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Following previous work, we distinguish between genuine N -partite entanglement and full N -partite
inseparability. Accordingly, we derive criteria to detect genuine multipartite entanglement using continuous-
variable (position and momentum) measurements. Our criteria are similar but different to those based on the van
Loock–Furusawa inequalities, which detect full N -partite inseparability. We explain how the criteria can be used
to detect the genuine N -partite entanglement of continuous variable states generated from squeezed and vacuum
state inputs, including the continuous-variable Greenberger-Horne-Zeilinger state, with explicit predictions for
up to N = 9. This makes our work accessible to experiment. For N = 3, we also present criteria for tripartite
Einstein-Podolsky-Rosen (EPR) steering. These criteria provide a means to demonstrate a genuine three-party
EPR paradox, in which any single party is steerable by the remaining two parties.
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I. INTRODUCTION

There has been strong motivation to create and detect
quantum states that have many atoms [1], photons [2–4],
or modes [5–7] entangled. Beyond the importance to the
field of quantum information, such states provide evidence
for mesoscopic quantum mechanics [8–11]. In any such
experiment, it is essential that one can clearly distinguish
the genuine N -partite entanglement of N systems from the
entanglement produced by mixing quantum states with fewer
than N systems entangled.

Three systems labeled 1, 2, and 3 are said to be genuinely
tripartite entangled iff the density operator for the tripartite
system cannot be represented in the biseparable form [12,13]
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quantum density operator for the system k, while ρR

mn is an
arbitrary quantum density operator for the two systems m

and n (k,m,n ∈ {1,2,3}). Thus, for a system described by the
biseparable state ρR

mnρ
R
k , the systems m and n can be bipartite

entangled, but there is no entanglement between m and k, or n

and k. Similarly, N parties are “genuinely N -partite entangled”
if all the possible biseparable mixtures describing the N parties
are negated.

In this paper, we use the above definition to derive criteria
sufficient to confirm the genuine N -partite entanglement of
N systems, as detected by continuous-variable (CV) mea-
surements, i.e., measurements of position and momentum, or
quadrature phase amplitudes. An application of the criteria
would be to witness the genuine entanglement of N spatially
separated optical field modes [5–7].

The continuous-variable (CV) case is an important one
[14–17]. CV entanglement has significant applications to
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quantum information technology, providing efficient deter-
ministic teleportation [18] and secure communication [19].
Moreover, CV entanglement can give efficiently detected
Einstein-Podolsky-Rosen correlations [17,20] and evidence of
the entanglement of multiple macroscopic systems, consisting
of many photons [21]. The CV criteria can also be applied to
optomechanics, as a means to demonstrate the entanglement
of three or more mechanical harmonic oscillators [22].

In order to claim genuine multipartite entanglement, it
is necessary to falsify all mixtures of the bipartitions as in
Eq. (1), as opposed to negating that the system can be in
any single one of them. As pointed out by Shalm et al. [4],
this leads to two definitions, genuine N -paritite entanglement
and full N -partite inseparability, that have often been used
interchangeably in the literature but in fact mean different
things. This distinction for Gaussian states was also made
by Hyllus and Eisert [23]. In realistic experimental scenarios
where one cannot assume pure states, the task of detecting
genuine continuous-variable (CV) multipartite entanglement
poses a greater challenge than detecting full multipartite
inseparability. This means that detecting genuine tripartite
entanglement in the CV regime is more difficult than has often
been supposed. Most CV criteria that have been applied to
experiments assume Gaussian states [24,25], or else do not
in fact negate all mixtures of bipartitions (1), and thus detect
full multipartite inseparability rather than genuine multipartite
entanglement [5–7,26].

One exception is the work of Shalm et al. [4]. These authors
derive new CV criteria involving position and momentum
observables. Shalm et al. then adapt the criteria, to demonstrate
the genuine tripartite entanglement of three spatially separated
photons using energy-time measurements. A second exception
is Armstrong et al. [27], who derive a different criterion that
is used to confirm the genuine CV tripartite entanglement of
three optical modes. Also, the recent work of He and Reid [28]
gives criteria for genuine tripartite EPR steering, which is a
special type of tripartite entanglement.

Here, we present criteria for the detection of CV multi-
partite entanglement. The criteria can be applied to the CV
Greenberger-Horne-Zeilinger (GHZ) states [29] that have been
generated in the experiments of Aoki et al. [5], or the similar
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multipartite Einstein-Podolsky-Rosen (EPR) entangled states
generated in the experiments of Armstrong et al. [7]. In
Secs. II and III, we present the necessary background, and
in Secs. IV and V derive criteria for the tripartite N = 3
case. In Sec. VIII, we provide algorithms for arbitrary N ,
and give explicit predictions for up to N = 9 modes, for
the multimode CV GHZ and EPR-type entangled states. The
effect of transmission losses is also analyzed, in Sec. VII.
Our criteria are based on the assumption that the quantum
uncertainty relations for position and momentum apply to the
measurements made on each system, and are not restricted to
pure or mixed Gaussian states.

In Sec. VI, we analyze and derive criteria for “genuine
tripartite EPR steering” as defined recently by He and
Reid [28]. “EPR steering” is the form of quantum nonlocality
introduced by EPR in their paradox of 1935 [30,31]. The
term “steering” was introduced by Schrödinger to describe
the nonlocality highlighted by the paradox. EPR steering and
the EPR paradox were realized for CV measurements in the
experiment of Ou et al. [20], based on the predictions explained
in Ref. [17]. In short, verification of steering amounts to a
verification of entanglement, in a scenario where not all of
the experimentalists can be trusted to carry out the measure-
ments properly [31,32]. This is an important consideration in
device-independent quantum cryptography [33]. The criteria
developed in this paper are likely to be useful to multiparty
quantum cryptography protocols, such as quantum secret
sharing [34].

The inequalities that we use to detect genuine N -partite
entanglement are similar to the van Loock–Furusawa inequal-
ities [26]. The van Loock–Furusawa inequalities are widely
used, but are designed to test for full multipartite inseparability,
rather then genuine multipartite entanglement. However, we
show that one of the van Loock–Furusawa inequalities will
suffice to detect genuine tripartite entanglement, and that tri-
partite entanglement and steering can be detected for sufficient
violation of other van Loock–Furusawa inequalities that are
used together as a set. Our work extends beyond the N = 3
case. We prove in Sec. VIII a general approach for deriving
entanglement criteria based on summation of inequalities that
can negate each pure biseparable state. Further, we establish
that the genuine N -partite entanglement of CV GHZ and
certain multipartite EPR states can be detected using a single
suitably optimized inequality.

II. DISTINGUISHING BETWEEN GENUINE N-PARTITE
ENTANGLEMENT AND FULL N-PARTITE

INSEPARABILITY

The aim of this paper is to derive inequalities based on
the assumption (1) of the biseparable mixture, and the N -
party extensions. The violation of these inequalities will then
demonstrate genuine tripartite entanglement, and, in the N -
party case, genuine N -partite entanglement. First, we explain
the difference between genuine N -paritite entanglement and
full N -partite inseparability.

We consider the three-party system described by

ρkm,n =
∑
R

η
(n)
R ρR

kmρR
n , (2)

1

1

1
2

2

2

3

3

3

FIG. 1. (Color online) Schematic of the possible biseparable
quantum states for three systems, labeled 1,2,3. Going clockwise
from top left, the biseparable states are ρ12,3, ρ13,2, and ρ23,1 (associ-
ated with bipartitions 12 − 3, 13 − 2, and 23 − 1, respectively).

where two but not three of the systems can be entangled. In
this notation, the k,m,n denote three distinct systems, which
in this paper will be modes representing an optical field or a
quantized harmonic oscillator. The density operator ρR

km can
represent any quantum state for the two modes k and m, and
can account for entanglement between them. We denote the
bipartition associated with the biseparable density operator
ρR

kmρR
n (and ρkm,n) by km − n. The bipartitions for N = 3

parties are depicted graphically in Fig. 1.
We suppose that each system is a single mode with boson

operator aj (j = 1,2,3) and define the quadrature ampli-
tudes as xj = (aj + a

†
j ) and pj = (aj − a

†
j )/i. Assuming the

Heisenberg uncertainty relation �xj�pj � 1, the separability
assumption of (2) implies the following sum and product
inequalities:

(�u)2 + (�v)2 � 2(|hngn| + |hkgk + hmgm|) (3)

and

�u�v � |hngn| + |hkgk + hmgm|, (4)

where u = hnxn + hkxk + hmxm and v = gnpn + gkpk +
gmpm. Here, (�x)2 denotes the variance of the quantum
observable x. The sum inequality was derived by van Loock
and Furusawa [26]. The product inequality is proved in the
Appendix, and is stronger, in that it will always imply the sum
inequality (note the simple identity x2 + y2 � 2xy, that holds
for any real numbers x and y).

In their paper, van Loock and Furusawa consider the three
inequalities

BI ≡ [�(x1 − x2)]2 + [�(p1 + p2 + g3p3)]2 � 4,

BII ≡ [�(x2 − x3)]2 + [�(g1p1 + p2 + p3)]2 � 4, (5)

BIII ≡ [�(x1 − x3)]2 + [�(p1 + g2p2 + p3)]2 � 4,

which are defined for arbitrary real parameters g1, g2, and g3.
They point out, using Eq. (3), that inequality BI � 4 is implied
by both the biseparable states ρ13,2 and ρ23,1, which give
separability between systems 1 and 2. Similarly, the second
inequality BII � 4 is implied by the biseparable states ρ13,2

and ρ12,3, while the third inequality BIII � 4 follows from
biseparable states ρ12,3 and ρ23,1.
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In this way, van Loock and Furusawa show that the violation
of any two of the inequalities of Eq. (5) is sufficient to rule
out that the system is described by any of the biseparable
states ρ12,3, ρ13,2, or ρ23,1. This result has been used in
experimental scenarios [5,7] to give evidence of a “fully
inseparable tripartite entangled state.” However, violating any
two of the van Loock–Furusawa inequalities is not in itself
sufficient to confirm genuine tripartite entanglement, as can be
verified by the mixed state example given in the Appendix 4.
The reason is that inequalities ruling out any of the simpler
cases of Eq. (2) do not rule out the general biseparable case of
Eq. (1) which considers mixtures of the different bipartitions
ρ12,3, ρ13,2, or ρ23,1.

This point has been noted by Hyllus and Eisert [23] and
Shalm et al. [4] and leads to two definitions in connection
with multipartite entanglement. For pure states, the two
definitions coincide since a pure system cannot be in a
mixture of states. For experimental verification, however,
an unambiguous signature of genuine tripartite entanglement
becomes necessary since one cannot assume pure states.

Before continuing, it is useful to derive the product version
of the van Loock–Furusawa inequalities, that are based on the
product uncertainty relation given by Eq. (4). We define

SI ≡ �(x1 − x2)�(p1 + p2 + g3p3) � 2,

SII ≡ �(x2 − x3)�(g1p1 + p2 + p3) � 2, (6)

SIII ≡ �(x1 − x3)�(p1 + g2p2 + p3) � 2.

In the Appendix, we show that the inequality SI � 2 is implied
by the biseparable states ρ13,2 and ρ23,1. Similarly, the second
inequality SII � 2 is implied by the biseparable states ρ13,2 and
ρ12,3, and the third inequality SIII � 2 by ρ12,3 and ρ23,1. The
product versions are worth considering, given that the product
uncertainty relation (4) is stronger than the sum form (3).

The van Loock–Furusawa approach is readily extended to
tests of N -partite full inseparability [26]. In that case, the
possibility that the system can be separable with respect to
any of the possible bipartitions is negated, by way of testing
for violation of a set of inequalities. However, generally, this
does not eliminate the possibility that the system could be
in a mixture of biseparable states, that have only (N − 1) or
fewer modes entangled. Thus, stricter criteria are necessary to
confirm genuine N -partite entanglement.

III. GENUINE TRIPARTITE ENTANGLED STATES

We are now motivated to derive criteria sufficient to prove
genuine tripartite entanglement, according to the definition of
Eq. (1). Our criteria will be applied to two types of states known
to be tripartite entangled: the CV GHZ states and similar states,
that we refer to generally as CV EPR-type states.

The CV GHZ state [29] is generated using the configuration
shown in Fig. 2 [26]. Two orthogonally squeezed vacuum
modes are the inputs of a beam splitter (BS1). This creates
a pair of entangled modes at the outputs of the first beam
splitter BS1. The entanglement is like that first discussed
by EPR in their argument for the completion of quantum
mechanics, where the positions and momenta (quadrature
phase amplitudes) are both perfectly correlated [30,35]. One
of the entangled outputs is then combined across a second

FIG. 2. (Color online) Schematic of the generation of a genuinely
tripartite entangled state, the CV GHZ state, using three squeezed
input states. Here, BS1 and BS2 symbolize beam splitters, with
reflectivities given by R1 and R2. For the GHZ state, R1 = 1

3 and
R2 = 1

2 . The xj , pj refer to the two orthogonal quadrature phase
amplitudes of the optical mode j (j = 1,2,3), with boson operators
aj , a†

j . Three distinct modes are formed at the three outputs A, B, and
C. The x-p axis and ellipses depict the orientation of the squeezing
required.

beam splitter (BS2) using a third squeezed state input. The
squeeze parameters of the input states are assumed equal, and
of magnitude given by r . This means that in the idealized exper-
iment, each squeezed vacuum input has a quadrature variance
given by �x = e∓r and �p = e±r (the sign depending on the
orientation of the squeezing and here we denote the ideal case
of pure squeezed inputs). More generally, the two entangled
modes could be created from parametric interactions [35–37]
or similar atomic processes [38]. Tripartite entanglement can
also be generated via three-photon parametric interactions
involving pump fields, as in the studies of Villar et al. [39].

A tripartite CV GHZ state is a simultaneous eigenstate of
the position difference xi − xj (i,j = 1, 2, or 3, i �= j ) and the
momentum sum p1 + p2 + p3, and is formed in the limit of
large r . The experiment of Aoki et al. [5] used this generation
process to give an approximate realization of the CV GHZ
state, to the extent that they were able to demonstrate the
full tripartite inseparability of the three modes [using the van
Loock–Furusawa inequalities of Eq. (5)].

In order to generate the second type of multipartite
entangled state (which we call the CV EPR-type state), the
third squeezed input is removed and replaced by a simple
coherent vacuum state (Fig. 3). The multipartite entanglement
of these sorts of states has been investigated in the experiments
of Armstrong et al. [7,27]. These authors used the scheme of
Fig. 3 and its N -party extensions to generate states with a
full N -partite inseparability, up to N = 8 modes. The van
Loock–Furusawa inequality approach was used to establish
the inseparability.

The experimental confirmation of full N -partite insepa-
rability does not establish genuine N -partite entanglement,
unless one can justify pure states. In practice, this is not
possible because of losses and the difficulty in achieving
pure input squeezed states. For this reason, we derive (in the
following sections) criteria for genuine N - partite entangle-
ment, and then examine the effectiveness of each criterion
for the given CV states. We need to do this because the
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FIG. 3. (Color online) Schematic of the generation of a genuinely
tripartite entangled CV EPR-type state, using two squeezed input
states and a vacuum input at the second beam splitter. Here, BS1 and
BS2 are beam splitters, with reflectivities R1 = R2 = 0.5. Labels as
for Fig. 2.

criteria are sufficient, but not necessary, to detect genuine
multipartite entanglement. Calculations are therefore required
to determine which criterion should be used for a given CV
state. We will calculate the predictions for the criteria (which
require moments of the xk and pk), using the simple unitary
transformation

aout,1 =
√

Rain,1 + √
1 − Rain,2,

(7)
aout,2 = √

1 − Rain,1 −
√

Rain,2

that models the interaction of the modes at a beam splitter with
reflectivity R. Here, aout,1, aout,2 are the two output modes and
ain,1, ain,2 are the two input modes of the beam splitter.

IV. CRITERIA FOR GENUINE N-PARTITE
ENTANGLEMENT: GENERAL APPROACH

We now explain a general method, that can be applied
to detect the N -partite entanglement. For a given N , the
complete set of bipartitions can be established. Let us suppose
there are XN such bipartitions. We index the bipartitions by
k = 1, . . . ,XN , and denote by Ak and Bk the two distinct sets
of parties defined by the bipartition k. For each bipartition
Ak − Bk , we can establish an inequality Ik � 4 based on the
assumption of separability of the system density operator
ρ with respect to that bipartition, where the Ik is a sum
(�u)2 + (�v)2 of variances of linear combinations u, v of
system observables xj and pj . This means that the observation
of Ik < 4 will imply failure of separability (entanglement)
between Ak and Bk . We can also establish similar inequalities
Ik � 2 where Ik is a product �u�v.

We note that there will be many such inequalities for a
given bipartition, and that while Ik < 4 suffices to imply
inseparability between Ak and Bk , it is not necessary, so that
the choice of inequality is often intuitive, being dependent
on the nature of the quantum state. The van Loock–Furusawa
inequalities are an example of a set of inequalities Ik .

The violation of each of the inequalities Ik � 4 (k =
1, . . . ,XN ) will not in itself imply genuine N -partite entan-
glement. However, as might be expected, we can show that a

large enough violation of all the inequalities will in the end be
sufficient. Thus, we establish the following result.

Result 1. Violation of the inequality

XN∑
k=1

Ik � 4 (8)

(or the inequality
∑XN

k=1 Ik � 2 involving the products) is
sufficient to imply N -partite genuine entanglement.

Proof. We consider the XN bipartitions of the N -partite
system. We wish to negate the possibility that the system is
described by a mixture

ρBS =
XN∑
k=1

PkρAk,Bk
, (9)

where Pk is a probability the system is separable across
the bipartition k (thus,

∑
k Pk = 1). Separability across the

bipartition k means that the density matrix is of the form
ρAk,Bk

= ∑
R η

(k)
R ρAk

ρBk
, where here ρAk

and ρBk
are density

matrices for subsystems Ak and Bk , respectively. Consider a
mixture of states as given by a density operator ρ = ∑

R PRρR ,
where

∑
R PR = 1 and ρR is the density operator for a

component state. For any such mixture, the variance (�X)2

of an observable X cannot be less than the weighted sum of
the variances of the component states: that is,

(�X)2 �
∑
R

PR(�RX)2, (10)

where (�RX)2 denotes the variance of X for the system in the
state ρR [40]. Here, the observable X is u or v as defined by
Eqs. (3) and (4). For two such observables, we have the result

(�X)2 + (�Y )2 �
∑
R

PR{(�RX)2 + (�RY )2}. (11)

We can also prove a similar result for products of variances.
In that case, applying the Cauchy-Scwharz inequality, we can
see that

(�X)(�Y ) �
{[ ∑

R

PR(�RX)2

][ ∑
R

PR(�RY )2

]}1/2

�
∑
R

PR(�RX)(�RY ). (12)

Now, Ik is the sum of variances. For example, Ik = (�u)2 +
(�v)2 can be the van Loock–Furusawa inequalities (5) for
certain values of linear coefficients. Similarly,Ik = �u�v and
can be the product inequalities (6). If the system is biseparable
according to ρBS of Eq. (1), then applying Eq. (11) it follows
that

Ik �
XN∑
m=1

PmIk,m � 4Pk,

where Ik,m is the value of the sum of the variances that form the
expression Ik evaluated over the biseparable state ρAm,Bm

. We
have used that for the separable state ρAk,Bk

, Ik � 4. Summing
over all k and using that

∑XN

k=1 Pk = 1, we obtain
∑

k Ik � 4.
Similarly, we can use Eq. (12) to prove Ik �

∑XN

m=1 PmIk,m �
2Pk and then that

∑
k Ik � 2. �
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Where there is a redundancy so that one of the inequalities
Ik � 4 is implied by more than one bipartition, we may be able
to prove a stronger criterion. Certainly, if a single inequality
I � 4 (or I � 2) can negate separability with respect to all
bipartitions Ak − Bk , then we can derive the following.

Result 2. Violation of the inequality

I � 4 (13)

(or I � 2) which negates all of the biseparable states ρAk,Bk

(k = 1, . . . ,XN ) is sufficient to imply N -partite genuine
entanglement.

Proof. Consider a system described by the biseparable
mixture ρBS of Eq. (9). Then, using the results (10) and (12)
proved for mixtures, it follows that for such a system

I �
XN∑
m=1

PmIk,m � 4,

where we have used the result that I � 4 for every bipartition,
i.e., for every biseparable state ρAk,Bk

and hence that each
Ik.m � 4. Similarly, I � 2. �

The approach of using a single inequality is very valuable,
once the inequality can be identified. We will show how to use
this method for the CV GHZ and EPR-type states. Other crite-
ria can be derived where there are intermediate redundancies,
as for the three van Loock–Furusawa inequalities (5). In that
case, each inequality will negate separability with respect to
two bipartitions. We obtain the following result.

Criterion 1. We confirm genuine tripartite entanglement, if
the following inequality is violated:

BI + BII + BIII � 8, (14)

where BI � 4, BII � 4, and BIII � 4 are the van Loock–
Furusawa inequalities (5). We note that BI , BII , BIII is a
function of the variable parameters g3, g1, g2, respectively.

Proof. For N = 3 parties, there are three biseparable states
ρ23,1, ρ13,2, and ρ12,3 that we index by k = 1,2,3, respectively.
Consider any mixture of the form Eq. (1), which is Eq. (9) for
N = 3. Using the result (10) and the notation defined in the
proof of Result 1 since BI is the sum of two variances, we can
write

BI � P1BI,1 + P2BI,2 + P3BI,3

� P1BI,1 + P2BI,2 � 4(P1 + P2).

This uses that we know the first two states of the mixture (for
which k = 1,2) will satisfy the inequality BI � 4. Hence, for
any mixture BI � 4(P1 + P2). Similarly, BII � 4(P2 + P3)
and BIII � 4(P1 + P3). Then, we see that since

∑3
k=1 Pk = 1,

for any mixture it must be true that BI + BII + BIII � 8. �
The product version of the criterion follows along similar

lines. The proof is similar to that of Criterion 1 and is given in
the Appendix.

Criterion 2. We confirm genuine tripartite entanglement if
the following inequality is violated:

SI + SII + SIII � 4, (15)

where SI � 2, SII � 2, and SIII � 2 are the product van
Loock–Furusawa–type inequalities (6).

V. CRITERIA FOR GENUINE TRIPARTITE
ENTANGLEMENT

We now derive specific criteria to detect the genuine
tripartite entanglement of the tripartite entangled CV GHZ
and EPR-type states.

A. Criteria that use a single inequality

First, we examine the case where the criterion takes the
form of a single inequality involving just two variances, rather
than the sum of three inequalities, as in Eqs. (14) and (15).
Such criteria can be useful, but need to be tailored to the type
of tripartite entangled state. In this section, we present several
such inequalities.

Criterion 3. The violation of the inequality

{
�

[
x1 − (x2 + x3)√

2

]}2

+
{
�

[
p1 + (p2 + p3)√

2

]}2

� 2

(16)

is sufficient to confirm genuine tripartite entanglement.
Proof. Van Loock and Furusawa showed that the inequality

is satisfied by all three biseparable states of types ρ12,3, ρ13,2,
and ρ23,1 [26]. Hence, the proof follows on using the Result 2,
given by Eq. (13). �

Van Loock and Furusawa pointed out that this single
inequality can be used to negate all three separable bipartitions
12 − 3, 13 − 2, and 23 − 1, and hence to certify full tripartite
inseparability. However, the application of the Eq. (10) for
mixtures is needed to complete the proof that this single
inequality is indeed sufficient to certify genuine tripartite
entanglement. Before continuing, we write the product version
of this criterion.

Criterion 4. The violation of the inequality

�

[
x1 − (x2 + x3)√

2

]
�

[
p1 + (p2 + p3)√

2

]
� 1 (17)

is sufficient to confirm genuine tripartite entanglement.
Proof. The uncertainty relation �xj�pj � 1 implies that

the inequality �u�v � 1 holds for all three types of states
ρ12,3, ρ13,2, and ρ23,1. This follows directly from the result
Eq. (4). �

We see immediately that violation of Eq. (16) will always
imply violation of Eq. (17) (since x2 + y2 � 2xy for any two
real numbers x, y). Thus, the product Criterion 4 is a stronger
(better) criterion. However, where �(x1 − (x2+x3)√

2
) = �(p1 +

(p2+p3)√
2

), the two criteria are mathematically equivalent. (We

note x2 + y2 = 2xy iff x = y.) This is the case for the states we
consider in this paper, but is not true in general. For some other
states, entanglement criteria based on products of variances
have proved useful [41,42].

The two simple criteria (16) and (17) are effective for
demonstrating the genuine tripartite entanglement of the EPR-
type state, as shown by in the recent paper of Armstrong
et al. [27] where the product criterion (16) was derived. The
predictions are plotted in Fig. 4.

For the CV GHZ state, it is better to consider a more
generalized criterion that allows arbitrary coefficients.
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FIG. 4. (Color online) Detecting the genuine tripartite entangle-
ment of the CV GHZ and EPR-type states of Figs. 2 and 3: Ent < 1
signifies genuine tripartite entanglement. Here, r is the squeezing
parameter of the input states shown in Figs. 2 and 3. The curves
labeled “simple” are for the (top blue) GHZ and (second green)
EPR-type states, using the simple criteria (16) and (17) (which give
indistinguishable results). The two lower curves labeled “gen” are for
the GHZ and EPR-type states, using the generalized criteria (18)–
(20) (which give indistinguishable results). Here, Ent = (�u)2+(�v)2

2
and Ent = �u�v for the criteria involving sums and products,
respectively, where u = x1 + h(x2 + x3), v = p1 + g(p2 + p3). The
choices for h and g are given in Table I for the generalized criteria, and
are g = −h = 1√

2
for the simple criteria. Genuine tripartite steering

is signified when Ent drops below the black dashed line for the “gen”
case, and below 0.5 for the “simple” curves. All curves except the
“simple GHZ” become indistinguishable at larger r .

Criterion 5. Violation of the inequality

(�u)2 + (�v)2 � 2 min {|g3h3| + |h1g1 + h2g2|,
|g2h2| + |h1g1 + h3g3|,
|g1h1| + |g2h2 + h3g3|}, (18)

where we define u = h1x1 + h2x2 + h3x3 and v = g1p1 +
g2p2 + g3p3 is sufficient to confirm genuine triparite entan-
glement. Here, gi , hi are real constants (i = 1,2,3).

Proof. Using Eq. (3), we see that the bipartition ρ12ρ3

implies

(�u)2 + (�v)2 � 2{|g3h3| + |h1g1 + h2g2|},
the bipartition ρ13ρ2 implies

(�u)2 + (�v)2 � 2{|g2h2| + |h1g1 + h3g3|},
and the bipartition ρ23ρ1 implies

(�u)2 + (�v)2 � 2{|g1h1| + |g2h2 + h3g3|}.
Thus, using the relation (10), we see that any mixture Eq. (1)
will imply Eq. (18). �

The Criterion 5 is valid for any choice of coefficients gi and
hi , which are real constants. If the inequality is violated, then
the experimentalist can conclude the three modes are genuine
tripartite entangled. However, as the criteria are sufficient but
not necessary for entanglement, it cannot be assumed that the
inequality will be violated, even where there is entanglement
present. In a practical situation for a given entangled state, it is

TABLE I. Values of g and h used for the plots of Fig. 4.

CV GHZ EPR

r g h g h

0 0 0 0 0
0.25 0.36 −0.27 0.33 −0.33
0.5 0.68 −0.40 0.54 −0.54
0.75 0.86 −0.46 0.64 −0.64
1 0.95 −0.49 0.68 −0.68
1.5 0.99 −0.50 0.70 −0.70
2 1.00 −0.50 0.70 −0.70

best to analyze in advance the optimal values for g, h. These
optimal values are defined as giving the smallest ratio of the
left to right side of the inequality, for a given quantum state.

An optimization was carried out numerically, for a simpler
version of the inequalities obtained as follows: A simpler
version of the inequality (18) is obtained, if we select the values
g1 = h1 = 1, h2 = h3 = h, and g2 = g3 = g so that u =
x1 + h(x2 + x3) and v = p1 + g(p2 + p3), and then restrict
to gh < 0 and |gh| < 1. We note that the right side of Eq. (18)
becomes 2 min{|gh| + |1 − |gh||,1 + 2|gh|}. Equation (18)
then takes the form

(�u)2 + (�v)2 � 2. (19)

Violation of this inequality will confirm genuine tripartite
entanglement (as a special case of Criterion 5). The theoretical
prediction for the optimal value of gain constants g and h was
found rigorously by a numerical search over all values. The
optimized values and associated violation of the inequalities
for the CV GHZ and EPR-type states are given in Table I and
Fig. 4.

An experimental setup to detect the genuine tripartite en-
tanglement is like that described in Ref. [26] and implemented
in the experiment [5], to detect full tripartite inseparability.
Ideally, in a tripartite version of an EPR experiment, the
quadrature amplitudes would be measured simultaneously in a
spacelike separated way at each of the three locations [17,30].
The inequalities are tested by direct insertion of the results
into the inequality, with the g and h serving as numbers. In the
experiments modeled after squeezing measurements [5,20,35],
the final variances are measured directly as noise levels, and
the g and h factors are introduced by classical gains in currents.

We also derive the product form of the generalized
criterion (18). The proof is similar to that for criterion (18)
and is given in the Appendix.

Criterion 6. Genuine tripartite entanglement is observed if
the inequality

�u�v � min {|g3h3| + |h1g1 + h2g2|,
|g2h2| + |h1g1 + h3g3|,
|g1h1| + |g2h2 + h3g3|} (20)

is violated. With the choice of values for gi and hi explained for
the inequality (19) and as given in Table I, the inequality (20)
takes the simpler form

�u�v � 1. (21)
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While the optimal values of the coefficients g and h were
found by numerical search, it is possible to deduce these values
from the physics associated with the different entangled states,
at least in the limit of large r . We see from the results of Table I
and Fig. 4 that for larger r , the genuine tripartite entanglement
of the CV GHZ state is detected by violation of the inequality{

�

[
x1 − (x2 + x3)

2

]}2

+ [�(p1 + p2 + p3)]2 � 2. (22)

This is to be expected since the CV GHZ state formed in the
limit of large r is by definition the simultaneous eigenstate of
position difference xi − xj (i,j = 1, 2, or 3, i �= j ) and the
momentum sum p1 + p2 + p3.

Similarly, for the EPR-type states of Fig. 3, the simple
criterion of Eq. (16) [and Eq. (17)] is in fact optimal at large
r . This can be understood as follows [26]: The two entangled
modes labeled 1 and 2′ in Fig. 3 possess an EPR correlation
as r → ∞, so that simultaneously, both [�(x1 − x ′

2)]2 → 0
and [�(p1 + p′

2)]2 → 0 where x ′
2 and p′

2 are the quadratures
of the mode defined as 2′. On examining the model of Eq. (7)
for the beam-splitter interaction BS2, we put aout,1/2 = a2/3,
ain,1 = a2′ , and ain,2 = avac where avac is the boson operator
for the vacuum mode input to BS2. Then, we see that for
R = 0.5, a2′ = 1√

2
(a2 + a3), which leads to the solution x ′

2 =
1√
2
(x2 + x3) and p′

2 = 1√
2
(p2 + p3). Thus, the EPR correlation

of the original beams 1 and 2′ is transformed into a tripartite
EPR correlation that satisfies the Criterion 3 of Eq. (16). This
is the reason why we call these states “EPR type.” We note
that as the EPR (or GHZ) correlation increases (as it does with
large r), the associated variances reduce, so the amount of
violation of the inequalities gives an indication of the strength
of that type of EPR (GHZ) entanglement.

We point out that the noise reduction required to demon-
strate the genuine tripartite entanglement is considerable, in
the sense of being beyond that necessary to demonstrate
simple quantum squeezing, or bipartite entanglement. Let us
consider the group of modes {2,3} created at the output of
the second beam splitter BS2 as shown in Fig. 3. Bipartite
entanglement between mode 1 and the combined group of
modes {2,3} can be certified when (�u)2 + (�v)2 < 4, which
corresponds to a noise reduction below the noise level of the
quantum vacuum (measured by 4 in this case). The bipartite
entanglement condition can be verified using the techniques
of Refs. [41,43]. Thus, the Criterion 3 of Eq. (16) to confirm
genuine tripartite entanglement requires 50% greater violation
than to confirm ordinary bipartite entanglement.

B. Criteria using van Loock–Furusawa inequalities

Violation of the van Loock–Furusawa inequalities [Eq. (5)]
have been measured or calculated in numerous situations
(including [5,7,39,44]). In Fig. 5, we use the Criteria 1
and 2, as given by Eqs. (14) and (15), to show that it is
possible to verify the genuine tripartite entanglement using the
van Loock–Furusawa inequalities, provided there is enough
violation of the inequalities.

For symmetric systems such as the CV GHZ state, where
BI = BII = BIII , the condition (6) of Criterion 1 requires
BI < 8

3 . This level of noise reduction (which is 2
3 the vacuum
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FIG. 5. (Color online) Detecting genuine N -partite entangle-
ment by summation of the violation of van Loock–Furusawa (vLF)
inequalities, or their product versions. Ent < 1 signifies genuine
tripartite entanglement; Ent < 0.5 signifies genuine tripartite steer-
ing. The description of states and the meaning of r is as in Fig. 4.
For the Criterion 4 given by Eq. (15), Ent = (SI + SII + SIII )/4
(product version) and for the Criterion 3 given by Eq. (14), Ent =
(BI + BII + BIII )/8 (sum version). The choice of gi’s is given
in Table II. The black (lower) crosses and blue (lower) diamonds
give results for the product criterion, for GHZ and EPR-type states,
respectively, with N = 3. The Criteria 3 and 4 give indistinguishable
results for the GHZ state. The upper red diamond curve is the
Criterion 3 for the N = 3 EPR-type state. The red line gives Criterion
7 [Eq. (23)], involving just two vLF inequalities, for the GHZ state,
where Ent = (BI + BII )/4. The green dashed line is the Criterion 9
[Eq. (43)] for the GHZ state (N = 4).

noise level) would seem feasible in the setup of experiment [5].
The ideal CV GHZ state clearly violates the inequality since
in that case BI = BII = BIII → 0 as r → ∞. The inequality
for gi = 1 has been derived by Shalm et al. [4]. We note from
Table II that for the GHZ state the values of g1 = g2 = g3 = 1
are indeed optimal as r → ∞. The criterion derived here is
valid for arbitrary g’s, which we see from Table II is useful for
the EPR-type states of Fig. 3. These EPR-type states do not
have symmetry with respect to all three modes.

The effectiveness of the criteria is shown in Fig. 5 for the
CV GHZ and EPR-type states. It is not surprising that the
criteria are more effective in the case of the GHZ states. This
is because the van Loock–Furusawa inequalities include terms

TABLE II. Values of gi (i = 1,2,3) for the plots of Fig. 5. The
same values are used for the sum and product versions of the criteria.

GHZ EPR

r g1 g2 g3 g1 g2 g3

0 0 0 0 0 0 0
0.25 0.53 0.53 0.53 0.63 0.29 0.29
0.5 0.81 0.81 0.81 1.08 0.44 0.44
0.75 0.93 0.93 0.93 1.28 0.50 0.50
1 0.97 0.97 0.97 1.36 0.50 0.50
1.5 1.00 1.00 1.00 1.41 0.46 0.46
2 1.00 1.00 1.00 1.41 0.43 0.43
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involving the variance of xk − xm (k �= m) which for the GHZ
state (but not the EPR-type state) will be small as r → ∞.

C. Criteria involving just two van Loock–Furusawa inequalities

The following criterion involving just two inequalities but
with gi = 1 has been derived by Shalm et al. [4].

Criterion 7. We can confirm genuine tripartite entangle-
ment, if any two of the inequalities BI � 4, BII � 4, BIII � 4
given by Eq. (5) with g1 = g2 = g3 = 1 are violated by a
sufficient margin, so that

BI + BII < 4 (23)

(or BI + BIII < 4 or BII + BIII < 4).
The symmetry of the GHZ state means that the genuine

tripartite entanglement is detected using any one of these the in-
equalities. Where losses are important, this can change. These
criteria are not effective in detecting the genuine tripartite
entanglement of the EPR-type states, for the reasons discussed
above, that the variances of the van Loock–Furusawa inequal-
ities do not capture the correlated observables in this case.

VI. CRITERIA FOR GENUINE TRIPARTITE
EPR STEERING

We now consider criteria to detect the type of entanglement
called “genuine tripartite EPR steering.” EPR steering is a non-
locality associated with the EPR paradox, that can be regarded
in some sense intermediate between entanglement and Bell’s
nonlocality [31,45]. We follow and expand on the methods of
Ref. [28]. The criteria are the same inequalities as before, but
with stricter bounds. The physical significance of EPR steering
is that it allows detection of the entanglement even when some
of the parties or measurement devices associated with the
systems i = 1,2,3 cannot be trusted [32,33]. For example,
we may not be able to assume that the results reported by
some parties are actually the result of quantum measurements
x̂ or p̂. This can be important where the entanglement is used
for quantum key distribution [33].

Consider three measurements X1, X2, and X3 made on each
of three distinct systems (also referred to as parties). Where
the composite system is given by the biseparable density
matrix ρBS of Eq. (1), we note that any average 〈X1X2X3〉
is expressible as

〈X1X2X3〉 = P1

∑
R

η
(1)
R 〈X2X3〉R〈X1〉R,ρ

+P2

∑
R

η
(2)
R 〈X1X3〉R〈X2〉R,ρ

+P3

∑
R

η
(3)
R 〈X1X2〉R〈X3〉R,ρ. (24)

Here, all averages 〈. . .〉 are those of a quantum density matrix,
and the ρ subscript reminds us of that. To signify genuine
tripartite Bell nonlocality [45], however, one needs to falsify a
stronger assumption. This can be done, if we falsify (24), but
without the assumption that the averages 〈. . .〉 are necessarily
those of quantum states: they can be averages for hidden
variable states, as defined by Bell and Svetlichny [8,46].

1

1

1
2

2

2

3

3

3

LHV

LHV

LQS

LQS

LQS

LHV

FIG. 6. (Color online) Schematic of the hybrid local-nonlocal
hidden states that if negated signify genuine tripartite steering. The
three depictions are hidden variable models, in which nonlocality is
allowed between any two of the three systems (labeled 1,2,3). The
top left model is denoted {12,3}st : Here, nonlocality and therefore
steering (arrows) is allowed between systems 1,2, which together
form a local hidden variable state (LHV). There is no steering between
systems 1,2 and system 3, which in the model is constrained to be a
local quantum state (LQS). The other models are {13,2}st (top right)
and {23,1}st (lower). Failure of all three models (and any probabilistic
mixtures of them) will signify genuine tripartite steering.

To signify genuine tripartite steering [28], it is sufficient
to falsify a hybrid local-nonlocal “biseparable local hidden
state (LHS) model,” which is a multiparty extension of the
bipartite LHS models defined in Refs. [31,47]. In that case, the
averages 〈XkXm〉R (that are without the subscript ρ) can be
hidden variable averages, whereas those for the single system
〈Xn〉R,ρ (written with the subscript ρ) are quantum averages.

We introduce a notation to explain this (Fig. 6). For N = 3,
there are three bipartitions of the systems: 23 − 1, 13 − 2,
12 − 3. The biseparable LHS description given by Eq. (24)
assumes bipartitions km − n, but where only the system n

need be a quantum system. We denote these special types
of bipartition by the notation {23,1}st , {13,2}st , {12,3}st .
Specifically, negation of the bipartition {23,1}st , implies
that we cannot write the moment 〈X3X2X1〉 in the form
〈X3X2X1〉 = ∑

R η
(1)

R 〈X3X2〉〈X1〉ρ . This negation implies that
system 1 is “steerable” by system {2,3} [31].

The key point to the derivations of the steering criteria
is that we can only assume the quantum uncertainty relation
for some of the systems. This has been explained in Ref. [28].
First, we assume the bipartition {km,n}s where onlysystem n is
constrained to be a quantum state. Letting u = hkxk + hmxm +
hnxn and v = gkpk + gmpm + gnpn, it can then be shown that
the two inequalities hold (see Appendix and Ref. [28]):

(�u)2 + (�v)2 � 2|hngn|, (25)

�u�v � |hngn|. (26)

These relations lead to criteria for genuine tripartite steering.
In the following, we write the “EPR steering versions” of the
Criteria 1–6. The proofs have been given in Ref. [28] or else
are in the Appendix.

To understand the significance of this sort of steering, we
note that the falsification of the biseparable state {km − n}st
implies a steering of n by km: this means entanglement can be
proved between n and the group km, without the assumption of
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good devices for systems km. This type of genuine tripartite
steering falsifies any possible mixture of such bipartitions,
and therefore certainly falsifies each one of them. Therefore,
the genuine tripartite steering is certainly sufficient to imply
that any two parties can “steer” the third. In demonstrating
genuine tripartite steering, it is negated that the steering of
the three-party system can be described by consideration of
two-party steering models alone. This confirms a genuine
sharing of steering among three systems, and gives insight
into a fundamental property of quantum mechanics.

Criteria 3s, 4s. Genuine tripartite EPR steering is observed
if

{
�

[
x1 − (x2 + x3)√

2

]}2

+
{
�

[
p1 + (p2 + p3)√

2

]}2

� 1

(27)
is violated (Criterion 3s), or if

�

[
x1 − (x2 + x3)√

2

]
× �

[
p1 + (p2 + p3)√

2

]
� 0.5 (28)

is violated (Criterion 4s). These steering inequalities are used
in Fig. 4. The proofs have been given in Refs. [28] and [27],
and are given in our notation in the Appendix.

Criteria 5s, 6s. The violation of either one of the inequalities

(�u)2 + (�v)2 � 2 min{|g1h1|,|g2h2|,|g3h3|}, (29)

�u�v � min{|g1h1|,|g2h2|,|g3h3|}, (30)

where u = h1x1 + h2x2 + h3x3, v = g1p1 + g2p2 + g3p3 is
sufficient to confirm genuine tripartite EPR steering.

Proof. Using Eq. (25), we see that the bipartition {12,3}s
gives the constraint (�u)2 + (�v)2 � 2|g3h3|; the bipartition
{13,2}s implies (�u)2 + (�v)2 � 2|g2h2|; and the biparti-
tion {23,1}s implies (�u)2 + (�v)2 � 2|g1h1|. Thus, using
Eq. (10), for any mixture of the bipartitions, we can say that

(�u)2 + (�v)2 � 2 min{|g1h1|,|g2h2|,|g3h3|}. (31)

Violation of Eq. (31) confirms genuine tripartite steering. The
product result follows similarly, from (26). �

We can simplify these criteria. On putting g1 = h1 = 1 and
selecting h2 = h3 = h and g2 = g3 = g, the right side of the
inequality becomes 2 min{1,|gh|}. Now, if we take |gh| < 1
as in Table I, the inequalities take the simpler form

(�u)2 + (�v)2 � 2|gh| (32)

and �u�v � |gh|. This inequality is used to demonstrate
genuine tripartite EPR steering, in Fig. 4.

It is now possible to derive a set of three “EPR steering
inequalities” similar to those derived by van Loock and
Furusawa. This has been explained in Ref. [28]. The assump-
tion that the system is in one of the bipartitions {km,n}st
will lead to a “steering inequality” that if violated implies
system n is steerable by the combined two systems {km}.
Considering each of the three possible bipartitions, there
are three “steering” inequalities identical to the van Loock
and Furusawa inequalities [26] but with a different right-side

bound:

BI ≡ [�(x1 − x2)]2 + [�(p1 + p2 + g3p3)]2 � 2,

BII ≡ [�(x2 − x3)]2 + [�(g1p1 + p2 + p3)]2 � 2, (33)

BIII ≡ [�(x1 − x3)]2 + [�(p1 + g2p2 + p3)]2 � 2.

In fact, inequality BI � 2 is implied by bipartitions {23,1}s
and {13,2}s ; inequality BII � 2 is implied by {13,2}s and
{12,3}s ; and inequality BIII � 2 is implied by {12,3}s and
{23,1}s . Thus, BI < 2 signifies steering of 1 by {23}, and also
steering of 2 by {13}, etc. The proof of these inequalities is as
for the original proof of the van Loock–Furusawa inequalities,
but assuming only the uncertainty relation �x�p � 1 for the
steered system n [28]. A second associated set of EPR steering
inequalities involving products can also be derived:

SI ≡ �(x1 − x2)�(p1 + p2 + g3p3) � 1,

SII ≡ �(x2 − x3)�(g1p1 + p2 + p3) � 1, (34)

SIII ≡ �(x1 − x3)�(p1 + g2p2 + p3) � 1.

These are the steering versions of the product inequalities
[Eq. (6)]. Here, inequality SI � 1 is implied by bipartitions
{23,1}s and {13,2}s ; inequality SII � 1 is implied by {13,2}s
and {12,3}s ; and inequality SIII � 1 is implied by {12,3}s and
{23,1}s . Thus, SI < 2 signifies steering of 1 by {23}, and also
steering of 2 by {13}, etc.

The inequalities lead us to the steering versions of the
Criteria 1 and 2, used in Fig. 5.

Criterion 1s, 2s. We confirm genuine tripartite steering if
either the inequality

BI + BII + BIII � 4 (35)

or the inequality SI + SII + SIII � 2 is violated. Here, BI �
4, BII � 4, and BIII � 4 are the van Loock–Furusawa
inequalities [Eq. (5)] and SI � 2, SII � 2, and SIII � 2 are
the product van Loock–Furusawa–type inequalities [Eq. (6)].
We note that each of BI , BII , BIII is a function of the variable
parameters g1, g2, g3, respectively. The proof is given in the
Supplemental Material of Ref. [28], and is given in our own
notation in the Appendix.

VII. EFFECT OF LOSSES

So far, we have only considered detection of genuine tri-
partite entanglement for pure states. However, these idealized
states are difficult to generate in the laboratory. There are two
main sources of imperfection in the experiments: the impurity
of the input squeezed states and the losses that occur during
transmission along the channels. In this section, we analyze
the efffect of losses.

The transmission losses can be modeled using a simple
beam-splitter model, in which the outputs after loss are given
by aout = √

ηain + √
(1 − η)avac, where ain is the mode before

loss, avac is a quantum vacuum mode, and η is the efficiency
factor that gives the altered transmission intensity of the field
mode after the loss has taken place.

The effect of loss on the genuine tripartite entanglement
as detected by the Criteria 5 and 6 is shown in Figs. 7
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FIG. 7. (Color online) The genuine tripartite entanglement of the
CV GHZ and EPR-type states (Figs. 2 and 3) with loss on the mode
labeled 1: The efficiency of the beam 1 is given by η. Ent < 1 signifies
genuine tripartite entanglement. We use the Criteria 5 and 6 with h

and g given by Table I. We signify genuine tripartite steering if Ent

is below the black dashed line, as given by Criteria 5s and 6s. The
efficiency of transmission for the beam 1 is η. The + curves are for
the EPR-type state using the sum or product criterion, the two criteria
giving indistinguishable results here. The second (upper) line of each
pair of the same color gives the result for the GHZ state using the
product criterion.

and 8. The most notable feature of the curves is the loss of
the criterion as η → 0.5. This can be explained based on
a knowledge of steering. Generally, we say that a system
1 is steerable by a group of systems labeled B if we
can show [�(x1 − xB)]2 + [�(p1 + pB)]2 < 2 [or �(x1 −
xB)�(p1 + pB) < 1] [17,31,35]. Here, xB and pB can be any
measurements for system B. Then, we note that as r → ∞,
the genuine tripartite entanglement criteria used in the figures
are given by violation of the inequalities (16) and (22), which
are precisely of the form that signifies steering of mode 1 by
the system {2,3}. It has also been shown based on monogamy
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FIG. 8. (Color online) The genuine tripartite entanglement of the
CV GHZ and EPR-type states (Figs. 2 and 3) with loss on the modes
labeled 2 and 3: Ent < 1 signifies genuine tripartite entanglement.
Labels and curves as for Fig. 7. The efficiency of transmission for
each of the beams 2 and 3 is given by η.

FIG. 9. (Color online) Schematic of the generation of a gen-
uinely four-partite entangled state: the CV GHZ state, formed
using squeezed inputs where R1 = 1

4 , R2 = 1
3 , and R3 = 1

2 . The
generalization to arbitrary N is discussed in Ref. [26].

relations that steering cannot take place with 50% or more loss
on the steering system (in this case, {2,3}) [48]. This explains
the impossibility of the Criteria 5 and 6 being satisfied (for
large r) in Fig. 8 for η � 0.5.

We note that there is not the same restriction if we put
the losses on the steered party [48], and hence the reduced
sensitivity to losses shown in the plots of Fig. 7, where
the loss is entirely on party 1. Also, we can manipulate the
criteria Ent < 1 given by the inequalities (16) and (22) into
the form [�(x2 − xB)]2 + [�(p2 + pB)]2 < 4 where now B

is the system containing modes 1 and 3. With 50% loss on the
modes 1 and 3, we cannot demonstrate the steering of mode
2, which implies that [�(x2 − xB)]2 + [�(p2 + pB)]2 > 2.
Thus, we will observe Ent > 0.5 in this case. This illustrates
the asymmetry of the Criterion 5 with respect to the three
parties. In short, this means that where transmission losses on
a particular party (say 1) are significant, it will be necessary to
select the appropriate entanglement criterion.

VIII. CRITERIA FOR GENUINE N-PARTITE
ENTANGLEMENT

The above approaches can be generalized to higher N .
Genuine N -partite entangled states can be generated by
extending the schemes of Fig. 2, as explained in Refs. [7,26]
and depicted in Figs. 9–11 for N = 4. To prove genuine
N -partite entanglement, one needs to negate all mixtures
of the biseparable states, as explained in Sec. II. In this
section, we consider three types of multipartite entangled
states, as depicted for N = 4 in Figs. 9–11. The first are the
CV GHZ states, studied in Refs. [5,26,29], and generated by
successively applying beam splitters to one of the entangled
modes, with specified squeezed inputs. The second are the
asymmetric EPR-type states I, studied in Ref. [26] and formed
by a sequence of beam splitters applied to one of the original
two entangled modes. These states are depicted in Fig. 10
for N = 4. The third are the alternative EPR-type states, that
we call symmetric EPR-type states II, formed by applying
successive beam splitters to both arms of the entangled pair
(Fig. 11). These have been generated in Ref. [7].
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FIG. 10. (Color online) Schematic of the generation of a gen-
uinely four-partite entangled state: the asymmetric EPR-type state I

formed using a vacuum input at all but the first beam splitter and with
R1 = 1

2 ,R2 = 1
3 ,R3 = 1

2 . By applying a further sequence of beam
splitters R1 = 1

2 ,R2 = 1
N−1 ,R3 = 1

(N−1)−1 . . . ,RN−1 = 1
(N−1)−(N−3) ,

as explained in Ref. [26], this state can be generalized to arbitrary N .

A. Criteria for N-partite entanglement that
use a single inequality

First, we extend the method described in the earlier sections
and look for a single inequality (involving just two variances)
that may be effective as criterion for detecting the genuine
N -partite entanglement. As we learned from the previous
sections, we expect the best choice of inequality will be related
to how the entangled state is generated.

Van Loock and Furusawa [26] considered the
following inequality for u = x1 − 1√

N−1
(
∑N

i=2 xi) and

v = p1 + 1√
N−1

(
∑N

i=2 pi). They showed that

(�u)2 + (�v)2 � 4

(N − 1)
(36)

is satisfied by all biseparable states in the N -mode case. Hence,
using Result 2 given by Eq. (13), we deduce that violation of
this inequality will be sufficient to signify genuine N -partite
entanglement. This will be useful to detect the N -partite

FIG. 11. (Color online) Schematic of the generation of a gen-
uinely four-partite entangled state: the symmetric EPR-type state II

created when R1 = 1
2 , R2 = 1

2 , and R3 = 1
2 . The generalization to

arbitrary N is discussed in Ref. [7].

entanglement of the asymmetric EPR-type state I, depicted
for N = 4 in Fig. 10.

Here, we generalize the inequality (36), deriving a criterion
that is also useful to detect the multipartite entanglement of
the second type of EPR-type state II for N = 4.

Criterion 8. We define u = ∑
i hixi and v = ∑

k gkpk

(although will take h1 = g1 = 1). For N modes, suppose
there are XN possible bipartitions. The bipartitions in the
four-mode case are 123 − 4, 124 − 3, 234 − 1, 134 − 2,
12 − 34, 13 − 24, 14 − 23. We can symbolize each bipartition
by Sr − Ss where Sr and Ss are two disjoint sets of modes
so that their union is the whole set of N modes. We index
the first set Sr by kr = 1, . . . ,m and the second set Ss by
ks = 1, . . . ,n, and we note that n + m = N . The violation of
the single inequality

(�u)2 + (�v)2 � 2 min{SB}, (37)

where SB is the set of the numbers (|∑m
kr=1 hkr

gkr
| +

| ∑n
ks=1 hks

gks
|) evaluated for each bipartition Sr − Ss , is

sufficient to demonstrate N -partite entanglement. For the
figures, we define for this criterion as Ent = {(�u)2 +
(�v)2}/(2 min{SB}).

Proof. Van Loock and Furusawa have shown [26] that the
partially separable bipartition ρ = ∑

R ηRρR
Sr

ρR
Ss

will imply

(�u)2 + (�v)2 � 2

(∣∣∣∣
m∑

kr=1

hkr
gkr

∣∣∣∣ +
∣∣∣∣

n∑
ks=1

hks
gks

∣∣∣∣
)

. (38)

Then, we use the Result 2 [Eq. (13)] and follow the logic of
the proof for Criterion 5. �

Specifically, for N = 4, we see that the inequality of
Criterion 8 reduces to

(�u)2 + (�v)2 � 2min{|h1g1 + h2g2 + h3g3| + |h4g4|,
|h4g4 + h3g3 + h2g2| + |h1g1|,
|h4g4 + h1g1 + h3g3| + |h2g2|,
|h4g4 + h1g1 + h2g2| + |h3g3|,
|h1g1 + h2g2| + |h3g3 + h4g4|,
|h1g1 + h3g3| + |h2g2 + h4g4|,
|h3g3 + h2g2| + |h1g1 + h4g4|}. (39)

Choosing g1 = h1 = 1, g3 = −h3 = g2 = −h2 = g4 =
−h4 = 1√

3
, we see that all biseparable states satisfy

(�u)2 + (�v)2 � 4
3 . (40)

Violation of this inequality therefore signifies genuine four-
partite entanglement, which is useful for detecting the
four-partite entanglement of the EPR-type state I as r → ∞
(Fig. 12).

We evaluate in Figs. 12–14 the results of the Criteron 8
for the states generated by the networks of Figs. 9–11. For the
asymmetric EPR-type state I (Fig. 10), the simple criterion (36)
suffices to detect the N -partite entanglement, as r → ∞. The
correlations of this state are such that the result of x1 (or p1) can
be inferred from the measurement of the linear combination of
the xi (or pi) of the modes on the other side of the first beam
splitter BS1. This leads to ideal EPR-type correlations where
both the variances of the inequality (36) go to 0 (as r → ∞)
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FIG. 12. (Color online) Genuine N -partite entanglement for the
asymmetric EPR-type state I described by Fig. 10. Labels as
in previous figures. Here, Ent < 1 signifies genuine N -partite
entanglement, using the simple criterion of Eq. (36) (dashed line)
and the generalized Criterion 8 (solid line) for N = 3–7 (lower to
top). The values of gi and hi are given in Table III.

and the simple inequality is violated. The inequality works
for larger N , for the states generated with specific choices
of reflectivities for the beam-splitter sequences as given in
Refs. [7,27]. Further, the optimization for small r is possible.
The details are given in the Appendix.

The CV GHZ state (Fig. 9) can also be detected using the
single inequality of Criterion 8, provided the coefficients gi and
hi are selected appropriately, as in Table IV. This choice can be
determined from substitution and differentiation to minimize
the left side of the inequality. In this case, the right side of the
inequality reduces to 2[1 + (N − 3)gh]. The details are given
in the Appendix, and results are presented in Fig. 13.

For the symmetric EPR state II (Fig. 11), it is not as
easy to find a simple single inequality that will signify
four-partite entanglement, over the entire range of r . The
problem is as follows: For large r , on examining the generation
scheme and defining the modes as in Sec. V A, we note
the following: for BS2, a2′ = 1√

2
(a2 + a3); for the third BS,

a1′ = 1√
2
(a1 − a4) and hence x ′

1 = 1√
2
(x1 − x4) and p′

1 =
1√
2
(p1 − p4). This means that the original EPR correlation

corresponding to [�(x ′
1 − x ′

2)]2 → 0, [�(p′
1 + p′

2)]2 → 0, be-
comes {�[(x1 − x4) − (x2 + x3)]}2 → 0, [�(p1 − p4 + p2 +

TABLE III. Gains for the single inequality (Criterion 8) as used
for the asymmetric EPR-type state I.

N = 4 N = 5 N = 6

r g h g h g h

0 0 0 0 0 0 0
0.25 0.27 −0.27 0.23 −0.23 0.21 −0.21
0.5 0.44 −0.44 0.38 −0.38 0.34 −0.34
0.75 0.52 −0.52 0.45 −0.45 0.40 −0.40
1 0.56 −0.56 0.48 −0.48 0.43 −0.43
1.5 0.57 −0.57 0.50 −0.50 0.45 −0.45
2 0.58 −0.58 0.50 −0.50 0.45 −0.45
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FIG. 13. (Color online) Genuine N -partite entanglement using
the Criterion 8 for the CV GHZ state. Labels as in previous figures.
The values of gi and hi are given in Table IV.

p3)]2 → 0. Thus, we can see that these latter two variances
will vanish, implying violation of the inequality

I � 4, (41)

where I = {�[(x1 − x4) − (x2 + x3)]}2 + [�(p1 − p4 +
p2 + p3)]2. Now, we see that this violation will negate
biseparability of the state with respect to the bipartitions
123 − 4, 124 − 3, 431 − 2, 234 − 1, 14 − 23 (use the proof
of Criterion 8). However, the violation cannot negate the
bipartitions 12 − 34 and 13 − 24, and cannot therefore
demonstrate genuine four-partite entanglement. Despite that,
our analysis with general coefficients using Criterion 8 reveals
that all the bipartitions can be negated, for a different choice
of coefficients gi and hi , provided r → ∞. This means we
can use the single inequality to detect genuine N -partite
entanglement, for highly squeezed inputs, as shown in Fig. 14.

B. Criteria for four-partite entanglement using the
van Loock–Furusawa inequalities

We can apply the approach of Result 1 [Eq. (13)] and
Criterion 1 to derive a criterion for genuine four-partite
entanglement, based on summation of van Loock–Furusawa
inequalities. We will consider four systems, and label the set
of bipartitions 123 − 4, 124 − 3, 234 − 1, 134 − 2, 12 − 34,
13 − 24, 14 − 23 by k = 1, . . . ,7. Van Loock and Furusawa

TABLE IV. Gains for single inequality (Criterion 8) for the CV
GHZ. Here, h1 = g1 = 1,h2 = h3 = h4 = h,g2 = g3 = g4 = g.

N = 4 N = 5 N = 6

r g h g h g h

0 0 0 0 0 0 0
0.25 0.30 −0.19 0.26 −0.14 0.22 −0.12
0.5 0.61 −0.28 0.56 −0.21 0.52 −0.17
0.75 0.83 −0.31 0.79 −0.23 0.76 −0.19
1 0.93 −0.33 0.91 −0.24 0.90 −0.20
1.5 0.99 −0.33 0.99 −0.25 0.99 −0.20
2 1.00 −0.33 1.00 −0.25 1.00 −0.20
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FIG. 14. (Color online) Genuine N -partite entanglement for the
CV symmetric EPR-type state II of Fig. 11. Labels as in previous
figures. Green solid line corresponds to the Criterion 10 with N = 4;
diamonds correspond to the single inequality Criteria 8, with the
values gi , hi given in Table V.

derived a set of six inequalities [26], that if violated eliminate
biseparability with respect to certain bipartitions:

BI ≡ [�(x1 − x2)]2 + [�(p1 + p2 + g3p3 + g4p4)]2 � 4,

BII ≡ [�(x2 − x3)]2 + [�(g1p1 + p2 + p3 + g4p4)]2 � 4,

BIII ≡ [�(x1 − x3)]2 + [�(p1 + g2p2 + p3 + g4p4)]2 � 4,

BIV ≡ [�(x3 − x4)]2 + [�(g1p1 + g2p2 + p3 + p4)]2 � 4,

BV ≡ [�(x2 − x4)]2 + [�(g1p1 + p2 + g3p3 + p4)]2 � 4,

BV I ≡ [�(x1 − x4)]2 + [�(p1 + g2p2 + g3p3 + p4)]2 � 4,

(42)

where gi is an arbitrary real number. Van Loock and Furusawa
showed that violation of any three of these inequalities will
negate that the system can be in one of the possible biseparable
states, that we denote by ρk . The violation of any three
inequalities will thus signify full four-partite inseparability. A
similar set of inequalities is derived for the case of arbitrary N .

As we have seen, this is not enough to negate that the system
could be in a mixture of the biseparable states ρk . However,
we can extend the proof of Criterion 1 to show that sufficiently

TABLE V. Gains for single inequality (Criterion 8) for the
symmetric EPR-type II state. Here, h1 = g1 = 1,h2 = h3 = . . . =
hR,g2 = g3 = . . . gR,h4 = h6 = . . . = hL = g4 = g6 = . . . = gL.

N = 4 N = 5 N = 6

r hR hL gR hR hL gR hR hL gR

0 0 0 0 0 0 0 0 0 0
0.25 −0.24 −0.06 0.24 −0.20 −0.06 0.20 −0.17 −0.04 0.17
0.5 −0.46 −0.21 0.46 −0.38 −0.21 0.38 −0.33 −0.15 0.33
0.75 −0.63 −0.40 0.63 −0.52 −0.40 0.52 −0.50 −0.31 0.50
1 −0.76 −0.58 0.76 −0.62 −0.58 0.62 −0.63 −0.50 0.63
1.5 −0.91 −0.82 0.91 −0.74 −0.82 0.74 −0.83 −0.75 0.83
2 −0.96 −0.93 0.96 −0.79 −0.93 0.79 −0.93 −0.90 0.93

strong violations of the inequalities (as is predicted by CV
GHZ states) will confirm genuine four-partite entanglement.

Criterion 9. Four systems are genuinely four-partite entan-
gled if the inequality

6∑
J=1

BJ � 12 (43)

is violated, where BJ � 4, J = I,II, . . . ,V I , are the van
Loock–Furusawa inequalities (42). For the figures, we define
for this criterion Ent = (

∑6
J=1 BJ )/12.

Proof. As for Criterion 1, we begin by assuming a
mixture ρBS = ∑

k Pkρk where ρk is a density operator with
the bipartition indexed by k = 1,2, . . . ,7. Van Loock and
Furusawa showed that four of the biseparable states ρk predict
any particular one of the inequalities because four of the
biseparable states ρk have separability with respect to the two
systems specified by the subscripts of the positions x measured
in the inequality. We can write

BI �
7∑

k=1

PkBI,k � 4(P3 + P4 + P6 + P7)

and similarly BII � 4(P2 + P4 + P5 + P6), BIII �
4(P2 + P3 + P5 + P7), BIV � 4(P1 + P2 + P6 + P7), BV �
4(P1 + P4 + P5 + P7), BV I � 4(P1 + P3 + P5 + P6). We
see that

∑
J BJ � 12(P1 + P2 + P3 + P4 + P5 + P6 + P7),

which gives the result. �
For symmetric systems where the BJ are equal, we will

require BJ < 2 (50% reduction of the vacuum noise level) in
order to achieve Criterion 9. Predictions are given in Fig. 5
for the CV GHZ state generated by the scheme of Fig. 9.
A very high degree of entanglement is possible as r → ∞.
The genuine four-partite entanglement of the CV GHZ state
is detectable using the Criterion 9 for moderate values of r ,
though greater squeezing is required than for the N = 3 case.
The method can be extended to higher N , once the van Loock–
Furusawa inequalities are known. We note the genuine four-
partite entanglement of the EPR-type states is not effectively
detected by this criterion.

C. Criteria for four-partite entanglement using
summation of inequalities

Let us return to the symmetric EPR-type state II of Fig. 11.
We now use the approach of Result 1 and Criterion 1 to
tailor a criterion for this state, using the van Loock–Furusawa
inequalities. For N = 4, we have seen that the inequality (41)
given by I � 4 will negate bipartitions 123 − 4, 124 − 3,
431 − 2, 234 − 1, 14 − 23 but not the bipartitions 12 − 34
and 13 − 24. On the other hand, the van Loock–Furusawa
inequality BII � 4 will negate the bipartitions 12 − 34, 13 −
24, 124 − 3, 431 − 2. It has been shown in Ref. [7] that
the EPR-type state II does violate the van Loock–Furusawa
inequality, by a small amount. We can prove the following:

Criterion 10. The violation of the inequality

I + BII � 4 (44)

is sufficient to prove genuine four-partite entanglement. For
the figures, we define for this criterion Ent = (I + BII )/4.
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Proof. If we assume a mixture ρBS = ∑
k Pkρk where

ρk is a density operator biseparable across the bipartition
indexed by k = 1,2, . . . ,7, then I � 4(P1 + P2 + P3 + P4 +
P5) whereas BII � 4(P2 + P3 + P6 + P7). Hence, for any
biseparable state the inequality will hold. �

The combined inequality (44) can indeed be used to detect
the genuine four-partite entanglement of the EPR-type state
II , and the predictions are given in the Fig. 14.

IX. CONCLUSION

This paper examines how to confirm genuine multipartite
entanglement using continuous-variable (that is, quadrature
phase amplitude) measurements, pointing out that the ap-
proach pioneered by van Loock and Furusawa is not in
itself sufficient in realistic situations, where one needs to
exclude all mixed-state models. The criteria are based on the
scaled position and momentum observables of the quantized
harmonic oscillator, and thus could also be used to detect the
position and momentum entanglement associated with quan-
tum mechanical oscillators, as done for bipartite entanglement
in the recent experiment of Ref. [49].

We have presented a general strategy for deriving criteria
to detect genuine N -partite entanglement. Further, we present
specific criteria and algorithms for the detection of the genuine
N -partite entanglement of CV GHZ and EPR-type states that
have been realized (or proposed) experimentally. In the GHZ
case, we show that genuine tripartite entanglement could be
confirmed for noise reductions at 2

3 the level necessary to
violate the standard van Loock–Furusawa inequalities. We
also present specific predictions for higher N , and consider
the effect of transmission losses which could be important
to quantum communication applications. A more significant
limitation in terms of detecting the genuine multipartite
entanglement in a laboratory is likely to be the degree of
impurity of the initial squeezed inputs. This effect has not
been addressed in this paper, but has been studied in part in
Ref. [27].

For three parties, we also present criteria for genuine
tripartite steering. This corresponds to a type of entanglement
giving a multipartite EPR paradox. In that case, any single
party can be “steered” by the other two, which means that
entanglement can be confirmed between the two groups, even
when the group of two parties (or their devices) cannot be
trusted to perform proper quantum measurements. This form
of entanglement is likely to be useful to multiparty one-sided
device-independent quantum cryptography.

ACKNOWLEDGMENTS

This work was supported by the Australian Research
Council Discovery Projects program. We are grateful to
P. Drummond, Q. He, S. Armstrong, and P. K. Lam for
stimulating discussions.

APPENDIX

1. Proof of the relation (4)

Let us assume that the system is described by the mixture
ρkm,n = ∑

i η
(n)
i ρi

kmρi
n. Then, on using the Cauchy Schwarz

inequality, we find

(�u)2(�v)2 �
[∑

i

η
(n)
i (�u)2

i

] [∑
i

η
(n)
i (�v)2

i

]

�
[∑

i

η
(n)
i (�u)i(�v)i

]2

, (A1)

where (�u)i(�v)i is the product of the variances for a pure
product state of type ψkmψn denoted by i. Generally, let
us consider a system in a product state of type ψaψb and
define the linear combinations xa + gxb and pa + gpb of
the operators xa , pa and xb, pb for the systems described
by wave functions ψa and ψb, respectively. It is always
true that the variances for such a product state satisfy
[�(xa + gxb)]2 = (�xa)2 + g2(�xb)2 and [�(pa + gpb)]2 =
(�pa)2 + g2(�pb)2. This implies that

[�(xa + gxb)]2[�(pa + gpb)]2

= [(�xa)2 + g2(�xb)2][(�pa)2 + g2(�pb)2]

� [�xa�pa + g2�xb�pb]2, (A2)

where we use that for any real numbers x and y,
x2 + y2 � 2xy. We can apply this result to deduce
that for a product state of type ψkmψn, it is true
that (�u)i(�v)i � [�(hkxk + hmxm)][�(gkpk + gmpm)] +
|hngn|(�xn)(�pn) � |hkgk + hmgm| + |hngn|. �

2. Proof of the product version of the van Loock–Furusawa
inequalities [Eq. (6)]

For SI , we have the condition h1 = −h2 = g1 = g2 = 1
and h3 = 0. Using the result (4), we see that the states
ρ = ∑

i η
(2)
i ρi

13ρ
i
2 and ρ = ∑

i η
(1)
i ρi

23ρ
i
1 satisfy SI � 2, while

the state ρ = ∑
i η

(3)
i ρi

12ρ
i
3 gives SI � 0. Similarly, we have

h2 = −h3 = g2 = g3 = 1 and h1 = 0 for SII . The states ρ =∑
i η

(3)
i ρi

12ρ
i
3 and ρ = ∑

i η
(2)
i ρi

13ρ
i
2 satisfy SII � 2 while the

state ρ = ∑
i η

(1)
i ρi

23ρ
i
1 gives SII � 0. Lastly, the conditions

h1 = −h3 = g1 = g3 = 1 and h2 = 0 for SIII give SIII � 2
for the states ρ = ∑

i η
(3)
i ρi

12ρ
i
3 and ρ = ∑

i η
(1)
i ρi

23ρ
i
1, and

SIII � 0 for ρ = ∑
i η

(2)
i ρi

13ρ
i
2. �

3. Proof of Criterion 2

Consider any mixture of the form Eq. (1). We can use the
result (12) to write SI � P1SI,1 + P2SI,2 + P3SI,3 � P1SI,1 +
P2SI,2 where SI,k (k = 1,2,3) is the value of SI predicted for
the component k of the mixture. Now, we know that the first
two states of the mixture satisfy the inequality SI � 2. Hence,
for any mixture SI � 2(P1 + P2). Similarly, SII � 2(P2 + P3)
and SIII � 2(P1 + P3). Then, we see that since

∑3
k=1 Pk = 1,

for any mixture it must be true that SI + SII + SIII � 4. �

4. Mixed bipartite entangled states that are fully
tripartite inseparable

Consider the mixed biseparable state of the type given by
Shalm et al. [4]:

ρc
BS = 1

2ρ12ρ3 + 1
2ρ23ρ1. (A3)
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This mixed state satisfies the van Loock-Furusawa criteria for
full tripartite inseparability but, being a mixture of biseparable
states, is not genuinely tripartite entangled. Here, ρ12 and ρ23

are two-mode squeezed states defined by ρkm = |ψkm〉〈ψkm|
where |ψkm〉 = (1 − x2)1/2 ∑∞

n=0 xn|n〉k|n〉m. Here, |n〉k are
the number states of mode k, x = tanh(r) and r � 0 is
the squeeze parameter that determines the amount of two-mode
squeezing (entanglement) between the modes k and m. The
ρj are single-mode vacuum squeezed states, with squeeze
parameter denoted by r . The component ρ12ρ3 can violate
the inequality BI � 4, while ρ23ρ1 can violate the inequality
BII � 4. It is straightforward to show on selecting g1 = g3 =
g that ρBS can violate both inequalities. This demonstrates the
full inseparability of the biseparable mixture, by way of the van
Loock–Furusawa inequalities. Unless one can exclude mixed
states, therefore, further criteria are needed to detect genuine
tripartite entanglement.

5. Proof of Criterion 6

This follows from the result (4). Using Eq. (4), we see
that the bipartition given by 12 − 3 implies �u�v � |g3h3| +
|h1g1 + h2g2|, the bipartition 13 − 2 implies �u�v �
|g2h2| + |h1g1 + h3g3|, and the bipartition 23 − 1 implies
�u�v � |g1h1| + |g2h2 + h3g3|. Thus, we see that any mix-
ture Eq. (1) will imply Eq. (20). �

6. Proof of the relations (25) and (26) for EPR steering criteria

For the special sort of bipartition {km,n}s , only system n is
constrained to be a quantum state. Letting u = hkxk + hmxm +
hnxn and v = gkpk + gmpm + gnpn, we show that always

[�(hkxk + hmxm + hnxn)]2 + [�(gkpk + gmpm + gnpn)]2

�
∑

i

ηi

{(
h2

n�x2
n

)
i
+ �(hmxm + hkxk)2

+ (
g2

n�p2
n

)
i
+ �(gmpm + gkpk)2},

where we follow Ref. [40] and use that for a mixture, the
variance cannot be less than the average of the variance of
the components. Because the state of systems k and m is not
assumed to be a quantum state, there is only the assumption of
non-negativity for the associated variances. The single system
n, however, is constrained to be a quantum state, and therefore
its moments satisfy the uncertainty relation, which implies
(�xn)2 + (�pn)2 � 2. Hence, if we assume that system k,m

cannot steer n, the following inequality will hold:

(�u)2 + (�v)2 � 2|hngn|. (A4)

The product relation follows similarly. �

7. Proof of Criteria 1s and 2s

We assume the hybrid LHS model associated with Eq. (24)
is valid. Since then, BI is the sum of two variances of
a system in a probabilistic mixture, we can write BI �
P1BI,1 + P2BI,2 + BI,3 � P1BI + P2B2 where BI,n denotes
the prediction for BI given the system is in the biparti-
tion {km,n}s . Now, we know that the first two states of
the mixture satisfy the inequality BI � 2. Hence, for any
mixture BI � 2(P1 + P2). Similarly, BII � 2(P2 + P3) and
BIII � 2(P1 + P3). Then, we see that since

∑3
k=1 Pk = 1,

for any mixture it must be true that BI + BII + BIII � 4.
Hence, tripartite genuine steering is confirmed when this
inequality is violated. Similarly, for the hybrid LHS model,
SI � P1SI,1 + P2SI,2 + P3SI,3 � P1SI,1 + P2SI,2 where SI,n

(n = 1,2,3) is the value of SI predicted given the system is
in the bipartition {km,n}s . Now, we know that the first two
states of the mixture satisfy the inequality SI � 1. Hence,
for any mixture SI � P1 + P2. Also, SII � P2 + P3 and
SIII � P1 + P3, which implies SI + SII + SIII � 2. �

8. Proof of Criteria 3s and 4s

Proof. First, we assume the system is described by the
bipartition {12,3}st . Using Eq. (25) with u = x1 − (x2+x3)√

2
and

v = p1 + (p2+p3)√
2

, this gives the constraint (�u)2 + (�v)2 �
1. Similarly, the bipartition {13,2}st gives (�u)2 + (�v)2 � 1,
and the bipartition {23,1}st gives (�u)2 + (�v)2 � 2. Thus, all
bipartitions satisfy (�u)2 + (�v)2 � 1. Using the result (10)
for the system in a probabilisitc mixture where moments are
given as Eq. (24), we can say that (�u)2 + (�v)2 � 1. Thus,
genuine tripartite steering is confirmed if this inequality is
violated. Using Eq. (26) for the bipartition {12,3}st , it is also
true that �u�v � 1

2 , and similarly for bipartition {13,2}st . For
bipartition {23,1}st we find �u�v � 1. Then again, for any
mixture, using Eq. (12), we deduce Criterion 4s. �

9. Optimizing the Criterion 8

We describe the algorithm to compute the gains (g,h) used
in the figures based on Criterion 8 for the GHZ and asymmetric
and symmetric EPR-type states. The variances (�u)2 and
(�v)2 on the left side of the inequality (37) can be expanded in
terms of covariance matrix elements of the inputs (following
Ref. [26]), which can then be computed for the relevant CV
quantum state. We select hi = h and gi = g for for i � 2. The
choice of g,h values was obtained by setting d

dh
(�u)2 = 0

and d
dg

(�v)2 = 0. For the CV GHZ state, expanding we
have

(�u)2 = 1

N
[(N − 1)2h2 + 2h(N − 1) + 1]

(
�x

(in)
1

)2

+ (N − 1)

N
[h2 − 2h + 1]

(
�x

(in)
2

)2
,

(�v)2 = 1

N
[(N − 1)2g2 + 2g(N − 1) + 1]

(
�p

(in)
1

)2

+ (N − 1)

N
[g2 − 2g + 1]

(
�p

(in)
2

)2
, (A5)

which gives, on differentiation, the choice of

h = −
(
�x

(in)
1

)2 − (
�x

(in)
2

)2(
�x

(in)
2

)2 + (N − 1)
(
�x

(in)
1

)2 ,

(A6)

g = −
(
�p

(in)
1

)2 − (
�p

(in)
2

)2(
�p

(in)
2

)2 + (N − 1)
(
�p

(in)
1

)2 .

Here, (�x
(in)
1 )2 = e2r , (�x

(in)
2 )2 = e−2r , (�p

(in)
1 )2 = e−2r , and

(�p
(in)
2 )2 = e2r are the variances for the two inputs to BS1,

as depicted in Fig. 9. The superscript (in) denotes the input
modes. For the N = 4 configuration at large r , we see that
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g = 1 and h = − 1
3 . In general, for g,h values satisfying |gh| � 1, gh < 0, 1 − 2gh � 1, we see that the right side of Criterion 8

reduces to 2[1 + (N − 3)gh]. Identical procedures are used to obtain the gains for the asymmetric EPR-type state I of Fig. 10.
They are given as

h = −
(
�x

(in)
1

)2 − (
�x

(in)
2

)2

√
(N − 1)

[(
�x

(in)
2

)2 + (
�x

(in)
1

)2] ,

(A7)

g = −
(
�p

(in)
1

)2 − (
�p

(in)
2

)2

√
(N − 1)

[(
�p

(in)
2

)2 + (
�p

(in)
1

)2] .

For the N = 4 configuration at large r , we see that g = 1/
√

3 and h = −1/
√

3. For the symmetric EPR-type state II of Fig. 11,
the analytical expressions depend on whether the number of parties that are involved is even or odd. However, the algorithm to
compute these gains is otherwise identical.
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