In RECP, only
valence and some outer-core electrons are treated explicitly,
and the rest of the electrons are replaced by an effective
RECP operator. This includes the simulating interaction of
explicitly treated electrons with those which are excluded
from the RECP calculation. There are a variety of RECPs
depending on how the RECPs are optimized [33]. Among the
various RECPs, the RECP with spin-orbit (SO) interaction is
the most popular one. This is generally done on the basis
of separation of the electrons into core and valence and
between the scalar and spin-orbit relativistic effects according
to the energy. It allows exclusion of a large number of
chemically inert electrons from the self-consistent field (SCF)
calculations, which eventually reduces the computational costs
for the correlation calculation as compared to the all electron
two-component and four-component calculation. The problem
associated with this approach is the lack of control over
accuracy.

Hirata et al. was first to implement relativistic EOMCC for
the purpose of molecular calculations [34]. They combined
different electron correlation methods, basis set, and relativis-
tic treatment to make a composite method. The dynamic part
of the electron correlation is taken care of with a low rank
method including the scalar relativistic effect and employed
various basis sets to enable complete basis set extrapolation.
The nondynamical correlation is treated using the EOMCC
method with a small basis set. Finally, the SO effect is added
as the energy difference between the RECP+SO with RECP
calculated using a low rank correlated method. This approach
cancels some of the errors associated with the RECP methods.
We would rather call Hirata et al.’s treatment a good com-
promise of the different many-body effects to get reasonable
results. This approach does not address the complex interplay
between the relativistic and correlation effects, which has been
taken into account using the four-component single-particle
wave function, and the Dirac-Coulomb Hamiltonian along
with the correlation treatment are done by the EOM-CCSD
method.
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In this paper, we consider the implementation of the fully
four-component relativistic EOMCC method to calculate ion-
ization potentials of molecular systems within the single- and
double-excitation approximation (the EOM-CCSD method).
Pilot calculations of molecular ionization potential using the
EOM-CCSD method are presented. We have also presented
results by constructing the ground-state wave function at the
first-order perturbation-theory level, which corresponds to the
second-order perturbation energy as the ground-state energy.
We call this EOM-MBPT(2). These results are compared with
the EOM-CCSD results to understand the role of electron
correlation. To justify the fact that the relativistic and electron
correlation effects are nonadditive, we have chosen HF as
an example system. Both exact two-component (X2C) and
four-component EOMCC calculations are performed on it.

The paper is organized as follows. A brief description of
the EOMCC theory in the context of ionization potential is
given in Sec. II, and the computational details are presented
in Sec. III. We present and discuss results in Sec. IV, before
making our final remarks in Sec. V. Atomic units are used
unless stated otherwise.

II. THEORY

The starting point for the EOMCC calculation for
the ionization problem is the solution of the reference wave
function, which is the N electron CC closed-shell ground-state
wave function. The ground-state wave function in the CC
method is defined as

W) = e |®p), (1)

where |®() is the single slater determinant, which is the
closed-shell N electron Dirac—Hartree-Fock reference
determinant in our case. 7 is the cluster operator, which
within the CCSD approximation is represented as

T=T+1

= Zt ala; + Zt”bafaba]a, ()
i,a

a<b
l<j
i,j(a,b) are the indices for the occupied (virtual) spinors. The
cluster operators are solved by the following simultaneous
nonlinear algebraic equations:
(@¢]e T He |@g) =0, (®f|e”"He Do) =0,  (3)
where |®¢) and |<I>§’jb) are the singly and doubly excited
determinant with reference to the N electron closed-shell
Dirac—Hartree-Fock determinant. Finally, the ground-state
energy is obtained by solving the equation for the energy:

Eccsp = (®ole™ T He™ | dy), “4)
where H is the Dirac-Coulomb Hamiltonian, which is

Hpc =YY [c(@ - p)i + Bimoc® + Vial + ) —]14 5)

A i i>j Fij

o and B are the usual Dirac matrices. V;4 stands for the
potential-energy operator for the ith electron in the field of
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FIG. 1. Diagrammatic representation of R; and R, operators.

nucleus A. moc? is the free-electron rest mass energy, where
c is the speed of light.

In the EOMCC approach for the single electron ionization
problem, the wave function for the kth target state is created
by the action of a linear operator R(k) on the single reference
coupled-cluster wave function |Wy):

|Wi) = R(K)|Wo). (6)

Within the CCSD approximation, R(k) is also approximated
to

Rk)=Ri+ R,

= Zria,- + Zri"jalajai. @)

i<j
The diagrammatic representations of the R, and R, operator
are presented in Fig. 1 and are one rank higher than the CC
operators.
The energy of the kth ionized state is determined by the
equation

e THRe |®y) = e THe R|®y) = HR| Do) = ER|Dy).
®)

It is assumed that e” and R commute, as they are the strings of
the same quasiparticle creation operator. Here, H = e~ 7 He”
is the effective Hamiltonian and E, which is the energy of
the ionized state, is the sum of Eccsp and the corresponding
ionization potential. Subtraction of Eccsp from Eq. (8) takes
the form of

[H,R(k)]|Do) = AELR(K)| Do), Vk. )

That is why this approach is called EOMCC in analogy to
Heisenberg’s equation of motion for the excitation operator
R(k). A correlated determinantal space of |¢;) and |¢>fj) (1h
and 2k — 1p) with respect to |®g) is chosen to project the
above equation to get the desired ionization potential values,
AEkl

(#i[H,R(K)Igo) = AExR;, (10)

(¢f[H, RU)]Ido) = AELRS;. (11)

The above equations can be represented in the matrix form as
HR = RAE,. The antisymmetrized diagrams contributing to
the 14 and 2h — 1p blocks are presented in Figs. 2 and 3,
respectively. The evaluation of these diagrams is done by
constructing one-body, two-body, and three-body intermediate
diagrams. This requires the solution of the coupled-cluster
ground-state amplitude equations. With the converged 77 and
T, amplitudes from CC ground-state calculations, these inter-
mediate diagrams are constructed by contracting one-body and
two-body parts of the effective Hamiltonian matrix elements.
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FIG. 2. Diagrams contributing to the 1/ block.

There are three distinct types (three one-body, four two-body
and one three-body) of intermediate diagrams, which are
required for the calculation of the ionization potential using the
EOM-CCSD method. We denote these as fun, fops faps Onphns
Uniihs Oniphs Unphp> and W. Here f, 0, and W stand for one-
body, two-body, and three-body intermediates, respectively.
The algebraic expression as well as diagrammatic of the
intermediate diagrams can be found in Ref. [35]. All these
intermediate diagrams are inserted in-between the diagrams
contributing to the 14 and 2h — 1p blocks. A circled arrow
represents a detached occupied orbital.

The dimension of the H matrix is quite large (nh +
nh®np,nh + nh*np) for the relativistic calculations in a
reasonable basis. Therefore, following a full diagonalization
scheme is not at all a good idea. Here nh and np represent
the number of holes and particles, respectively. The Davidson
algorithm [36], which is an iterative diagonalization scheme,
is implemented for the diagonalization purpose of H to
get the desired set of eigenvalues AE; and the corre-
sponding eigenvectors. This avoids computation, storage, and
diagonalization of the full matrix. The EOMCC can be re-

v/ T @

‘/h,h,hh Vhphp

Sy
+ Vhph,h

FIG. 3. Diagrams contributing to the 24-1p block.
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TABLE 1. Comparison of correlation energy from MBPT(2)
[E®_] and CCSD [E€SSD)] of HF as a function of the number of

corr corr
basis functions. All energies are in atomic units.
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component calculations with X2C-EOMCC, both the large and
small components of the basis are also taken as uncontracted to
generate the same determinantal space. The matrix elements of
the intermediate diagrams are stored setting a cutoff of 10~

X2C-EOMCC 4C-EOMCC to save storage requirements, as the contribution of the matrix

No. of orbitals E®. ECCSD) EQ. ECCSD) elements beyond 12 decimal places is much less. To debug
our newly implemented relativistic EOM-CCSD code, we

200 —02921 02930 —0.2921  —02929  penchmarked our results with the Fock-space MRCC code of
220 —0.3176  —0.3167 = =0.3175 = —0.3166 DIRACI0 for the ionization problem with the same basis, same
;gg _8?2?3 _8§g; _8§g?g _8322 convergence criteria, and equal amount of direct inversion in
308 03659  —03655  —03655  —03651 the iterative subspace (DIIS), as these two methods in principle

garded as the diagonalization of the coupled-cluster similarity
transformed Hamiltonian in the configuration space. This
makes the EOMCC a hybrid method of coupled cluster and
configuration interaction.

III. COMPUTATIONAL DETAILS

The one-body and two-body matrix elements are generated
with the help of the DIRAC10 program package [37]. The finite
atomic orbital basis consists of scalar real Gaussian functions.
The large components of the basis set are contracted, and
the small components are uncontracted except for the Br,
molecule, where both the large and small components are
uncontracted in nature. The small component of the basis set
is generated by imposing a restricted kinetic balance (RKB)
condition with the large components. This RKB is done by the
preprojection in the scalar basis, and the unphysical solutions
are removed by diagonalizing the free particle Hamiltonian.
The DIRAC10 uses Gaussian charge distribution for the nuclear
potential. The nuclear parameters used in our calculations are
all default values. We adopted the cc-pVQZ basis set [38] for
the H atom in all the calculations. In the calculation of HF
and HCI molecules, the basis set chosen both for the F and Cl
atom is aug-cc-pCVQZ [39,40]. The dyall.acv4z [41] basis is
chosen for Br and I for the calculations of HBr and HI. The
basis sets chosen for Cl and Br atoms are aug-cc-pCVQZ [40]
and dyall.cv3z [41], respectively, in the calculation of Cl, and
Br,. We have taken into account C,, symmetry to generate
the single-particle orbitals and two-body matrix elements in
all the calculations, and none of the electrons are frozen
for the correlation calculations. In the implemented version
of X2C SCF in DIRACI10, the large component of the basis
is uncontracted in nature. Therefore, to compare the four-

are supposed to produce identical results. We have achieved
identical results for the MBPT(2) correlation energy, ten-digit
agreement for the CCSD correlation energy, and eight-digit
agreement for ionization potential values. This agreement is
achieved independently of the choice of molecules as well
as of the basis sets. The discrepancy beyond this limit could
be due to the different convergence algorithm and the use
of a cutoff in the construction of the intermediate diagrams.
The experimental bond lengths used in our calculations are
taken from [42]. In our calculations we have used 107¢ as
a convergence cutoff for the Davidson algorithm and 10~!°
for the ground-state coupled-cluster equations. The numerical
labeling of the ionized states is done from the inner to the
outer.

IV. RESULTS AND DISCUSSION

We present numerical results of our calculations using the
four-component EOM-CCSD method developed by us for the
calculation of ionization potentials of molecular systems by
removing an electron from their closed-shell configuration.
We also present results using an intermediate scheme, EOM-
MBPT(2), which uses a first-order perturbed wave function
for the construction of a ground-state wave function. We
applied both these methods to HF, HCI, HBr, HI, Cl,, and
Br, molecules. Comparison has been done between the X2C-
EOMCC and four-component EOMCC to justify the fact that
the relativistic and correlation effects are nonadditive in nature,
taking as an example of the HF molecule.

In Table I, we present the correlation energies from
MBPT(2) [E2).] and CCSD [ESSD)] methods as a function
of the number of basis functions for both the X2C-EOMCC
and four-component EOMCC of the HF molecule. The SCF
energy for the four-component calculation is —100.161280,
whereas it is —100.156272 for the X2C calculations. In
both the calculations the basis functions are used in an

TABLE II. Variation of ionization potential (in eV) as a function of the basis function of the HF molecule.

X2C-EOMCC 4C-EOMCC
No. of orbitals 511 411 311 2% 1= 511 411 311 2% 1
200 16.0432 16.0862 19.9960 39.4931 696.7720 16.0433 16.0859 19.9961 39.4968 696.8845
220 16.1150 16.1549 20.0505 39.5434 696.1626 16.1150 16.1546 20.0506 39.5472 696.2763
250 16.1366 16.1780 20.0648 39.5638 696.1292 16.1365 16.1777 20.0649 39.5675 696.2421
280 16.1400 16.1800 20.0677 39.5727 696.3374 16.1399 16.1798 20.0677 39.5763 696.4479
308 16.1398 16.1798 20.0681 39.5765 696.4326 16.1397 16.1796 20.0682 39.5800 696.5410
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uncontracted fashion. We have started our calculation with 200
active orbitals for the calculation of correlation energies using
MBPT(2) and CCSD and keep on increasing up to 308, which
is the maximum number of orbitals possible to generate for the
opted basis. In correlation calculation the determinantal space
is identical for both the X2C and four-component calculations;
therefore, in principle correlation energy must be the same but
the values obtained are not identical. The difference in the SCF
energy is on the order of 0.01 a.u. The same difference should
be reflected in the correlation energy calculations if these two
effects are additive. The outcome is clearly because of the
nonadditivity of the relativity and electron correlation. The
difference between the two schemes is less for the calculation
using 200 active orbitals and increases with increase in the
correlation space. The deviation between the X2C-EOMCC
and four-component EOMCC calculations is expected to be
more for the molecules containing heavier atoms, as the effect
of relativity is the dominant factor for the heavy atoms.

In Table II, the results of variation of the ionization
potential as a function of the basis function for both the X2C-
EOMCC and four-component EOMCC of the HF molecule
with different numbers of active orbitals are presented. The
difference between the X2C-EOMCC and four-component
EOMCC is negligible for the outer orbitals but more for the
inner orbitals. The deviation s in the fourth digit for the valence
orbitals, whereas the difference is in the first digit for the
inner core orbitals after the decimal. The deviation increases
toward the core orbitals as the effect of relativity increases.
It is expected that the difference will be more for the inner
orbitals, as the effect of relativity is dominant near the nucleus.
The effect will be prominent for the heavier systems, as the
effect of relativity plays a more decisive role in those systems.
The results further justify the argument of nonadditivity of
relativity and electron correlation.

In Table III, we present the equilibrium bond length
used in the calculations of considered diatomic molecules
and also the SCF energy (EOD ), correlation energy from the
second-order perturbation theory [E?) ], and CCSD method
[ECSSD)]. The reported SCF results are calculated using
DIRAC10, and correlation calculations are done with the rel-
ativistic code developed by us for the purpose of ground-state
energy calculations within the single- and double-excitation
approximation.

In Table IV, we present results of the vertical ionization
potential of diatomic molecules using EOM-CCSD and EOM-
MBPT(2) methods. The results of our calculation of ionization

TABLE 1II. Bond length (in A°), SCF energy (EY,), and
correlation energies from the MBPT(2) [E®),] and CCSD [E€SSD)]

corr
methods for different systems. Energies are in a.u.

Molecule Bond length [42] EY . E®. E(CCSD)

HF 0.9168 —100.1604 —0.3649 —0.3646
HCl 1.2750 —461.5644 —0.6228 —0.6382
HBr 1.4140 —2605.6330 —1.6500 —1.5873
HI 1.6090 —7116.3860 —2.0049 —1.9134
Cl, 1.9870 —-921.9144 —1.2180 —1.2404
Br, 2.2810 —5210.0830 —2.9822 —2.8543

PHYSICAL REVIEW A 90, 062501 (2014)

TABLE IV. Vertical IPs (in eV) of XH (X = F, Cl, Br, ), Cl,,
and Br, using EOM-CCSD methods.

Ionizing

Molecule state EOM-MBPT(2) EOM-CCSD Experiment

HF S5TI 16.1709 16.1380 16.1200[43]
411 16.2109 16.1777
3% 20.0648 20.0667 19.8900[43]
2% 39.5239 39.5802 39.6500[43]
1% 697.0884 696.6777  694.0000[43]
HCl 911 12.8248 12.8079 12.7450[44]
811 12.9090 12.8917 12.8300[44]
7 16.8321 16.8230
6% 25.8646 25.8799
HBr 1811 11.8294 11.6977 11.6450[45]
1711 12.1693 12.0343 11.9800[45]
16X 15.9093 15.8169 15.6500 [45]
HI 2711 10.6763 10.4229 10.3880 [46]
2611 11.3628 11.0998 11.047 [46]
Cl, 1711 11.6842 11.6679 11.5900 [47]
1611 11.7774 11.7604
1511 14.6353 14.4969 14.4000 [47]
1411 14.7138 14.5751
Br;, 3511 10.5681 10.4370 10.5180 [48]
3411 10.9252 10.7897 10.8670 [48]

potentials are compared with the available experimental
values. Our EOM-CCSD results for the valence orbitals
show good agreement with the experimental values, and the
difference is less than 0.1 eV. The difference is slightly more
for the inner orbitals; it is expected that the extent of accuracy
will definitely be less as compared to the valence orbitals,
as we have used the Dirac-Coulomb Hamiltonian in our
calculations. The higher-order relativistic effects, especially
the Breit interactions for the neutral molecules, make a
significant contribution to the inner orbitals. On the other hand,
the deviation for the EOM-MBPT(2) is more, as a dominant
part of the dynamic correlation is missing in the scheme. We
present the deviation of valence ionization calculations as §%
in Fig. 4. In all the calculated systems we have achieved
an accuracy of less than 1% with the standard values. The
maximum deviation is for the Br, molecule, which is 0.77%,

0.8 -
0.6 - 8%= BT C:gth ch:E;Denmem
0.5
0.4
03 -
0.2 -

0.1—. 8

HF I Cl, Br,

% of deviation

FIG. 4. (Color online) Relative deviations in % from the experi-
mental values.
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and the minimum is for HF, which is 0.11%. One possible
reason for the deviation in the Br, molecule could be that the
basis employed is not adequate for the exact description of the
ionized states.

V. CONCLUSION

We have successfully implemented the four-component rel-
ativistic equation-of-motion coupled-cluster method (EOM-
CCSD) to calculate the ionization potential of a molec-
ular system in closed-shell configuration. We presented
numerical results of our calculation using both EOM-
CCSD and EOM-MBPT(2) methods. Our results are

PHYSICAL REVIEW A 90, 062501 (2014)

found to be in excellent agreement with the experimental
values.
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