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Spin-1 systems, in comparison to spin- 1
2 systems, offer a better security for encoding and transferring quantum

information, primarily due to their larger Hilbert spaces. Superconducting artificial atoms possess multiple energy
levels, thereby being capable of emulating higher-spin systems. Here I consider a one-dimensional lattice of
nearest-neighbor-coupled superconducting transmon systems, and devise a scheme to transfer an arbitrary qutrit
state (a state encoded in a three-level quantum system) across the chain. I assume adjustable couplings between
adjacent transmons, derive an analytic constraint for the control pulse, and show how to satisfy the constraint to
achieve a high-fidelity state transfer under current experimental conditions. My protocol thus enables enhanced
quantum communication and information processing with promising superconducting qutrits.
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I. INTRODUCTION

Quantum state transfer (QST) between two quantum sys-
tems remains a primitive operation for many protocols in quan-
tum communication, simulation, and information processing.
QST along a chain of nearest-neighbor-coupled spin- 1

2 systems
has been extensively studied as a channel for short-distance
quantum communication [1–7], and its implementations have
been proposed for NMR systems [8–10], trapped Rydberg
ions [11], coupled-cavity arrays [12], and superconducting
flux qubits [13], with experimental realizations reported so far
for NMR systems [14], photonic lattices [15,16], and cold
atoms [17,18]. However, with the discovery that quantum
information processing becomes more robust on higher-
dimensional spin systems [19,20], considerable attention has
been paid to the higher-dimensional spin chains. This leads
to the emergence of a number of proposals in recent years
for possible QST schemes on d-level (d > 2) spin chains,
specifically on spin-1 chains [21–27].

Superconducting artificial atoms contain more than two
energy levels that can be readily manipulated and reliably
measured, thereby allowing the possibility of emulating the
higher spin systems [28]. In this work, I devise a scheme to
emulate a QST along a spin-1 chain on a one-dimensional
array of nearest-neighbor-coupled superconducting transmon
systems [29]. The transmons are treated as qutrits (three-level
systems) with the three lowest energy levels mapping to the
three possible states of a spin-1 particle. I also assume an
adjustable coupling between each pair of adjacent transmons
that can be tuned via control electronics, an architecture often
referred to as a gmon device [30,31]. It should be emphasized
in this context that when two transmons are coupled (via an
inductive tunable coupler), the coupling strengths in the single-
and double-excitation subspaces are unequal requiring two
different time scales to transfer quantum states for those two
subspaces. These unequal coupling strengths, in fact, preclude
a direct generalization from a qubit-to-qubit state transfer to
a qutrit-to-qutrit state transfer for superconducting systems,
which motivates us to develop a strategy for such a higher-
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dimensional state transfer across the chain of superconducting
qutrits under experimental conditions.

The problem of emulating the QST on the array of coupled
transmon qutrits can be described as follows: First, I prepare
an arbitrary qutrit state |ψ〉 = α|0〉 + β|1〉 + γ |2〉 in the first
qutrit (as demonstrated by Neeley et al. [28]), and then control
the tunable coupling strengths for a specific time-duration such
that

|ψ〉1 ⊗ |0〉2 ⊗ |0〉3 ⊗ · · · ⊗ |0〉N
−→ |0〉1 ⊗ |0〉2 ⊗ |0〉3 ⊗ · · · ⊗ |ψ〉N, (1)

where the subscripts denote the qutrit indices and N is the
number of transmons in the array. The transformation shown
in Eq. (1) is achieved via successive state transfers between
adjacent qutrits, given by

|ψ〉j ⊗ |0〉j+1 −→|0〉j ⊗ |ψ〉j+1, ∀ j ∈ {1,2, . . . ,N − 1}.
(2)

Note that in order to perform the state transfer between adja-
cent qutrits, it is necessary and sufficient that the operations

|1〉j ⊗ |0〉j+1 −→ |0〉j ⊗ |1〉j+1,
(3)

|2〉j ⊗ |0〉j+1 −→ |0〉j ⊗ |2〉j+1,

are performed simultaneously with other states unchanged.
Here I show how to achieve such a simultaneous state trans-
fer with superconducting qutrits under current experimental
constraints.

The remainder of the paper is organized as follows: I first
discuss the state transfer between two coupled qutrits in Sec. II.
Next, I describe my QST protocol across the array of coupled
qutrits in Sec. III. The effects of intrinsic and decoherence-
induced errors are discussed in Sec. IV, and I conclude with
possible future directions in Sec. V.

II. QUANTUM STATE TRANSFER
BETWEEN TWO QUTRITS

Here I focus on the QST between two coupled supercon-
ducting qutrits. First I describe the coupled-qutrit model and
then discuss my state-transfer protocol.
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A. Coupled-qutrit model

The Hamiltonian of a system of two superconducting
transmon devices coupled via an adjustable inductive coupling
(the ‘gmon’ architecture [30,31]) is given by (from the
laboratory frame)

H (t) =
2∑

i=1

⎡⎣0 0 0
0 εi(t) 0
0 0 2εi(t) − ηi

⎤⎦
qi

+ g(t)X1X2,

(4)

where

Xk =
⎡⎣0 1 0

1 0
√

2
0

√
2 0

⎤⎦
qk

, (5)

where k denotes the qutrit index, and the matrix subscripts
q1,2 denote the matrix representations of the corresponding
operators for the first and the second qutrit, respectively. εi

in Eq. (4) denotes the frequency of the ith qutrit that can
be tuned with external control electronics. g denotes the
adjustable coupling strength between two qutrits that can
be varied between 0 and 55 MHz [30]. ηi is the anhar-
monicity of the ith qutrit, and here we assume η1 = η2 = η

(= 200 MHz) [32].
To transform the Hamiltonian (4) from a laboratory frame

to a rotating frame, we specify a local reference clock for each
qutrit (with frequencies ω1 and ω2) with a clock Hamiltonian,

Hcl =
⎡⎣0 0 0

0 ω1 0
0 0 2ω1

⎤⎦
q1

+
⎡⎣0 0 0

0 ω2 0
0 0 2ω2

⎤⎦
q2

. (6)

The unitary operator corresponding to the rotating frame
specified by the clock-Hamiltonian (6) is defined as

R(t) ≡ eiHclt . (7)

The Hamiltonian from the rotating frame is then given by

H̃ (t) = R†(t)H (t)R(t) − iṘ†(t)R(t)

=
2∑

i=1

⎡⎣0 0 0
0 	i(t) 0
0 0 2	i(t) − ηi

⎤⎦
qi

+ g(t)V, (8)

where

	1,2(t) = ε1,2(t) − ω1,2,

V =
⎡⎣0 A 0

B 0 A
√

2
0 B

√
2 0

⎤⎦ , with

A : =
⎡⎣ 0 ei(ω1+ω2) 0

ei(ω1−ω2) 0
√

2ei(ω1+ω2)

0
√

2ei(ω1−ω2) 0

⎤⎦ ,

B : =
⎡⎣ 0 ei(ω2−ω1) 0

e−i(ω1+ω2) 0
√

2ei(ω2−ω1)

0
√

2e−i(ω1+ω2) 0

⎤⎦ . (9)

Note that the interaction term V in Eq. (8) contains rapidly
oscillating elements rotating with a frequency ω1 + ω2. As-
suming ω1 = ω2 (a global clock) and applying the rotating-
wave approximation (RWA) to remove these rapidly oscillating
terms, for which the Hamiltonian (8) can be expressed as

H̃ (t) =
2∑

i=1

⎡⎣0 0 0
0 	i(t) 0
0 0 2	i(t) − ηi

⎤⎦
qi

+ g(t)

2
(X1X2 + Y1Y2), (10)

where

Yk =
⎡⎣0 −i 0

i 0 −i
√

2
0 i

√
2 0

⎤⎦
qk

, ∀ k ∈ {1,2}, (11)

and Xk is defined in Eq. (5). 	1,2 are time-dependent frequen-
cies of the qutrits from the rotating frame that can be varied
within −2.5 to +2.5 GHz using control electronics. Also, it
is interesting to note that the transformation from laboratory
frame to rotating frame, in fact, changes the interaction part of
our Hamiltonian from XX type to XY type under the RWA.

B. Population transfer between two qutrits

Now I describe how to transfer the population from one
qutrit to another. To perform the population transfer, it is
sufficient to transform |00〉 ↔ |00〉, |10〉 ↔ |01〉, and |20〉 ↔
|02〉 simultaneously. These simultaneous transformations can
be achieved by bringing the qutrits in resonance (i.e., 	1=	2)
and then turning the coupling on under certain constraints,
which we derive analytically in this section.

First, it is important to note that the |00〉 state is sufficiently
detuned from all other energy levels when the qutrits are in
resonance, and therefore remains invariant even if the coupling
is turned on. We represent the Hamiltonian (10) in the single-
excitation subspace {|01〉,|10〉} (denoted by H̃1) and double-
excitation subspace {|11〉,|02〉,|20〉} (denoted by H̃2) as (after
energy rescaling and with 	1 = 	2)

H̃1(t) =
[

0 g

g 0

]
and

H̃2(t) =
⎡⎣ η g

√
2 g

√
2

g
√

2 0 0
g
√

2 0 0

⎤⎦ , (12)

where the time dependence is embedded in g. In the notation
of Pauli spin matrices, H̃1(t) = g(t)σx , and therefore, a
population transfer in the single-excitation subspace requires∫ tQST

0
g(t)dt = mπ

2
, (13)

where m is an odd number and tQST denotes the time required
for the quantum state transfer.

How about a population transfer in the {|02〉,|20〉} sub-
space? Note that the levels |02〉 and |20〉 are not directly cou-
pled, but coupled via |11〉 state. The instantaneous eigenvalues
of H̃2 are 0 and η/2 ±

√
(η/2)2 + (2g)2, when the qutrits are in

resonance. We can, therefore, construct an effective coupling
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geff between |02〉 and |20〉 states from the level repulsion
between these states, which is given by

geff =
∣∣∣∣∣∣η4 −

√(
η

4

)2

+ g2

∣∣∣∣∣∣ . (14)

Following the same argument as for single-excitation sub-
space, we can express the condition for population transfer
between |20〉 and |02〉 states as∫ tQST

0
geff(t)dt =

∫ tQST

0

∣∣∣∣∣∣η4 −
√(

η

4

)2

+ [g(t)]2

∣∣∣∣∣∣ dt = lπ

2
,

(15)

where l is an odd number. Since g
geff (≈ 2g2/η) (assuming
η 
 g), the population transfer in the single-excitation sub-
space is faster than that in the double-excitation subspace,
which motivates us to assume l = 1 and m > 1. Now,
combining Eqs. (13) and (15), we obtain the condition for
population transfer between qutrits as∫ tQST

0
g(t)dt=m

∫ tQST

0

∣∣∣∣∣∣η4 −
√(

η

4

)2

+ [g(t)]2

∣∣∣∣∣∣ dt = mπ

2
,

(16)

where m is an odd number, and I later show that it is possible to
constrain g within an experimentally feasible range for m = 3.

C. Designing a control pulse for g(t)

Now we use Eq. (16) to design a trapezoidal pulse for g(t)
with g(0) = g(tQST) = 0 [33]. Let gmax be the maximum value
that g(t) achieves in the intermediate time, which gives∫ tQST

0
g(t)dt = gmax(tQST − 2) = 3π

2
, (17)

assuming m = 3 and a 2-ns ramp as shown in Fig. 1(a). The
2-ns ramp is consistent with the bandwidth specification of
existing superconducting control electronics [30].

Now, we estimate an approximate value for gmax, assuming
that the area traced out by g(t) and geff(t) during the constant
part of the trapezoidal pulse are almost equal, which essentially
means that

gmax = 3

∣∣∣∣∣∣η4 −
√(

η

4

)2

+ g2
max

∣∣∣∣∣∣ . (18)

Solving for gmax from Eq. (18) and then tQST from Eq. (17),
we obtain

gmax = 3η

16
and tQST = 2 + 8π

η
. (19)

For η = 200 MHz, gmax = 37.5 MHz and tQST = 22 ns.
It is possible to further improve the performance of

qutrit-qutrit population transfer by optimizing gmax and tQST

independently, using the analytical values as initial solutions.
Figure 1(a) shows such an optimal trapezoidal pulse for g(t)
with 	1 = 	2, and η = 200 MHz. Table I summarizes the
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FIG. 1. (Color online) (a) Optimal trapezoidal control pulse for
g(t) while two qutrits are in resonance. (b) Probability of population
in the |01〉 and |02〉 states under the trapezoidal pulse, assuming that
the |10〉 and |20〉 states are occupied initially.

analytical estimates and optimal numerical values for gmax

and tQST.
Figure 1(b) shows the probabilities of population transfer as

a function of time for |10〉 → |01〉 and |20〉 → |02〉 transitions
under the optimal trapezoidal pulse shown in Fig. 1(a).
As mentioned earlier, population transfer in the {|10〉,|01〉}
subspace is faster than that in the {|20〉,|02〉} subspace, and
in my protocol I set a specific value for gmax such that these
transfers occur simultaneously, coinciding the first peak for
the latter with the second peak for the former case. In contrast
with the qubit-qubit state transfer, this unusual matching is,
in fact, necessary for qutrit-qutrit state transfer, and probably
the only choice that satisfies current experimental constraints
for superconducting devices. The oscillation observed for the
|20〉 → |02〉 transition in Fig. 1(b) is due to the interference
with the |11〉 state in the double-excitation subspace.

D. Compensating phases

In the population transfer protocol described above, the
double-excitation subspace acquires a phase (in the rotat-
ing frame), ϕ = ηtQST, with respect to the {|00〉,|01〉,|10〉}
subspace. My state-transfer protocol, therefore, consists of

TABLE I. Parameters for the control pulse and the corresponding
fidelities [defined in Eq. (26)]. Analytical estimates are computed
from Eq. (19) and numerical values are obtained via optimization of
gmax and tQST independently.

Values

Parameters Numerical Analytical

gmax (MHz) 37.7 37.5
tQST (ns) 21.95 22
F (%) 99.996 99.992
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the population transfer plus compensating for the additional
phases acquired by any of the basis states. Here I discuss how
to compensate for any arbitrary phase acquired by a supercon-
ducting qutrit. The Hamiltonian for a single superconducting
qutrit in a rotating frame is given by (in the computational
basis)

H̃q(t) =
⎡⎣0 0 0

0 	(t) 0
0 0 2	(t) − η

⎤⎦ . (20)

To perform an arbitrary phase rotation,

Uphase =
⎡⎣1 0 0

0 e−iθ 0
0 0 e−iφ

⎤⎦ , (21)

on the single-qutrit basis states, we vary the time-dependent
qutrit frequency such that

θ =
∫ tphase

0
	(t)dt, φ =

∫ tphase

0
(2	(t) − η)dt. (22)

Equation (22) is satisfied if we set

tphase = 2θ − φ

η
, 	max = ηθ

2θ − φ − 2η
, (23)

assuming a trapezoidal pulse for 	(t) with a 2-ns ramp, and
	max being the maximum value. Equation (23) can always be
satisfied with a proper choice of θ and φ modulo 2π .

E. State-transfer fidelity

The state transfer considered in this section requires one
qutrit to be in an arbitrary state |ψ〉, while the other qutrit is in
the |0〉 state. The state-transfer operation UQST can, therefore,
be represented in matrix form in the basis

{|00〉,|01〉,|10〉,|02〉,|20〉} (24)

as

UQST =

⎡⎢⎢⎢⎣
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

⎤⎥⎥⎥⎦ . (25)

If Uobt is the time-evolution operator obtained under the control
pulse shown in Fig. 1(a), then the fidelity F between Uobt and
UQST is defined as [32]

F = Tr(P̂Uobt U
†
obtP̂) + |Tr(U †

QST P̂UobtP̂)|2
d(d + 1)

, (26)

where P̂ is the projection operator that projects the time-
evolution operator Uobt into the computational subspace (24),
and d is the dimension of the computational subspace, which
is 5 for this case. In the absence of decoherence, the dominant
source of error in state transfer is the leakage to the |11〉
state in the double-excitation subspace [34], while the phase
compensation operation is exact under the model considered
for this work. We, therefore, can replace Uobt by |Uobt| in
Eq. (26) and compute F , which characterizes the fidelity for
both the state transfer and the population transfer.

III. STATE TRANSFER ACROSS A CHAIN OF
NEAREST-NEIGHBOR-COUPLED QUTRITS

Here I describe the model for an array of nearest-neighbor-
coupled transmons and then discuss the QST across the chain
of transmon quirts.

A. Array of coupled qutrits

Following the same technique as adopted in Sec. II A to
derive the coupled-qutrit Hamiltonian (10), we can show that
the Hamiltonian for a system of N nearest-neighbor-coupled
superconducting qutrits is given by (from rotating frame)

H̃N (t) =
N∑

k=1

⎡⎣0 0 0
0 	k(t) 0
0 0 2	k(t) − η

⎤⎦
qk

+
N−1∑
k=1

gk(t)

2
(XkXk+1 + YkYk+1), (27)

where 	k is frequency of the kth transmon measured in
reference to the frequency of the rotating frame, and Xk

and Yk are three-dimensional generalizations of Pauli’s σx

and σy matrices (corresponding to the kth qutrit), as defined
in Equations (5) and (11), respectively. While both the
frequencies and coupling strengths are time dependent for our
system, in order to perform QST we keep all the qutrits in
resonance, i.e., 	k = 0, ∀ k ∈ {1,2, . . . ,N}, and control the
coupling strengths gk with external control pulses.

Our QST protocol is composed of sequential state-transfer
steps between adjacent qutrits, which means for N qutrits
we need to perform N − 1 sequential QST operations. It is
therefore equivalent if we explore the accumulation of error
for our protocol as a function of number of qutrits or as a
function of number of concatenated state-transfer steps. I here
adopt the latter and analyze the error mechanisms for our
approach in the next section.

B. State transfer protocol

As mentioned earlier, all the qutrits are always in resonance
during our QST protocol, while the coupling strengths are
changed sequentially to transfer our initial state successively
from one qutrit to another via neighboring qutrits. Figure 2
shows our sequential trapezoidal control pulses for a QST
across a chain of four coupled qutrits, where we use the optimal
parameters (shown in Table I) obtained numerically for the
two-qutrit state transfer. A state transfer across a chain of N

t (nanoseconds)
0 10 20 30 40 50 60

g 
(G

H
z)

0

0.02

0.04
g

1

g
2

g
3

FIG. 2. (Color online) Trapezoidal pulses for gk(t) for a state
transfer across a chain of four nearest-neighbor-coupled supercon-
ducting qutrits. To emulate a QST across a chain of N qutrits, we
need to concatenate (N − 1) such pulses.
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coupled qutrits requires concatenation of (N − 1) such pulses
one after another, as mentioned earlier. I emphasize that it is
sufficient for our QST protocol if we just optimize the pulse
for a single qutrit-qutrit state transfer and then combine the
pulses sequentially as shown in Fig. 2. This modularity is, in
fact, required for any scalable QST protocols.

IV. ANALYSIS OF ERRORS

Here I discuss various error mechanisms relevant to our
QST scheme. First, we estimate the errors generated from the
unitary evolution under the control pulse (intrinsic errors), and
then explore the effect of decoherence.

A. Intrinsic errors

Our QST scheme is composed of concatenating successive
trapezoidal pulses for the coupling strengths, where the same
set of optimal parameters is used for each pulse. Intrinsic
errors are defined as errors originating from the unitary
evolution of the system under the control pulse at T1,2 →
∞ limit. To quantify how the intrinsic errors accumulate
with sequential state-transfer steps, we prepare a uniform
superposition ψunif = (|0〉 + |1〉 + |2〉)/√3 in the first qutrit,
and then compute the error after every state-transfer step to the
adjacent qutrit. If ψk is the quantum state transferred at the kth
step to the (k + 1)th qutrit, then we define the intrinsic error as

E intr
k = 1 − |〈ψunif|ψk〉|2. (28)

The blue (square) data points in Fig. 3 show the intrinsic
error as a function of the number of steps, and we observe
a quartic accumulation of intrinsic errors in that regime. The
green (gray) curve in Fig. 3 is a quartic fit corresponding
to E intr

k = Ak4, where the prefactor A is numerically
determined to be ∼ 2.1 × 10−10 for our case. The quartic
accumulation of intrinsic errors, as opposed to an exponential
accumulation [35], in fact allows us to perform a state transfer
across a longer chain of superconducting qutrits.
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20 40 60 80 100 120 140

er
ro

r

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
intrinsic error (data points)
intrinsic error (quartic fit)
decoherence (data points)
decoherence (linear fit)

FIG. 3. (Color online) Accumulation of intrinsic and
decoherence-induced errors with the number of steps. The red
diamonds and blue squares are numerically computed data points,
and the solid black and green (gray) curves are the linear and quartic
fit for the decoherence-induced and intrinsic errors, respectively.

It should be emphasized at this point that many other
error mechanisms can occur in a realistic setup, such as
errors generated by the imperfect control electronics. Also,
one can design different pulse shapes satisfying the constraint
derived in this work, and imperfection in concatenating various
pulse shapes can generate considerable intrinsic errors. While
the robustness of my approach against such realistic noise
mechanisms could be a topic of future research, I here consider
a perfect experimental control and concatenation and analyze
the intrinsic error that comes from the leakage of population
into some undesired states.

B. Effects of decoherence

The model considered for this work assumes tunable
couplings between adjacent qutrits, which means that during
the entire state transfer, all the qutrits are decoupled from the
system as well as remain in the ground state, except for the
two neighboring qutrits participating in the QST. I therefore
argue that the effects of decoherence on the qutrit state is
essentially equivalent to that on a single qutrit prepared in
the same state during the entire state-transfer process. To
quantify the decoherence-induced errors on our QST scheme,
we consider a single qutrit prepared in a uniform superposition
ψunif = (|0〉 + |1〉 + |2〉)/√3 (as considered for estimating the
intrinsic errors), and construct the Kraus matrices for the
amplitude and phase damping using the damped harmonic
oscillator approximation [36]. We then perform the Kraus
evolution for a time duration ktQST (the time required for
k successive state-transfer steps) on the single-qutrit density
matrix ρ. The red (diamond-shaped) data points in Fig. 3 show
the decoherence-induced error,

Edecoh
k = 1 − 〈ψunif|ρ(ktQST)|ψunif〉, (29)

as a function of k. The black line (almost aligned with
the blue data points) in Fig. 3 shows the linear fit for the
decoherence-induced error corresponding to Edecoh

k = Bk,
where the prefactor B is numerically determined to be
∼ 3.6 × 10−4. This numerical estimate of the slope of
the linear fit in Fig. 3 is consistent with the approximate
analytical estimate tQST/T1,2 (≈ 3.66 × 10−4), where we
assume T1 = T2 = 60 μs for the superconducting transmon
qutrits [29]. It is interesting to note that for this case,
decoherence is dominated by the intrinsic errors for k > 120,
due the the quartic scaling of the intrinsic errors.

V. CONCLUSIONS

In this work, I have introduced a proposal for emulating a
QST across a chain of spin-1 systems on a lattice of nearest-
neighbor-coupled superconducting qutrits. While the emula-
tion of higher spin systems with a single superconducting
artificial atom has been demonstrated earlier [28], the problem
transmitting a qutrit state along a chain of superconducting
atoms has remained a nontrivial problem primarily due to
the unequal coupling strengths in the single- and double-
excitation subspaces. Here I have shown how to overcome
this challenge with a proper choice of the control parameters
under existing experimental conditions. My proposal thus mo-
tivates the simulation of various quantum transport processes
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across higher spin systems, as well as enhanced quantum
communication with scalable superconducting qutrits. Some
possible future directions of this work include transmission of
an arbitrary qudit state (a state encoded in a d-level quantum
system) along a chain of coupled superconducting atoms and
transfer of various entangled qutrit states across a chain of
superconducting qutrits.
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