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Controllable generation of two-mode-entangled states in two-resonator circuit QED with a single
gap-tunable superconducting qubit
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We study controllable generation of two-mode-entangled states in a circuit QED setup, which consists of two
spatially separated superconducting transmission line resonators and a single gap-tunable superconducting qubit.
Two sharp coupling sidebands are induced when the artificial atom is suitably driven by a bichromatic microwave
field. The two resonators can have squeezing-type interactions with the qubit via the coupling sidebands. If the two
resonators are not degenerate, we show that the two resonators can be cooled down into the two-mode squeezed
vacuum via dissipation of the qubit. The generation of the two-mode squeezed state is based on a dissipative
state-engineering process, which explores the energy relaxation of the qubit as a resource. Moreover, the scheme
does not need both the specific preparation of the initial state and the designed special dynamical process of
the system. If the resonators are degenerate, we show that entangled coherent states of the resonators can be
generated by use of the unitary dynamical evolution process of the system and the state-projection measurement.
Moreover, macro entangled coherent states of the resonators with huge photons can in principle be created if
the resonators and the qubit have sufficiently long lifetimes. The present scheme has two remarkable features:
(1) only a single qubit is used in the generation of the two-mode squeezed state; and (2) the ultrastrong coupling
condition and initializing the resonators in coherent states are not required. These make the present scheme more
simple and feasible in experimental implementation.
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I. INTRODUCTION

The circuit QED, in which Josephson-junction-based arti-
ficial atoms interact with a quantized electromagnetic field
inside a superconducting resonator, has already proven to
be a useful tool for the present-day realization of quantum
information protocols [1–3]. These solid-state superconduct-
ing circuits have many merits such as flexibility, tunability,
and scaling on-chip with nanofabrication techniques [4–7].
In addition, elements in superconducting circuits can be
strongly coupled to electromagnetic fields, which makes
control, storage, and readout robust [8–12]. Up to now, great
progress on this subject has been made for realizing quantum
control on a chip. Recent experiments have achieved arbitrary
control of a single superconducting resonator [13], and two
superconducting qubits have been coupled utilizing an on-chip
cavity as a quantum bus [14,15]. Moreover, experimental
realization of quantum operational gates and entangled states
between two superconducting qubits [16–23] as well as three
superconducting qubits [24–27] have also been reported.

However, for large-scale quantum computing, one needs to
couple many resonators to build versatile architectures [28].
For this goal, the basic building block is the two-resonator
circuit QED setup, in which a superconducting qubit acts as
a quantum switch to turn on and off the switchable coupling
between the two on-chip resonators [29,30]. Based on this
composite system, a lot of theoretical schemes have been pro-
posed to manipulate the spatially separated photon modes and
engineer quantum states between physically distant cavities
[31–40]. More importantly, deterministic generation of NOON
entangled states in two superconducting resonators coupled by
a phase qubit has been experimentally demonstrated [41].
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Two-mode squeezed states of spatially separated resonators
are an important resource for many quantum information pro-
cesses. In the generation of two-mode squeezed vacuum states
of spatially separated resonators by the Jaynes-Cummings-
type interaction, as usual, two Bogoliubov modes are involved.
The realization of the two-mode squeezed vacuum state means
to create a common vacuum for both the Bogoliubov modes.
To get the goal, one needs two reservoirs which respectively
cool down the two Bogoliubov modes simultaneously into the
vacuum, or one needs to employ two qubits to couple the
two Bogoliubov modes with each other and engineer the two
required reservoirs. In order to make the experimental imple-
mentation more simple and accessible with current developed
techniques, it is desirable to use only a single reservoir or
a single qubit. If only a single qubit is used to engineer the
cooling reservoirs, however, one of the nonlocal Bogoliubov
modes is decoupled from the qubit [37]. As a result, the
steady state of the resonators is not unique, depending on
both the initial state and the dynamic evolution process of
the system. Thus, for generating the two-mode squeezed state
with a single qubit, one has to design a specific state-evolution
process starting from a definite initial state, which guarantees
the Bogoliubov modes to be in the vacuum in the final state
[37]. In a recent publication [42], Woolley and Clerk propose
a reservoir engineering strategy for generating two-mode
squeezed states of two mechanical oscillators via coupling
to a driven cavity mode. In that scheme, two nondegenerate
Bogoliubov modes of the mechanical oscillators are coupled
with two sidebands of the broadband decay spectrum of
the cavity field. As a result, the two Bogoliubov modes are
equivalent to be simultaneously coupled with two reservoirs
and are cooled to the two-mode squeezed state via the decay
of the cavity field.

In this paper, we consider two spatially separated super-
conducting transmission line resonators that are coupled by
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a single two-color-driven superconducting qubit. Two sharp
sideband transitions of the qubit can be induced by the driving
fields. The two resonators have squeezing-type interaction with
the qubit via the sideband transitions. If the two resonators
are not degenerate, we show that the two resonator modes
can be cooled down into the two-mode squeezed vacuum via
dissipation of the qubit. Here, the qubit decay is utilized as a
resource to engineer the target state. It has been recognized that
the dissipative steady-state production process requires neither
the initial state preparation nor the unitary dynamics and has
significant advantages in practice [42–45]. On the other hand,
only a single qubit is used in the present scheme. Compared
with previous schemes such as that in Ref. [46], it may be more
simple and feasible in the experimental implementation. If the
resonators are degenerate, we show that entangled coherent
states of the resonators can be generated by use of the unitary
dynamical evolution process of the system and the state-
projection measurement. Compared with previous proposals,
the present scheme does not need the ultrastrong coupling con-
dition [47] and initializes the resonators in coherent states [48].
Moreover, macro entangled coherent states of the resonators
with huge photons can in principle be created if the resonators
and the qubit have sufficient long lifetimes. The present work
may have interesting applications for implementing distributed
quantum computation with a circuit QED system.

The paper is organized as follows. The model describing
two spatially separated superconducting transmission line res-
onators coupled by a single gap-tunable qubit is introduced in
Sec. II. The effective Hamiltonian is derived and the generation
of two-mode squeezed states of the resonators via dissipation
of the qubit is investigated in Sec. III. The generation of en-
tangled coherent states of the resonators is investigated by use
of the unitary dynamical evolution process of the system and
the state-projection measurement in Sec. IV. The experimental
feasibility of the present scheme is discussed in Sec. V. Finally,
a summary of the main results is given in Sec. VI.

II. MODEL

As illustrated in Fig. 1, the circuit QED architecture under
consideration consists of two on-chip microwave resonators
which are coupled to a common gap-tunable superconducting
qubit. The qubit is used as a quantum switch to turn on and off
the coupling between the resonators. The Hamiltonian of the
qubit and the resonators is (let � = 1)

H0 = δ

2
σz +

2∑
j=1

ωja
†
j aj , (1)

where the superconducting qubit is assumed to be operated at
the degeneracy point, δ is the static energy gap between the

Qubit

Resonator1 Resonator2

FIG. 1. (Color online) Two superconducting transmission line
resonators are connected by a gap-tunable superconducting qubit.

ground state |g〉 and the excited state |e〉 of the qubit, σz =
(|e〉〈e| − |g〉〈g|); a

†
j (aj ) is the creation (annihilation) operator

for photons in the j th resonator, and ωj is the corresponding
resonator eigenfrequency. The interaction between the qubit
and the two resonators takes the form

HI =
2∑

j=1

gj (σ+ + σ−)(a†
j + aj ), (2)

where gj is the coupling strength between the qubit and the
j th resonator, and σ+ = |e〉〈g|,σ− = |g〉〈e|).

Commonly, the energy gap between two states of a qubit
is fixed. In real applications, however, one needs qubits with
a tunable gap. For example, to build a network for quantum
computing and information processing, qubits need be coupled
with each other or to other subsystems of different transition
frequencies. In this way, one needs the energy gap of qubits
to be tunable to make resonant couplings between qubits and
implement different types of couplings. In the present scheme,
we need the energy gap to be tunable to create sidebands of the
coupling between the qubit and the resonators and realize the
two-mode-squeezing-type interaction. In experiments, various
types of gap-tunable superconducting qubits are available
such as flux [49], charge [50], and transmon qubits [51].
The in situ tunability of the minimum energy gap of a
superconducting flux qubit has also been experimentally
demonstrated [52]. As usual, a superconducting flux qubit is
composed of three Josephson junctions forming a loop, in
which two junctions have the same large critical currents but
the third junction has the smaller critical current. Note that
energy gap of a flux qubit at the degenerate point strongly
depends on the critical current of the third junction. For the
realization of a gap-tunable flux qubit, the third junction is
replaced by two parallel junctions forming a low-inductance dc
superconducting quantum interference device (SQUID) loop.
Then, the energy gap can be tuned by applying an external
magnetic field, penetrating the SQUID loop [52]. When a
two-color magnetic field of frequencies ωdl(l = 1,2) is applied
to the SQUID loop, we can realize the σz-driving

Hd (t) = −
2∑

l=1

ξlωdl cos(ωdlt)σz, (3)

where ξl(l = 1,2) are the ratios of the driving amplitudes to the
driving frequencies. This Hamiltonian presents the periodical
modulated energy gap of a flux qubit.

III. GENERATION OF THE TWO-MODE SQUEEZED
VACUUM STATE

In this section, we study how to engineer a two-mode
squeezed vacuum state of the resonator fields. The key idea of
our scheme is to design an appropriate interaction between the
qubit and the resonators and bring the system into the desired
state by means of the dissipation of the qubit.

If the qubit is coupled to a harmonic oscillator environment
in the Markovian approximation, the master equation for the
density matrix ρ of the system is given by

dρ

dt
= −i [H,ρ] + �D[σ−]ρ, (4)
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where H=H0 + HI + Hd (t),D[σ−]ρ=(2σ−ρσ+ − ρσ+σ− −
σ+σ−ρ) is the standard Lindblad operator and � represents
the energy relaxation rate of the qubit. Here, the decay of the
resonators is not taken into account since high-Q transmission
line resonators can be achieved in current experiments [62].

In the frame rotated by the unitary transformation U1(t) =
e−iH

′
t with H

′ = δ
2σz + ∑2

j=1 ω0a
†
j aj and ω0 = ω1 − � =

ω2 + �, the total Hamiltonian is

H = Hd (t) + �(a†
1a1 − a

†
2a2)

+
⎧⎨⎩

2∑
j=1

gje
iδtσ+(eiω0t a

†
j + e−iω0t aj ) + H.c.

⎫⎬⎭ . (5)

Then, performing another unitary transformation U2(t) =
T exp[−i

∫ t

0 Hd (t
′
)dt

′
] = ei

∑2
l=1 ξl sin(ωdl t)σz , in which T is the

time order operator, and keeping the parameters ξl to the first
order if ξl are assumed to be sufficiently small, we have

H = �(a†
1a1 − a

†
2a2) +

⎧⎨⎩
2∑

j=1

gjσ+eiδt (eiω0t a
†
j + e−iω0t aj )

×
[

1 −
2∑

l=1

ξl(e
iωdl t − e−iωdl t )

]
+ H.c.

}
. (6)

In order to obtain the desired interaction, we choose the
frequencies to satisfy ωd1 = δ− ω0 and ωd2 = δ + ω0, that is,
ωd1 = δ− ω1 + � = δ − ω2 − �,ωd2 = δ + ω1 − � = δ +
ω2 + �. In this way, the qubit can be coupled to the resonators
by the two sideband transitions, as shown in Fig. 2. If the con-
dition {ωj ,δ,ωdl} � gj ,� holds, those fast oscillating terms
in Eq. (6) can be completely discarded in the rotating wave
approximation. Then, we achieve the effective Hamiltonian

Heff = �(a†
1a1 − a

†
2a2)

+
⎧⎨⎩

2∑
j=1

σ+(	1aj + 	2a
†
j ) + H.c.

⎫⎬⎭ , (7)

where g1 = g2 = g,	1 = ξ1g, and 	2 = ξ2g have been set. In
the present scheme, a flux qubit is employed and the interaction

d2

d1

|e〉

|g 〉

d2
d1

|e〉

|g 〉
(a) (b)

FIG. 2. (Color online) Schematic of sideband transitions of the
qubit for generating the two-mode squeezed vacuum state. (a)
Sideband coupling between the resonator of frequency ω1 and the
qubit. (b) Sideband coupling between the resonator of frequency ω2

and the qubit.

between the qubit and the resonators can be realized via the
magnetic coupling. As a result, the coupling strength is easily
adjusted to satisfy the approximation condition by changing
distance of the cavity end to the qubit loop surface.

Note that by performing the unitary transformations U1(t)
and U2(t), the density operator ρ of the system is changed to
ρ = U2(t)U1(t)ρU

†
1 (t)U †

2 (t), and the relaxation term of Eq. (4)
reserves its form except with the replacement of ρ by ρ. Then,
we perform the two-mode squeezing transformation S(ζ ) =
eζa1a2−ζa

†
1a

†
2 to the master equation for the density operator ρ

with the effective Hamiltonian (7), where the squeezing degree
ζ = tanh−1(ξ2/ξ1). In the squeezing representation, we have

dρ̃

dt
= −i

[
H̃eff,ρ̃

] + �D[σ−]ρ̃, (8)

with

H̃eff = �(a†
1a1 − a

†
2a2)

+
2∑

j=1

√
	2

1 − 	2
2(σ+aj + σ−a

†
j ). (9)

It now becomes clear that if the vacuum state |0,0〉1,2 =
|0〉1|0〉2 of the resonator modes a1 and a2 is the unique steady
state of Eq. (8) in the squeezing representation, going back to
the original representation, the steady state is the two-mode
squeezed vacuum state S(ζ )|0,0〉1,2 = eζa1a2−ζa

†
1a

†
2 |0,0〉1,2. In

the following, we show that |0,0〉1,2 is indeed the unique steady
state of Eq. (8).

For this goal, we define two normal boson modes A1 =
(a1+ a2)/

√
2 and A2 = (a1− a2)/

√
2. In terms of the operators

A1 and A2, Eq. (8) can be rewritten in the form

dρ̃

dt
= −i[H̃eff,ρ̃] + �D[σ−]ρ̃, (10)

with

H̃eff = �(A1A
†
2 + A

†
1A2)

+
√

2
(
	2

1 − 	2
2

)
(σ+A1 + σ−A

†
1). (11)

Note that the second term
√

2(	2
1 − 	2

2)(σ+A1 + σ−A
†
1) in

Eq. (11) describes a Jaynes-Cummings-type interaction be-
tween the qubit and the mode A1. Hence, the mode A1

can directly be cooled down to the vacuum by the Jaynes-
Cummings interaction and the energy relaxation described by
�D[σ−]ρ̃. On the other hand, the quanta in mode A2 will be
continuously swapped into mode A1, and then absorbed by
the qubit due to the interaction between A1 and A2 described
by the first term �(A1A

†
2 + A

†
1A2) in Eq. (11). Thus, both the

modes A1 and A2 will be cooled to the vacuum at the steady
state via the dissipative process of the qubit. Reversing the
squeezing transformation S(ζ ) to the resulting vacuum state,
we obtain the unique steady state |�S〉 of the system

|�S〉 = eζa1a2−ζa
†
1a

†
2 |0,0〉1,2 ⊗ |g〉. (12)

As is seen in the above discussion, the two superconducting
resonators are steered into the two-mode squeezed state by
means of the dissipative steady-state production process of the
qubit. It is noticed that the second term of Eq. (11) shows
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the mode A2 decoupled from the qubit. If the first term of
Eq. (11) was absent, the decay of the qubit would have no
any action to the mode A2 and the steady state of the mode
A2 would be uncertain. That is why one has to design the
adiabatical process to get the desired state in steady state in the
previous investigation [37]. In the present scheme, the mode
A2 is coupled to the mode A1 by the first term of Eq. (11)
and is cooled down to its vacuum with the assistance of the
the mode A1 by the dissipation of the qubit. In the present
generation process, therefore, one need not precisely control
the evolution time and initialize states of both the resonators
and the qubit. Thus, our scheme turns a detrimental source
of noise into a resource and has significant advantages in
practice. Furthermore, the present scheme provides a tunable
two-mode squeezed vacuum resource; that is, we can adjust
the degree of squeezing on demand by changing the ratio of
the external parameters ξ2 to ξ1. The engineered two-mode
squeezed states are of crucial importance for implementing
various quantum information protocols, such as quantum key
distribution, entanglement swapping, error correction, and
full-fledged quantum computing [54]. In experiments, we
can also detect the microwave field entanglement between
the two resonators by a frequency-dependent variant of the
cross-correlation methods [55,56].

To quantify the squeezing with experimentally attainable
parameters, we numerically solve the master Eq. (4) in-
cluding the decay of the cavity modes. In the calculation,
we choose Q = Q1 = Q2, and the cavity decay rate κj =
ωj/Q. As usual, we introduce the two quadrature components
u = X1 + X2,v = P1 − P2 with Xλ = (aλ + a

†
λ)/

√
2,Pλ =

−i(aλ − a
†
λ)/

√
2 (λ = 1,2), and build the squeezing or en-

tanglement criterion. It has been shown that the variance V

= 〈(�u)2 + (�v)2〉 is always smaller than 2 for an entangled
two-mode state [57]. For the numerical calculation, the system
is initially prepared in the ground state |0,0〉1,2 ⊗ |g〉. In
Fig. 3, the steady-state variances versus the ratio ξ2/ξ1 are
plotted, where the solid, dash-dotted, dashed, and dotted lines

FIG. 3. (Color online) Variance vs the ratio ξ2/ξ1. The relevant
parameters are chosen to be δ/2π = 10, ω1/2π = 6.04, ω2/2π = 6,
g/2π = 0.1, �/2π = 0.02, �/2π = 0.02 GHz, and ξ1 = 0.2.

d2

d1

|e〉

|g〉

FIG. 4. (Color online) Schematic of sideband transitions of the
qubit for preparing entangled coherent state.

respectively represent the situations of the ideal squeezed
vacuum (V = 2e−2ζ ), and Q = 106,105,104. With the most
achievable value Q = 106 in current experiments, as shown in
Fig. 3, the variance (dash-dotted line) versus the ratio ξ2/ξ1

has almost no divergence from the ideal case (solid line). Thus,
our scheme provides a tunable two-mode squeezed vacuum
source and can be implemented by the existing experimental
technologies.

IV. GENERATION OF THE TWO-MODE-ENTANGLED
COHERENT STATE

In this section, we discuss how to generate an entangled
coherent state in the two spatially separated resonators. Unlike
in the previous section, the generation is based on the coherent
control to the unitary evolution of the system. Thus, the
superconducting qubit needs to possess a long coherence
time. In addition, we assume that the two superconducting
resonators have same eigenfrequencies ω = ω1 = ω2.

After the rotation transformation U1(t) = e−iH0t , the
Hamiltonian of the system is changed to

H = Hd (t) +
⎧⎨⎩

2∑
j=1

gje
iδtσ+(eiωta

†
j + e−iωtaj ) + H.c.

⎫⎬⎭ .

(13)
Then, performing the unitary transformation U2(t) =
T exp[−i

∫ t

0 Hd (t ′)dt ′] = ei
∑2

l=1 ξl sin(ωdl t)σz , and keeping the
parameter ξl only to the first order, we have

H =
2∑

j=1

gjσ+eiδt (eiωta
†
j + e−iωtaj )

×
[

1 −
2∑

l=1

ξl(e
iωdl t − e−iωdl t )

]
+ H.c. (14)

To get the desired qubit-resonator coupling, we choose ωd1 =
δ − ω and ωd2 = δ + ω, which correspond to the qubit sub-
jected to the red sideband and blue sideband excitations [58],
as shown in Fig. 4. If the condition {ω,δ,ωdl} � gj holds,
those fast oscillating terms in Eq. (14) can be discarded in
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the rotating-wave approximation. As a result, we achieve the
effective Hamiltonian

Heff =
2∑

j=1

	j (σ+ + σ−)(aj + a
†
j ), (15)

where we have set ξ = ξ1 = ξ2, and 	j = ξgj .
The dynamics of the system is governed by the unitary evo-

lution operator e−iHeff t . Assume that the system is initially in
the ground state |ψ(t = 0)〉 = |g〉 ⊗ |0,0〉1,2 = |g〉 ⊗ |0〉1|0〉2,
where the resonators are decoupled from the qubit before we
turn on the two-color modulation field. After the σz driving to
the qubit is turned on, the system will evolve into the state at
time t

|ψ(t)〉 = e−iHeff t |ψ(t = 0)〉. (16)

In the representation spanned by the new basis vec-
tors |±〉 = (|e〉 ± |g〉)/√2, we rewrite the initial state
|ψ(t = 0)〉 = (|+〉 − |−〉)/√2 ⊗ |0〉1|0〉2, as well as the uni-
tary time-evolution operator e−iHeff t = ⊗2

j=1D(αj )|+〉〈+| +
D(−αj )|−〉〈−|, in which D(αj ) is the unitary displacement

operator D(αj ) = eαj a
†
j −α∗

j aj with the coherent amplitude αj =
−i	j t . Correspondingly, the state at time t can be rewritten
in the form

|ψ(t)〉 =
√

2

2
(|+〉|α1〉|α2〉 − |−〉| − α1〉| − α2〉), (17)

where |αj 〉 is the coherent state |αj 〉 = D(αj )|0〉j . This state
represents an elaborate tripartite entangled state involving one
qubit and two resonator modes. At time t, we turn off the
external driving to the qubit, and then the interaction between
the qubit and the resonators is shut down. After the moment t ,
the system will have stayed in the tripartite entangled state if
no any dissipation processes are involved.

In the representation spanned by the original basis vectors
|g〉 and |e〉, Eq. (17) takes the form

|ψ(t)〉 = 1
2 [|g〉(|α1〉|α2〉 + |−α1〉| − α2〉)
+ |e〉(|α1〉|α2〉 − | − α1〉| − α2〉)]. (18)

Now let us consider a state-projection measurement to the
qubit. When the measured result shows the qubit to be in
the state |g〉 (|e〉), the resonators collapse into the entangled
coherent state |ψ+〉 (|ψ−〉), which are given by

|ψ±〉 = |α1〉|α2〉 ± |−α1〉|−α2〉√
2 ± 2 exp(−2|α1|2 − 2|α2|2)

. (19)

These entangled coherent states not only have potential
applications in the fundamental quantum theory but also
are a valuable resource in the field of quantum information
processing [59,60].

To quantify entanglement of the resulting entangled coher-
ent states, we explore the concurrence of the states [61]. The
concurrence C± of the states |ψ±〉 are given by

C± =
√

[1 − exp(−4|α1|2)][1 − exp(−4|α2|2)]

1 ± exp(−2|α1|2 − 2|α2|2)
. (20)

The concurrences C+ and C− versus the parameters |α1|
and |α2| are shown in Figs. 5(a) and 5(b), respectively. It
is observed that in the area of |α1| � 1 and |α2| � 1, the

FIG. 5. (Color online) (a) Concurrence C+ vs the parameters |α1|
and |α2| for the even entangled coherent state |ψ+〉. (b) Concurrence
C− vs the parameters |α1| and |α2| for the odd entangled coherent
state |ψ−〉.

concurrences C± reach 1. It means that in the region the states
|ψ±〉 are maximally entangled states. Here, we emphasize that
the realization of those maximally entangled coherent states
is very difficult in the previous scheme [47] with the currently
available technique. Note that the parameter |αj | is determined
by the ratio gj/ωj (j = 1,2) in Ref. [47]. To achieve the
maximally entangled coherent states, therefore, the coupling
strength gj is required to approach the eigenfrequency ωj . It
means that the scheme has to work in the ultrastrong coupling
regime. Even if the ultrastrong coupling regime gj/ωj ∼ 12%
for a flux qubit and a transmission line resonator has been
realized in experiment [62], it is still a huge challenge to reach
the regime gj/ωj ∼ 1. However, in our scheme, the condition
|αj | = |	j t | � 1 (j = 1,2) can be easily realized without the
ultrastrong coupling if the resonators and the qubit have a long
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coherent time. In Fig. 5(b), we observe that the concurrence C−
can also get 1 and the maximally entangled coherent state can
be realized even if both |α1| and ≈ |α2| are very small. It means
that the present scheme need not have both the ultrastrong
coupling condition and long coherent evolution time for
generating entangled coherent states with a small mean photon
number. Of course, one needs to have a sufficiently large
average photon number |α|2 for making the entangled coherent
states be truly macroscopic states. In this sense, it requires
that the qubit and the resonators should have sufficiently long
lifetimes. In addition, compared with the previous scheme [48],
our scheme does not need initially prepared resonators in
coherent states and needs only dynamically modulation of
the energy gap of the qubit. Therefore, our scheme is more
feasible in experimental implementation.

V. EXPERIMENTAL FEASIBILITY

The rapid development in superconducting quantum cir-
cuits holds great promise for the experimental feasibility of
our schemes. In principle, our scheme can be implemented
with all kinds of superconducting resonators interconnected
by a gap-tunable superconducting qubit, such as flux [49],
charge [50], or transmon qubits [51], which have the ability
to induce sidebands in the qubit-resonator coupling. In the
practical situations, the transmission line resonator with a
quality factor ∼106 is the most relevant value in experiment,
and higher Q factor approaching 108 has been achieved [53]. In
addition, the superconducting qubit coupled to a high-quality
microwave resonator can easily reach the strong coupling g of
hundreds of MHz [13,14]. For the generation of two-mode
squeezed vacuum state, we need a “bad” qubit with large
decay rate to implement the dissipative quantum dynamical
process. This can be engineered by coupling the qubit with an
auxiliary bath, such as an open transmission line that provides
a relaxation channel [58]. For the generation of entangled
coherent state, we need the superconducting qubit with a long
coherence time. The coherence time of current well-designed
qubits is 100 μ s and is growing steadily [53]. It is sufficient to
implement the our proposed protocol. On the other hand, the
measurement of the qubit may cause decoherence and decrease
the fidelity of the final state. However, a recently developed
multiplexed measurement system allows fast measurement
without increasing environmental damping of the qubits; that
is, the qubit can be measured to 99.8% accuracy with a high
speed of 140 ns [63]. Most importantly, the deterministic

generation of entangled photon states in two spatially separated
microwave resonators connected by a superconducting phase
qubit has been experimentally demonstrated [41]. Thus, we
believe that the present scheme is achievable based on the
existing experimental technologies.

VI. CONCLUSION

We have proposed a scheme for generating two-mode
microwave photon entangled states in two spatially separated
superconducting resonators which are coupled by a single
gap-tunable superconductor. Two sharp sideband transitions
of multiphoton resonance of the qubit can be induced by
a bichromatic microwave driving field. In this way, two
electromagnetical modes of the resonators are coupled to the
qubit via the two sideband transitions. If the two resonators
are not degenerate, we show that two modes of the resonators
can be cooled down into the two-mode squeezed vacuum
via dissipation of the qubit. The generation of the two-mode
squeezed state is based on a dissipative state-engineering
process, which explores the energy relaxation of the qubit
as a resource. Moreover, this scheme does not need both the
specific preparation of the initial state and the designed special
dynamical process of the system. Since only is a single qubit
used, the present scheme may be more simple and feasible in
experimental implementation. If the resonators are degenerate,
we show that entangled coherent states of the resonators can
generated by use of the unitary dynamical evolution process
of the system and the state-projection measurement. It is a
remarkable feature that the present scheme does not need
the ultrastrong coupling condition and initialization of the
resonators in coherent states. Moreover, macro entangled
coherent states of the resonators with huge photons can in
principle be created if the resonators and the qubit have
sufficiently long lifetimes. Note that the recent experiment
demonstrates the excellent quantum control over photon Fock
states in three resonators interconnected by two qubits [64].
This progress makes us believe it is possible to extend the
present scheme to more complicated architectures.
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Fink, M. Göpl, L. Steffen, and A. Wallraff, Phys. Rev. B 79,
180511(R) (2009).

[52] F. G. Paauw, A. Fedorov, C. J. P. M. Harmans, and J. E. Mooij,
Phys. Rev. Lett. 102, 090501 (2009).

[53] Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev. Mod. Phys.
85, 623 (2013).

[54] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513
(2005).

[55] D. Bozyigit et al., Nat. Phys. 7, 154 (2010).
[56] M. Mariantoni, E. P. Menzel, F. Deppe, M. A. Araque Caballero,

A. Baust, T. Niemczyk, E. Hoffmann, E. Solano, A. Marx, and
R. Gross, Phys. Rev. Lett. 105, 133601 (2010).

[57] L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev.
Lett. 84, 2722 (2000).

[58] D. Porras and J. J. Garcia-Ripoll, Phys. Rev. Lett. 108, 043602
(2012).

[59] W. M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Phys. 62,
867 (1990).

[60] E. Solano, G. S. Agarwal, and H. Walther, Phys. Rev. Lett. 90,
027903 (2003).

[61] X. Wang, J. Phys. A 35, 165 (2002).
[62] T. Niemczyk et al., Nat. Phys. 6, 772 (2010).
[63] E. Jeffrey, D. Sank, J. Y. Mutus, T. C. White, J. Kelly, R. Barends,

Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. Megrant, P. J.
J. O’Malley, C. Neill, P. Roushan, A. Vainsencher, J. Wenner,
A. N. Cleland, and J. M. Martinis, Phys. Rev. Lett. 112, 190504
(2014).

[64] M. Mariantoni et al., Nat. Phys. 7, 287 (2011).

062342-7

http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1038/nature06124
http://dx.doi.org/10.1038/nature06124
http://dx.doi.org/10.1038/nature06124
http://dx.doi.org/10.1038/nature06124
http://dx.doi.org/10.1038/nature06184
http://dx.doi.org/10.1038/nature06184
http://dx.doi.org/10.1038/nature06184
http://dx.doi.org/10.1038/nature06184
http://dx.doi.org/10.1038/nature08121
http://dx.doi.org/10.1038/nature08121
http://dx.doi.org/10.1038/nature08121
http://dx.doi.org/10.1038/nature08121
http://dx.doi.org/10.1038/nature08363
http://dx.doi.org/10.1038/nature08363
http://dx.doi.org/10.1038/nature08363
http://dx.doi.org/10.1038/nature08363
http://dx.doi.org/10.1038/nature02015
http://dx.doi.org/10.1038/nature02015
http://dx.doi.org/10.1038/nature02015
http://dx.doi.org/10.1038/nature02015
http://dx.doi.org/10.1126/science.1084528
http://dx.doi.org/10.1126/science.1084528
http://dx.doi.org/10.1126/science.1084528
http://dx.doi.org/10.1126/science.1084528
http://dx.doi.org/10.1126/science.1134388
http://dx.doi.org/10.1126/science.1134388
http://dx.doi.org/10.1126/science.1134388
http://dx.doi.org/10.1126/science.1134388
http://dx.doi.org/10.1103/PhysRevLett.98.057004
http://dx.doi.org/10.1103/PhysRevLett.98.057004
http://dx.doi.org/10.1103/PhysRevLett.98.057004
http://dx.doi.org/10.1103/PhysRevLett.98.057004
http://dx.doi.org/10.1038/nature12513
http://dx.doi.org/10.1038/nature12513
http://dx.doi.org/10.1038/nature12513
http://dx.doi.org/10.1038/nature12513
http://dx.doi.org/10.1126/science.1130886
http://dx.doi.org/10.1126/science.1130886
http://dx.doi.org/10.1126/science.1130886
http://dx.doi.org/10.1126/science.1130886
http://dx.doi.org/10.1038/nature09416
http://dx.doi.org/10.1038/nature09416
http://dx.doi.org/10.1038/nature09416
http://dx.doi.org/10.1038/nature09416
http://dx.doi.org/10.1038/nature09418
http://dx.doi.org/10.1038/nature09418
http://dx.doi.org/10.1038/nature09418
http://dx.doi.org/10.1038/nature09418
http://dx.doi.org/10.1038/nature10713
http://dx.doi.org/10.1038/nature10713
http://dx.doi.org/10.1038/nature10713
http://dx.doi.org/10.1038/nature10713
http://dx.doi.org/10.1103/PhysRevLett.96.246803
http://dx.doi.org/10.1103/PhysRevLett.96.246803
http://dx.doi.org/10.1103/PhysRevLett.96.246803
http://dx.doi.org/10.1103/PhysRevLett.96.246803
http://arxiv.org/abs/arXiv:1402.7036
http://dx.doi.org/10.1103/PhysRevB.78.104508
http://dx.doi.org/10.1103/PhysRevB.78.104508
http://dx.doi.org/10.1103/PhysRevB.78.104508
http://dx.doi.org/10.1103/PhysRevB.78.104508
http://dx.doi.org/10.1103/PhysRevB.81.144510
http://dx.doi.org/10.1103/PhysRevB.81.144510
http://dx.doi.org/10.1103/PhysRevB.81.144510
http://dx.doi.org/10.1103/PhysRevB.81.144510
http://dx.doi.org/10.1103/PhysRevB.76.064305
http://dx.doi.org/10.1103/PhysRevB.76.064305
http://dx.doi.org/10.1103/PhysRevB.76.064305
http://dx.doi.org/10.1103/PhysRevB.76.064305
http://dx.doi.org/10.1103/PhysRevA.79.063811
http://dx.doi.org/10.1103/PhysRevA.79.063811
http://dx.doi.org/10.1103/PhysRevA.79.063811
http://dx.doi.org/10.1103/PhysRevA.79.063811
http://dx.doi.org/10.1103/PhysRevLett.105.050501
http://dx.doi.org/10.1103/PhysRevLett.105.050501
http://dx.doi.org/10.1103/PhysRevLett.105.050501
http://dx.doi.org/10.1103/PhysRevLett.105.050501
http://dx.doi.org/10.1103/PhysRevLett.106.257002
http://dx.doi.org/10.1103/PhysRevLett.106.257002
http://dx.doi.org/10.1103/PhysRevLett.106.257002
http://dx.doi.org/10.1103/PhysRevLett.106.257002
http://dx.doi.org/10.1103/PhysRevB.85.024537
http://dx.doi.org/10.1103/PhysRevB.85.024537
http://dx.doi.org/10.1103/PhysRevB.85.024537
http://dx.doi.org/10.1103/PhysRevB.85.024537
http://dx.doi.org/10.1088/1367-2630/12/9/093036
http://dx.doi.org/10.1088/1367-2630/12/9/093036
http://dx.doi.org/10.1088/1367-2630/12/9/093036
http://dx.doi.org/10.1088/1367-2630/12/9/093036
http://dx.doi.org/10.1103/PhysRevA.85.014303
http://dx.doi.org/10.1103/PhysRevA.85.014303
http://dx.doi.org/10.1103/PhysRevA.85.014303
http://dx.doi.org/10.1103/PhysRevA.85.014303
http://dx.doi.org/10.1103/PhysRevA.90.043810
http://dx.doi.org/10.1103/PhysRevA.90.043810
http://dx.doi.org/10.1103/PhysRevA.90.043810
http://dx.doi.org/10.1103/PhysRevA.90.043810
http://dx.doi.org/10.1103/PhysRevA.73.022318
http://dx.doi.org/10.1103/PhysRevA.73.022318
http://dx.doi.org/10.1103/PhysRevA.73.022318
http://dx.doi.org/10.1103/PhysRevA.73.022318
http://dx.doi.org/10.1103/PhysRevA.85.022324
http://dx.doi.org/10.1103/PhysRevA.85.022324
http://dx.doi.org/10.1103/PhysRevA.85.022324
http://dx.doi.org/10.1103/PhysRevA.85.022324
http://dx.doi.org/10.1103/PhysRevLett.106.060401
http://dx.doi.org/10.1103/PhysRevLett.106.060401
http://dx.doi.org/10.1103/PhysRevLett.106.060401
http://dx.doi.org/10.1103/PhysRevLett.106.060401
http://dx.doi.org/10.1103/PhysRevA.89.063805
http://dx.doi.org/10.1103/PhysRevA.89.063805
http://dx.doi.org/10.1103/PhysRevA.89.063805
http://dx.doi.org/10.1103/PhysRevA.89.063805
http://dx.doi.org/10.1038/nature12801
http://dx.doi.org/10.1038/nature12801
http://dx.doi.org/10.1038/nature12801
http://dx.doi.org/10.1038/nature12801
http://dx.doi.org/10.1103/PhysRevA.88.013837
http://dx.doi.org/10.1103/PhysRevA.88.013837
http://dx.doi.org/10.1103/PhysRevA.88.013837
http://dx.doi.org/10.1103/PhysRevA.88.013837
http://dx.doi.org/10.1103/PhysRevLett.107.080503
http://dx.doi.org/10.1103/PhysRevLett.107.080503
http://dx.doi.org/10.1103/PhysRevLett.107.080503
http://dx.doi.org/10.1103/PhysRevLett.107.080503
http://dx.doi.org/10.1103/PhysRevA.86.012318
http://dx.doi.org/10.1103/PhysRevA.86.012318
http://dx.doi.org/10.1103/PhysRevA.86.012318
http://dx.doi.org/10.1103/PhysRevA.86.012318
http://dx.doi.org/10.1103/PhysRevB.80.214538
http://dx.doi.org/10.1103/PhysRevB.80.214538
http://dx.doi.org/10.1103/PhysRevB.80.214538
http://dx.doi.org/10.1103/PhysRevB.80.214538
http://dx.doi.org/10.1103/PhysRevA.87.022320
http://dx.doi.org/10.1103/PhysRevA.87.022320
http://dx.doi.org/10.1103/PhysRevA.87.022320
http://dx.doi.org/10.1103/PhysRevA.87.022320
http://dx.doi.org/10.1103/PhysRevB.76.144518
http://dx.doi.org/10.1103/PhysRevB.76.144518
http://dx.doi.org/10.1103/PhysRevB.76.144518
http://dx.doi.org/10.1103/PhysRevB.76.144518
http://dx.doi.org/10.1103/PhysRevLett.99.050501
http://dx.doi.org/10.1103/PhysRevLett.99.050501
http://dx.doi.org/10.1103/PhysRevLett.99.050501
http://dx.doi.org/10.1103/PhysRevLett.99.050501
http://dx.doi.org/10.1103/PhysRevB.79.180511
http://dx.doi.org/10.1103/PhysRevB.79.180511
http://dx.doi.org/10.1103/PhysRevB.79.180511
http://dx.doi.org/10.1103/PhysRevB.79.180511
http://dx.doi.org/10.1103/PhysRevLett.102.090501
http://dx.doi.org/10.1103/PhysRevLett.102.090501
http://dx.doi.org/10.1103/PhysRevLett.102.090501
http://dx.doi.org/10.1103/PhysRevLett.102.090501
http://dx.doi.org/10.1103/RevModPhys.85.623
http://dx.doi.org/10.1103/RevModPhys.85.623
http://dx.doi.org/10.1103/RevModPhys.85.623
http://dx.doi.org/10.1103/RevModPhys.85.623
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1038/nphys1845
http://dx.doi.org/10.1038/nphys1845
http://dx.doi.org/10.1038/nphys1845
http://dx.doi.org/10.1038/nphys1845
http://dx.doi.org/10.1103/PhysRevLett.105.133601
http://dx.doi.org/10.1103/PhysRevLett.105.133601
http://dx.doi.org/10.1103/PhysRevLett.105.133601
http://dx.doi.org/10.1103/PhysRevLett.105.133601
http://dx.doi.org/10.1103/PhysRevLett.84.2722
http://dx.doi.org/10.1103/PhysRevLett.84.2722
http://dx.doi.org/10.1103/PhysRevLett.84.2722
http://dx.doi.org/10.1103/PhysRevLett.84.2722
http://dx.doi.org/10.1103/PhysRevLett.108.043602
http://dx.doi.org/10.1103/PhysRevLett.108.043602
http://dx.doi.org/10.1103/PhysRevLett.108.043602
http://dx.doi.org/10.1103/PhysRevLett.108.043602
http://dx.doi.org/10.1103/RevModPhys.62.867
http://dx.doi.org/10.1103/RevModPhys.62.867
http://dx.doi.org/10.1103/RevModPhys.62.867
http://dx.doi.org/10.1103/RevModPhys.62.867
http://dx.doi.org/10.1103/PhysRevLett.90.027903
http://dx.doi.org/10.1103/PhysRevLett.90.027903
http://dx.doi.org/10.1103/PhysRevLett.90.027903
http://dx.doi.org/10.1103/PhysRevLett.90.027903
http://dx.doi.org/10.1088/0305-4470/35/1/313
http://dx.doi.org/10.1088/0305-4470/35/1/313
http://dx.doi.org/10.1088/0305-4470/35/1/313
http://dx.doi.org/10.1088/0305-4470/35/1/313
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1103/PhysRevLett.112.190504
http://dx.doi.org/10.1103/PhysRevLett.112.190504
http://dx.doi.org/10.1103/PhysRevLett.112.190504
http://dx.doi.org/10.1103/PhysRevLett.112.190504
http://dx.doi.org/10.1038/nphys1885
http://dx.doi.org/10.1038/nphys1885
http://dx.doi.org/10.1038/nphys1885
http://dx.doi.org/10.1038/nphys1885



