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Remote entanglement will inevitably decrease due to the interactions between quantum systems and their
environments. Therefore protecting remote entanglement against decoherence is of great importance in realizing
quantum communication and quantum comp utation. In this paper, we demonstrate that decoherence caused by
weak-measurement-induced damping can be effectively suppressed by adding local unitary operation series
on each qubit. The results show that the entanglement of the output state can approach that of the state
before amplitude damping. The most distinct advantage of this entanglement protection scheme is that any
unitary operation (except the identity operation) has this entanglement reversal effect on the amplitude-damped
states. Furthermore, in each local unitary operation series, all the operations can be different from one other,
and all the time intervals between any two adjacent operations can be different too. In addition, there is
no need for the two remote users to synchronize their operations. Unlike most of the previous schemes,
we do not assume the instantaneous local unitary operation, and each operation has a duration. All these
advantages suggest that this remote entanglement protection scheme is much simpler and feasible than the
previous ones, and we hope it can be implemented in the near future. Recently, Y. S. Kim et al. [Nat. Phys.
8, 117 (2012)] pointed out that “pre-weak measurement + amplitude damping + bit-flipping operation +
post-weak measurement” can actively combat specific decoherence. By combing our proposal with Kim et al.’s
scheme, the protection performance can be greatly improved by replacing the bit-flipping operation with an
arbitrary rotational operation around the x axis, the number of the operations as well as the interval between
any two adjacent operations all can be different, and the application range of the scheme can be greatly
broadened.
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I. INTRODUCTION

Quantum entanglement is a crucial resource in quantum
information and quantum computation, and it is also a
noteworthy feature that can distinguish the quantum realm
from the classical one [1]. However, the inevitable coupling
of the quantum system with its environment will lead to
quantum decoherence. Up to now, protecting entanglement
against decoherence has aroused wide concern, and a number
of strategies have been proposed for decoherence suppression,
such as quantum error correction [2,3], decoherence-free
subspace [4–6], dynamical decoupling [7,8], the quantum
Zeno effect [9–11], and so on. In fact, depolarization,
amplitude damping, and phase damping can cause quantum
decoherence. In this paper, we focus only on amplitude damp-
ing, which occurs in many practical quantum systems [12],
for example, an atomic qubit suffering from spontaneous
decay, a superconducting qubit subjected to zero-temperature
energy relaxation, a photon qubit in a leaky cavity, and
so on.

Weak measurement is different from the typical Von
Neumann quantum measurement, and many recent works
showed that weak measurement can protect entanglement
from decoherence. For instance, it was pointed out that weak
measurements together with quantum measurement reversal
could effectively protect a single-qubit state system from
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decoherence [13–15], and this idea could be extended to two-
qubit systems [16] or even higher-dimensional systems [17].
What’s more, these probabilistic reversal schemes were re-
cently experimentally implemented in several quantum sys-
tems [18–21]. Then Sun et al. showed that weak measurement
together with bit flip could also protect a state against
amplitude damping [22]. Similarly, Wang et al. proposed a
feed-forward scheme for protecting a quantum state against
amplitude damping [23]. Al-Amri et al. showed that by
introducing auxiliary qubits and Hadamard and controlled NOT

(CNOT) gates one could probabilistically recover an arbitrary
one-qubit or two-qubit state from damping with the help of
weak measurement [24,25].

All current entanglement reversal (protection) schemes
consider cases with perfectly accurate quantum operations.
But any real quantum operation has its own level of accuracy,
which will inevitably affect the efficiency of the entanglement
protection schemes. Is it possible to efficiently protect entan-
glement via real quantum operations, i.e., quantum operations
with some accuracy less than unity? We will give a positive
answer to this question in this paper. In addition, Kim et al.’s
scheme [20] only works for the case where the magnitude of the
system decoherence, the strength of the weak measurement,
and the strength of the reversing measurement satisfy a specific
relation. But, in a real situation, it is not possible to know the
magnitude of system decoherence, so in this paper, we want
to release this condition too and design protection schemes for
quantum states with a general decoherence rate.

This paper is organized as follows. In Sec. II we give a brief
introduction of amplitude damping and weak measurement. In

1050-2947/2014/90(6)/062345(8) 062345-1 ©2014 American Physical Society

http://dx.doi.org/10.1038/nphys2178
http://dx.doi.org/10.1038/nphys2178
http://dx.doi.org/10.1038/nphys2178
http://dx.doi.org/10.1038/nphys2178
http://dx.doi.org/10.1103/PhysRevA.90.062345


ZONG, DU, YANG, YANG, AND CAO PHYSICAL REVIEW A 90, 062345 (2014)

Sec. III, we consider the entanglement dynamics of a bipartite
quantum system under amplitude damping, where an idea
detector is introduced to monitor the environment; that is,
we only consider the case where there is no excitation in the
environment. We design a protection scheme for this special
kind of amplitude-damped state by introducing a series of
unitary operations on each qubit. In order to put forward a more
practical protection scheme, here, we suppose that each oper-
ation is different from the others in the series and that the time
intervals between any two adjacent operations are different too.
These differences are characterized by random fluctuations
around some fixed amplitude of local operations and some
time interval between two operations, and we consider two
different kinds of random fluctuation distributions: uniform
distribution and Gaussian distribution. Based on the protection
schemes in Sec. III, we modify Kim et al.’s scheme by
replacing the bit-flipping operation with an arbitrary rotational
operation around the x axis in Sec. IV. Four different modified
schemes are proposed to protect the bipartite quantum system
from the general amplitude damping (without monitoring
the environment) with higher efficiencies. Section V sum-
marizes the main results of the scheme and makes some
conclusions.

II. AMPLITUDE DAMPING AND WEAK MEASUREMENT

Amplitude damping is a typical noise model describing
system dissipation induced by the interaction between the
quantum system and its environment, which can be understood
as the transfer of excitation from the quantum system to its
environment. Take a two-level atom as an example and suppose
its environment is in the vacuum state initially; then the
amplitude damping process can be described by the following
map [12]:

|0〉S |0〉E → |0〉S |0〉E,

|1〉S |0〉E →
√

1 − p|1〉S |0〉E + √
p|0〉S |1〉E, (1)

where p ∈ [0,1] is the probability of losing the system
excitation to the environment and

√
1 − p = e−γ t , with γ

being the decay rate. The subindices S,E denote the system
and its environment, respectively.

Weak measurement is different from amplitude damping
in the sense that an ideal detector is added to monitor
the environment. The detector clicks with a probability p,
indicating an excitation in the environment. But whenever
there is an excitation in the environment, we will discard the
result [22]. Thus the weak measurement can be represented by
the following map:

|0〉S |0〉E → |0〉S |0〉E,

|1〉S |0〉E →
√

1 − p|1〉S |0〉E. (2)

III. WEAK-MEASUREMENT-INDUCED DAMPING
AND ITS REVERSAL

Assume two qubits A and B are initially prepared in
extended Bell-like (EBL) states:

ρφ = a|φ〉〈φ| + 1 − a

4
I, |φ〉 = μ|0A0B〉 + ν|1A1B〉, (3)

where a varies from 0 to 1, μ and ν are complex numbers
satisfying |μ|2 + |ν|2 = 1, and I is a 4 × 4 identity operation.
In this paper, we choose μ = ν =

√
2

2 for simplicity.
To show how the decoherence map in Eq. (2) affects the

EBL state, we consider identical weak measurements for both
sides. Take the two-level atomic system as an example; this
weak-measurement-induced damping process on each side can
be described by the following Hamiltonian [26]:

Hwk = 1
2 �ω0σz − iγ |1〉〈1|, (4)

where σz = |0〉〈0| − |1〉〈1|, ω0 is the atomic transition fre-
quency, and γ is the spontaneous emission rate of level |1〉.
In order to simplify the calculations, we can set � = 1, and
then one-qubit weak-measurement-induced evolution can be
written as a nonunitary quantum operation in the interaction
picture:

Uwk(t) =
(

1 0
0 e−γ t

)
. (5)

The unnormalized density operator of the two qubits at time t

is

ρφ(t) = [U 1
wk(t) ⊗ U 2

wk(t)]ρφ[U 1
wk(t) ⊗ U 2

wk(t)]†, (6)

where Ui
wk(t) (i = 1,2) is the weak measurement on the ith

qubit. Here we choose Wootters’ formula: concurrence [27]
as an entanglement measure to quantify the entanglement
between two qubits. By definition, the concurrence of quantum
state ρ is expressed as

C(ρ) = max(0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4), (7)

where
√

λi are the square roots of the eigenvalues in decreasing
order of the matrix ρ(σy ⊗ σy)ρ∗(σy ⊗ σy), with σy being the
Pauli matrix. As depicted in Fig. 1, in the absence of any
operation, the two remote qubits will inevitably suffer from
weak-measurement-induced damping, which will decrease the
entanglement quickly.

Now let’s introduce our protection scheme, which can
protect entanglement against decoherence by unitary operation
series. As shown in Fig. 2, there exist two degrees of
freedom in the unitary operation series: each unitary operation
itself and the time interval between two adjacent operations.

FIG. 1. (Color online) The concurrence C(ρφ(t)) of two qubits is
plotted as a function of t and a without control pulses. γ = 1000.
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FIG. 2. Pulse distribution. Ti are the pulse intervals, and Ui

represent the pulse series.

Next, we discuss the protection efficiency from these two
aspects.

A. Entanglement protection via uniform
and instantaneous pulse series

As shown in Fig. 2, to protect bipartite remote entanglement
from amplitude damping, a control operation series will be
added on each subsystem. In this section, we consider a sim-
plified protection scheme where the control operation series
are supposed to be instantaneous, identical, and uniformly
distributed on the time axis. In our protection scheme, these
local single-qubit operations can be described by the following
unitary matrix:

Uθ =
(

cos θ −i sin θ

−i sin θ cos θ

)
, (8)

where θ ranges from 0 to 2π . The reason why we choose
this specific form of unitary transformation is that this kind of
transformation on atomic states can be realized by resonant
classical field driving [28]. This point will be explicitly
discussed in Sec. III B, in which the control operations are not
instantaneous. Suppose the interval between two neighboring
pulses is T and the duration of each pulse is τ . In this section,
τ → 0. The system evolution operator during an elementary
cycle [tN−1 = (N − 1)(T + τ ), tN = N (T + τ )] is described
by the following unitary operator:

UC ≡ U (tN−1,tN ) = U 12
θ U 12

wk, (9)

where U 12
wk = U 1

wk(T ) ⊗ U 2
wk(T ), U 12

θ = U 1
θ ⊗ U 2

θ [Ui
θ (i =

1,2) is the unitary operator on the ith atom]. The evolution
operator until tN = N (T + τ ) can be expressed by U (tN ) =
(UC)N . Therefore the unnormalized density matrix at time
t = tN + t̄ (0 � t̄ < T ) is

ρφ(tN + t̄) = U 12
wk(t̄)(UC)Nρφ((UC)N )†(U 12

wk(t̄))†. (10)

For the case of a pure initial state with a = 1.0, if the pulse
interval is 10−4 s, the entanglement dynamics is modified
by a train of unitary operations, and the concurrence of
the two-qubit state is plotted in Fig. 3 as a function of
time t and the unitary operation parameter θ . From Fig. 3,
we can see that the disentanglement caused by amplitude
damping can be prevented effectively with a wide range
of unitary operations θ , and some special unitary oper-
ations can even stabilize the entanglement at the initial
value.

From Fig. 4, we can see that the smaller the pulse interval is,
the larger the range of the effective unitary operation θ is, and
there are only three invalid operations (0, π , 2π ; Fig. 5), i.e.,
identity operations. Meanwhile, we can see from Fig. 6 that the

FIG. 3. (Color online) Contour plot of concurrence as a function
of t and θ when a train of identical unitary operations is present.
a = 1.0, γ = 1000, and the pulse interval T is 10−4 s.

probability of successfully protecting entanglement decreases
with time. This can be understood as follows. Although
the pulse series and the weak measurement can protect the
entanglement, the global damping factor still exists, which
causes the damping of the success probability for entanglement
protection.

Up to now, we only considered the special pure-initial-state
case with a = 1. It is of great importance to see whether or not
our scheme still works for mixed initial states (for example,
a = 0.5). The results show that this scheme works for mixed
initial states too; the protection efficiency is similar to that of
the pure-initial-state case.

B. Entanglement protection via nonuniform and
noninstantaneous pulse series

In real situations, it is impossible to generate the same
pulse for every control cycle, so we take the accuracy of
operation into account. Consider the situation where there are
fluctuations in the pulse intensities, and thus the corresponding
unitary operations will not be identical. Within the current

FIG. 4. (Color online) Contour plots of concurrence (a = 1.0,
γ = 1000, θ ∈ [0,0.2π ]). (a) The pulse interval T is 5 × 10−4 s.
(b) The pulse interval T is 1 × 10−4 s.

062345-3



ZONG, DU, YANG, YANG, AND CAO PHYSICAL REVIEW A 90, 062345 (2014)

FIG. 5. (Color online) Contour plots of concurrence (a = 1.0,
γ = 1000, θ ∈ [0,2π ]). (a) The pulse interval T is 5 × 10−4 s.
(b) The pulse interval T is 1 × 10−4 s.

technology, we can assume a fluctuation of the order of 10%
among the operations. In addition, the time intervals cannot be
precisely equal to each other, which will induce a fluctuation
around some fixed time interval too. Here we are going to
consider two different kinds of random fluctuation distri-
butions for comparison: uniform distribution and Gaussian
distribution. First, we consider the case of uniform random
fluctuation. According to numerical simulation, we can see
clearly from Fig. 7 that our scheme still works fine even though
the operations are not perfect. Similarly, if there is a fluctuation
of the order of 10% among the time intervals, our scheme still
can protect entanglement well (Fig. 8). A comparison between
Figs. 7 and 8 shows that the pulse intensity fluctuation has a
greater impact on the protection scheme than the time interval
fluctuation. In order to clarify this point, we plot Fig. 9 with
θ = 0.25π . If the two above-mentioned fluctuations occur
simultaneously, what will happen to our protection scheme?
As shown in Fig. 10(a), the numerical simulation shows that
our protection scheme still works fine under the combination
of these two fluctuations. Up to now, our protection scheme
works fine in the presence of both a time interval and pulse
intensity fluctuations in a uniform random distribution. One
may wonder whether our scheme still works fine when the
random fluctuation is in a Gaussian distribution. A comparison

FIG. 6. (Color online) The probability of protecting entangle-
ment. a = 1.0, γ = 1000, and the pulse interval T is 10−4 s.

FIG. 7. (Color online) Contour plot of concurrence as a function
of t and θ when the unitary operations are not identical. The
uniform random fluctuation values range from −0.1θ to 0.1θ . a = 1.0
γ = 1000, and the pulse interval T is 10−4 s.

between Figs. 10(a) and 10(b) shows that the uniform random
fluctuation has a greater impact on the result than the Gaussian
random fluctuation, which can be understood as follows. The
mean value of the Gaussian distribution is zero, and thus the
fluctuation values are most likely distributed closely around
the mean value of zero rather than the uniformly distributed
fluctuation values in the uniform-random-fluctuation case. In
addition, if we reduce the standard deviation of the Gaussian
distribution, the protection effects will improve, as shown in
Fig. 11.

Until now, the unitary operations are assumed to be instanta-
neous, but this situation is not going to happen in the laboratory.
That is to say, during the pulse operation, the state is still
suffering from damping. Thus, besides the time interval and the
pulse intensity fluctuations, we need to take the pulse duration
(τ 
= 0) into account too. During the operation pulse duration
τ , the system still suffers from weak-measurement-induced
damping. Thus, by including the weak-measurement-induced
damping during a local unitary operation, the total evolution

FIG. 8. (Color online) Contour plot of concurrence as a function
of t and θ when the time intervals are not identical. The uniform
random fluctuation values range from −0.1T to 0.1T . a = 1.0,
γ = 1000, and the ideal pulse interval T is 10−4 s.
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FIG. 9. The concurrence as a function of t . a = 1.0 and γ =
1000. (a) The operation parameter θ fluctuates around 0.25π ,
the fluctuation values are uniformly distributed over a range of
−0.1 × 0.25π to 0.1 × 0.25π , and the ideal pulse interval is 10−4 s.
(b) There are fluctuations in the time interval, the fluctuation
values are uniformly distributed over a range of −0.1 × 10−4 to
−0.1 × 10−4 s, and θ = 0.25π .

of the system during the pulse duration τ can be governed by
a non-Hermitian Hamiltonian [28]:

H = 1
2 �ω0σz − iγ |1〉〈1| + ��(S+e−iωLt + S−eiωLt ), (11)

where the last term describes the driving by a classical
field, � is the coupling constant, ωL is the frequency of
the driving field, S+ = |1〉〈0|, and S− = |0〉〈1|. For the
resonant driving case ω0 = ωL, the system evolution is
governed by the following Hamiltonian in the interaction
picture:

HI = −iγ |1〉〈1| + �(S+ + S−). (12)

FIG. 10. (Color online) Contour plots of concurrence as a func-
tion of t and θ when there are fluctuations both in the time intervals
and in the pulse intensities. The time interval values fluctuate from
−0.1T to 0.1T with the central value 10−4 s, and the operation
parameters fluctuate from −0.1θ to 0.1θ . a = 1.0, γ = 1000. (a) The
random fluctuation is in the uniform distribution. (b) The random
fluctuation is in Gaussian distribution with the mean value μ = 0 and
the standard deviation σ = 0.05.

FIG. 11. (Color online) Contour plots of concurrence as a func-
tion of t and θ when there are fluctuations both in the time intervals
and in the pulse intensities. The time interval values fluctuate from
−0.1T to 0.1T with the central value 10−4 s, and the operation
parameters fluctuate from −0.1θ to 0.1θ . a = 1.0, γ = 1000. The
random fluctuations of these two parameters are all in Gaussian
distribution with the mean value μ = 0. (a) The standard deviation
σ = 0.05. (b) The standard deviation σ = 0.01.

The detailed evolution operator induced by this Hamiltonian
is too complicated, so it is not presented here. Here, to incor-
porate the effects of real fluctuations on the local operations,
the fluctuations of both pulse intensity and pulse duration must
be considered. Without loss of generality, we can assume that
the coupling constant � is fixed, and there are fluctuations
only in the pulse duration. With the coupling constant being
fixed, the local control operation varies with the driving time
of each control pulse. That is to say, different pulse durations
τ correspond to different control operations. So, in Fig. 12,

FIG. 12. (Color online) Contour plot of concurrence as a function
of t and τ , where the pulse duration τ of the local operation is
incorporated and there are fluctuations both in the time intervals
and in the pulse durations. The time interval values fluctuate from
−0.1T to 0.1T with the central value 10−4 s, and the pulse duration
τ fluctuates from −0.1τ to 0.1τ . a = 1.0, γ = 1000, � = 100000.
(a) The random fluctuation is in uniform distribution. (b) The random
fluctuation is in Gaussian distribution with the mean value μ = 0 and
the standard deviation σ = 0.05.
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the concurrence of a two-atom state is plotted as a function of
time t and the pulse duration τ , which shows that our scheme
still works fine when the control pulse duration is less than
0.3T .

IV. AMPLITUDE DAMPING AND ITS REVERSAL

In Sec. III, we considered only the protection scheme for
the states under weak-measurement-induced damping. If the
environment is not continuously monitored by a detector, how
do we protect the states from amplitude damping? Kim et al.
showed that the decoherence caused by amplitude damping
can be suppressed by implementing a weak measurement
and the reversing measurement before and after the damping
channel [20]. The physical mechanism behind this scheme is
that a prior weak measurement intentionally moves the initial
state closer to its ground state, which does not experience
amplitude-damping decoherence. Therefore the entanglement
is naturally preserved. In fact, the reversing measurement is
equivalent to the instantaneous bit-flipping operation plus a
weak measurement, so Kim et al.’s scheme can be expressed
as pre-weak measurement + amplitude damping + bit-
flipping operation + post-weak measurement, as depicted in
Fig. 13(a).

Here we show that implementing only one bit-flipping
operation before post-weak measurement is not optimal.
Instead of the bit-flipping operation, consider the rotation
operation about the x̂ axis (Uθ ), which is described by
Eq. (8). When θ = π/2, Uθ represents the bit-flipping
operation. Using this rotational operation, we give four

Weak 
Measurement

Weak 
Measurement

Amplitude 
damping

(a)

(b)

(c)

(e)

(d)

   

FIG. 13. Kim et al.’s protection scheme and our four different
modifications. (a) Kim et al.’s scheme: a bit-flipping operation is
applied at the end of amplitude damping. (b) Scheme 1: a rotational
operation is performed before amplitude damping. (c) Scheme 2: two
rotational operations are applied, one before and one after amplitude
damping. (d) Scheme 3: one rotational operation is added at a random
time point during the amplitude damping. (e) Scheme 4: two rotation
operations are added at two random time points during the amplitude
damping. γi and ti , i = 1,2,3, are decay rates and duration times for
three segments, respectively.
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FIG. 14. (Color online) Concurrence evolution in Kim et al.’s
scheme as a function of time t and θ . The black line is optimum, and
the corresponding θ = π/2. γ1 = 1000,t1 = 10−4 s, γ2 = 1000,t2 =
6 × 10−4 s, γ3 = 2077,t3 = 10−1 s, and total time is 8 × 10−4 s.
a = 1.0.

different modifications to Kim et al.’s scheme. The first
modification can be expressed as pre-weak measurement +
rotation operation + amplitude damping + post-weak mea-
surement [Fig. 13(b)], and the second one is expressed as
pre-weak measurement + rotation operation + amplitude
damping + rotation operation + post-weak measurement
[Fig. 13(c)]. Figures 13(d) and 13(e) represent our third and
fourth modifications, where one or two rotation operations are
added at random time points during the amplitude-damping
process.

Comparing Fig. 14 with Fig. 15, we find that the bit-flipping
operation is optimal in Kim et al.’s scheme, while in our first
modification [Fig. 13(b)], the optimal operation parameter is
θ = 6π/25. In Fig. 16, the black solid line represents the
concurrence evolution in Kim et al.’s scheme with the optimal
reversing measurement strength pr = p + Dp̄ [20]. We find
that our first modification [Fig. 13(b)] is obviously superior to
Kim et al.’s scheme within a certain operation parameter range.

FIG. 15. (Color online) Concurrence evolution in the first modi-
fied scheme as a function of time t and θ . The black lines are optimum,
and the corresponding θ1 = 6π/25,θ2 = 19π/25,θ3 = 31π/25,θ4 =
44π/25. γ1 = 1000,t1 = 10−4 s, γ2 = 1000,t2 = 6 × 10−4 s, γ3 =
1000,t3 = 10−1 s, and total time is 8 × 10−4 s. a = 1.0.
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FIG. 16. (Color online) Concurrence as a function of t . The black
dashed line represents the entanglement evolution under amplitude
damping without any control, and γ = 1000. The black solid line
represents the entanglement evolution in Kim et al.’s scheme with
the optimal reversing measurement strength, γ1 = 1000,t1 = 10−4 s,
γ2 = 1000,t2 = 6 × 10−4 s, γ3 = 2077,t3 = 10−1 s. The other six
curves with θ = π/7, θ = π/6, θ = 6π/25, θ = π/3, θ = 2π/5, and
θ = π/2 are the entanglement evolutions for modified scheme 1,
γ1 = 1000,t1 = 10−4 s, γ2 = 1000,t2 = 6 × 10−4 s, γ3 = 1000,

t3 = 10−1 s. a = 1.0.

When θ = 2π/5, the two concurrence evolution curves appear
to overlap. When θ = π/2, our first modification is inferior to
Kim et al.’s scheme. In Fig. 17, we show concurrence evolution
curves for the different modifications. All four modified
schemes can protect quantum entangled states, and the modi-
fied scheme in Fig. 13(c) is relatively better than the other three
modified schemes and Kim et al.’s scheme. To summarize, the
unique operation used in Kim et al.’s scheme can be replaced
with a rotational operation at a random time point during am-
plitude damping, which can reduce experimental complexity
effectively.

V. CONCLUSION

In conclusion, we studied how to reverse the entanglement
damping of the EBL state due to weak measurement and am-
plitude damping. In the weak-measurement-induced damping
case, we demonstrated that entanglement of initial pure or
mixed states can be protected through the combined action of
unitary operation series. The numerical simulations indicate
that this protocol can protect remote bipartite entanglement
with a wide range of unitary operations. The key point here
is that the fluctuations of the time interval, the operation
parameters, and the duration time of the operations are all
taken into consideration. The results show that these real
factors only slightly affect the protection efficiency of the
scheme. In the genuine amplitude-damping case, we presented
four modified schemes to enhance the protection efficiency of
Kim et al.’s scheme [20], and the bit-flipping operations in
Kim et al.’s scheme are replaced with one or two rotational
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FIG. 17. (Color online) Concurrence as a function of t . The black
dashed line represents the entanglement evolution under amplitude
damping without any control and γ = 1000. The green solid line with
circles represents the entanglement evolution in Kim et al.’s scheme
with the optimal reversing measurement strength, γ1 = 1000,t1 =
10−4 s, γ2 = 1000,t2 = 6 × 10−4 s, γ3 = 2077,t3 = 10−1 s. The red
solid line with squares represents the entanglement evolution in
modified scheme 2 and is slightly better than the blue (dark gray)
solid line (scheme 1). The pink line with stars represents modified
scheme 3, and the time point for control is t = 2 × 10−4 s. The
cyan line with pluses represents modified scheme 4, and the time
points for control are t ′

1 = 1.5 × 10−4 s, and t ′
2 = 6 × 10−4 s. In

our schemes, γ1 = 1000,t1 = 10−4 s, γ2 = 1000,t2 = 6 × 10−4 s,
γ3 = 1000,t3 = 10−4 s. a = 1.0.

operations. The results indicate that the modified schemes can
protect bipartite entanglement better than Kim et al.’s scheme,
and the specific relation between the magnitude of system
decoherence, the strength of the weak measurement, and the
strength of the reversing measurement in Kim et al.’s scheme
is not also needed. Our schemes are more tolerant of operation
and time interval fluctuations, which makes these schemes
more feasible.
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