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A quantum code is a subspace of a Hilbert space of a physical system chosen to be correctable against a
given class of errors, where information can be encoded. Ideally, the quantum code lies within the ground space
of the physical system. When the physical model is the Heisenberg ferromagnet in the absence of an external
magnetic field, the corresponding ground space contains all permutation-invariant states. We use techniques from
combinatorics and operator theory to construct families of permutation-invariant quantum codes. These codes
have length proportional to t2; one family of codes perfectly corrects arbitrary weight t errors, while the other
family of codes approximately correct t spontaneous decay errors. The analysis of our codes’ performance with
respect to spontaneous decay errors utilizes elementary matrix analysis, where we revisit and extend the quantum
error correction criterion of Knill and Laflamme, and Leung, Chuang, Nielsen and Yamamoto.
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I. INTRODUCTION

A quantum bit (qubit) is a fundamental resource required in
many quantum information theoretic tasks, such as in quantum
cryptographic protocols [1] and in quantum computers [2].
To combat decoherence, a two-level system (qubit) may be
encoded as a quantum code, a subspace of the Hilbert space
of a physical system. Ideally, the quantum code lies within
the ground space of the physical system. A well studied exam-
ple of such families of quantum codes are Kitaev’s toric code
and surface codes [3,4], where the underlying Hamiltonian of
the physical system has four-particle interactions or requires
the use of Majorana fermions. Kitaev’s physical model [3]
would be easy to implement, if not for the difficulties in
realizing Majorana fermions [3–5] or four-way interactions in
nature. One might then wonder, if simple pairwise interactions
can be used directly to design quantum codes. Indeed, many
such models have been studied extensively in the context of
topological codes [6–10], and in this paper, we pay special
attention to the ferromagnetic Heisenberg model.

The exchange interaction, arising from the inherent in-
distinguishability of identical particles and mainly Coulomb
interactions [11,12], is a naturally abundant pairwise inter-
action. Heisenberg models [12,13] describe physical systems
with dynamics dominated by exchange interactions, such as
many-electron systems. In the absence of external magnetic
fields, Heisenberg models have Hamiltonians of the form

H = −2
∑

e = {i,j}
i < j

JeSi · Sj = −
∑

e

Je

(
πe − 1

2
1

)
,

where 1 is the identity operator, the indices i and j label
the particles in the system, and e = {i,j} labels the exchange
interactions in the system. Here Je and Si denote the exchange
constants and the vector of spin operators, respectively.
Since exchange operators essentially swap particles (see
Example 1.9 of Ref. [12] or Ref. [11]), the Heisenberg
Hamiltonian H can be expressed in terms of the swap operators
πe that swap the spin- 1

2 particles i and j . We consider

*yingkai_ouyang@sutd.edu.sg

ferromagnetic Heisenberg models (all nonzero exchange con-
stants are positive) of spin- 1

2 particles, where every pair of
particles interacts at least indirectly via a connected chain of
interactions.

The ground space of Heisenberg ferromagnets necessarily
contains the space of all permutation-invariant states. To
see this, note that any permutation-invariant state |ψ〉 is
invariant under swap, in the sense that for all interactions e,
πe|ψ〉 = |ψ〉. Let J =∑e Je, so that H = −∑e Jeπe + J

2 1.
Then we have (

H − J

2
1

)
|ψ〉 = −J |ψ〉.

The non-negativity of the exchange constants Je implies that J
is an upper bound on the spectral norm of H − J

2 1, and it fol-
lows from the above eigenvalue equation that −J is the small-
est eigenvalue of H − J

2 1. Hence any permutation-invariant
state |ψ〉 is a ground state of H . This motivates our study of
permutation-invariant (PI) codes, since such codes are neces-
sarily in the ground space of any Heisenberg ferromagnet.

Previously Ruskai and Pollatsek studied several [14,15]
PI codes using the Knill-Laflamme error correction condi-
tions [16]. Of special note is Ruskai’s nine-qubit PI code that
corrects exactly one arbitrary error [14], which is also precisely
the completely symmetrized nine-qubit Shor code [17]. In this
paper, we prove that the completely symmetrized extensions
of the Shor code, and the infinite family of the completely
symmetrized versions of the Bacon-Shor codes [18] of length
(2t + 1)2 ∼ 4t2, are PI codes that correct t-qubit errors for
all positive integers t . We also prove that a length (t + 1)
(3t + 1) + t ∼ 3t2 PI code suffices to correct t spontaneous
decays.

For any positive integers g, m, and n with m � gn, our
quantum code encodes a qubit in m particles with logical
basis states

|±L〉 :=
n∑

�=0

(±1)�√
2n

√(
n

�

)∣∣Dm
g�

〉
. (1)

In the notation of [19–21], |Dm
w 〉 is a Dicke state, which is a

normalized PI state on m qubits with a single excitation on
w qubits. We say that such a Dicke state has weight w. On
spin- 1

2 particles, the Dicke state |Dm
w 〉 may also be interpreted
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as the uniform superposition of all states with exactly w particles in the spin-up configuration, and m − w particles in the
spin-down configuration. For example, the Dicke state |D4

2〉 can be written as

|0011〉 + |0110〉 + |1100〉 + |1001〉 + |1010〉 + |0101〉√
6

= |↓↓↑↑〉 + |↓↑↑↓〉 + |↑↑↓↓〉 + |↑↓↓↑〉 + |↑↓↑↓〉 + |↓↑↑↓〉√
6

.

Here the code gap g and the code occupancy n are positive
integers; our quantum code lies within the span of (n + 1)
Dicke states with weights that are consecutive multiples of g

apart starting from zero, with code amplitudes proportional to
the square root of binomial coefficients. We define the rational
number u = m

gn
� 1 to be a scaling factor that determines the

length of our quantum code. We call our code with parameters
g, n, and u a (g,n,u)-PI code, or simply, a gnu code. The
scaling parameter u is related to the energy distribution
of a corrupted codeword in a ferromagnetic Heisenberg
model [22]; this is beyond the scope of our paper.

In the logical computation basis {|0L〉,|1L〉}, the logical
zero and logical one states are

|0L〉 = |+L〉 + |−L〉
2

=
∑
� even

0 � � � n

√ (
n

�

)
2n−1

∣∣Dgnu

g�

〉
,

|1L〉 = |+L〉 − |−L〉
2

=
∑
� odd

0 � � � n

√ (
n

�

)
2n−1

∣∣Dgnu

g�

〉
, (2)

and are supported on the Dicke states with excitation numbers
g� for even � and odd �, respectively. Hence gnu codes have
their logical states alternately occupy Dicke states of higher
excitation number spaced g apart, with maximum occupied
excitation number gn.

Intuitively, our gnu codes are similar to the harmonic
oscillator codes of Gottesman et al. [23]. In the limit of
infinite n, any gnu code is approximately equivalent to an
appropriately chosen subspace of a finitely squeezed harmonic
oscillator code, because the binomial weightings on the Dicke
states on the gnu code approach the Gaussian weightings of
the oscillator code. As such, certain limits of our gnu codes
may be interpreted as discretized analogs of certain limits of
the continuous variable codes of Gottesman et al.

Since we do not expect permutation-invariant codes that
correct a nontrivial number of errors to be quantum stabilizer
codes [24], in this paper we introduce techniques from
combinatorics and operator theory for analyzing permutation-
invariant codes. Theorem 4 and Theorem 16 quantify the
performance of our gnu codes with respect to sparse errors
and spontaneous decay errors, respectively. In particular, we
prove that (i) if g = t + 1, n > 3t , and u � 1 + t

gn
, the gnu

code corrects t spontaneous decay errors. An example is the
(2,4,1 + 1

8 )-PI code with logical codewords

|0L〉 =
∣∣D9

0

〉+ √
6
∣∣D9

4

〉+ ∣∣D9
8

〉
√

8
,

|1L〉 =
√

4
∣∣D9

2

〉+ √
4
∣∣D9

6

〉
√

8
. (3)

We also prove that (ii) if g = n = 2t + 1 and u � 1, gnu codes
correct arbitrary t qubit errors. Our (3,3,1)-PI code is precisely
Ruskai’s nine-qubit PI code that corrects an arbitrary single
qubit error [14], with logical codewords

|0L〉 =
∣∣D9

0

〉+ √
3
∣∣D9

6

〉
√

4
,

|1L〉 =
√

3
∣∣D9

3

〉+ ∣∣D9
9

〉
√

4
. (4)

An example of our extension of Ruskai’s nine-qubit PI code
is a (5,5,1)-PI code that corrects arbitrary single and double
qubit errors with logical codewords

|0L〉 =
∣∣D25

0

〉+ √
10
∣∣D25

10

〉+ √
5
∣∣D25

20

〉
√

16
,

|1L〉 =
√

5
∣∣D25

5

〉+ √
10
∣∣D25

15

〉+ ∣∣D25
25

〉
√

16
. (5)

The combinatorial methods of Sec. III play a crucial role in
the proof of both results, and also implicitly explain the origin
of the binomial coefficients in the probability amplitudes of
our logical codewords.

Our analysis of gnu codes with respect to spontaneous
decay errors requires additional tools, and is hence much
more involved than our analysis on sparse errors. While
the Knill-Laflamme error correction criterion [16] can be
used directly for our analysis on sparse errors, it does
not apply directly to our analysis on spontaneous decay
errors. Hence we supply a generalization of both the Knill-
Laflamme quantum error correction criterion [16] and the
approximate quantum error correction criterion of Leung
et al. [25]—Theorem 10. Using only the trace, the total
deviation, and the smallest eigenvalue of our matrix of code
expectations, we quantify the performance of any quantum
code with respect to any known noisy process. Our work
uses purely algebraic means to extend our knowledge of
nonstabilizer codes of which many are topological [3], as
opposed to optimization techniques [26–29] among other
approaches [30–32]. We prove Theorem 10 by repeatedly
applying the Geršgorin circle theorem (see Theorem 7,
[33,34]).

This paper has the following structure: In Sec. II, we
introduce notations related to our gnu codes, including
quantum channels, quantum codes, worst case errors, and
t-sparse channels. In Sec. III, we introduce our combinatorial
lemmas that are crucial in our analysis of gnu codes, the most
important of which is Lemma 1. In Sec. IV, we prove that
(2t + 1,2t + 1,1)-PI codes can correct arbitrary t-qubit errors
(we call these t-sparse errors) in Theorem 4. In Sec. V, we
review the truncated recovery map of Leung et al. [25] and
basic definitions and results in matrix analysis that are required
in this paper. In Sec. VI, we introduce our deviation matrices
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from which simple upper bounds on the worst case error can be
derived (see Theorem 10). In Sec. VII, we prove that gnu codes
can be used to correct multiple spontaneous decay errors in
Theorem 16. Finally in Sec. VIII, we discuss the implications
of our findings. The reader that wishes to skip our analysis
on spontaneous decay errors may omit reading Secs. V, VI,
and VII.

II. QUANTIFYING CODE PERFORMANCE

Here our density matrices are always finite dimensional. Let
a channel A be a linear map from density matrices to density
matrices admitting a (nonunique) Kraus decomposition [2]

A(ρ) =
∑

A∈KA

AρA†, (6)

where
∑

A∈KA
A†A evaluates to the identity operator 1. We

call KA, a set of complex matrices, a Kraus set of A. Elements
of a Kraus set are called Kraus operators or effects [35], and
we call any strict subset of KA a truncated Kraus set of A [36].
Truncating the Kraus set in Eq. (6) may cause A to no longer
preserve trace. In this case, the operator 1 −∑A∈KA

A†A is
positive semidefinite and need not evaluate to zero. Such
truncated maps are also called quantum operations [2]. If the
equality ∑

A∈�

wA,Fw∗
A,E = δE,F

holds for all E,F ∈ �, we call f (A) :=∑F∈� wA,FF a
transformed Kraus operator because for all ρ,∑

A∈�

AρA† =
∑
A∈�

f (A)ρf (A)†. (7)

Equation (7) explains the nonuniqueness of the Kraus repre-
sentation of channels in Eq. (6).

Mathematically, a code is a subspace of a complex
Euclidean space where quantum information resides [2]. For
a quantum operation �, we use the entanglement fidelity
F (ρ,�) [2] to quantify the closeness between the den-
sity matrices ρ and �(ρ). In Schumacher’s representation
[Eq. (43) of [37]],

F (ρ,�) =
∑

B∈K�

| Tr(Bρ)|2,

where Tr is the matrix trace operator. If � = R ◦ A, where R
is a recovery channel designed to undo the noisy channel A,
we may interpret

EA,C(R) := max
ρ∈D(C)

[1 − F (ρ,R ◦ A)] (8)

as the corresponding worst case error of a code C after
implementing the recovery R. Here, D(C) denotes the set of
all density matrices ρ such that∑

|β〉∈B
〈β|ρ|β〉 = 1,

where B is any orthonormal basis of C. For example, the worst
case error is always an upper bound on the probability of a
logical bit or phase flip.

Consider the set of Pauli errors on m qubits, which
we denote as {I,X,Y,Z}⊗m, where I = (1 0

0 1),X = (0 1
1 0),Z =

(1 0
0 −1), and Y = iXZ are the usual Pauli matrices. Given a

Pauli error P, we define its weight wt(P) to be the number
of qubits it acts nontrivially on. We say a linear combination
of Pauli errors is t sparse if each of the constituent Pauli
operators with a nonzero coefficient has a weight no greater
than t . We say a quantum channel is t sparse if each of its Kraus
operators is also t sparse. We prove in Theorem 4 that given
any t-sparse channel A that acts on a single qubit encoded in
our (2t + 1,2t + 1,u)-PI code C for all feasible scaling factors
u � 1, there exists a recovery channel R for which the worst
case error is exactly zero, that is,

EA,C(R) = 0. (9)

In general, the problem of error correction is also equivalent
to the “min-max” problem

inf
R

EA,C(R) = inf
R

max
ρ∈D(C)

[1 − F (ρ,R ◦ A)] ,

where we choose the best recovery channel R for the worst
case density matrix ρ in our codespace.

A phenomenological model for the spontaneous decay
of “probability” γ on a two-level system is the amplitude
damping (AD) channel Aγ , with Kraus operators

A0 = |0〉〈0| +
√

1 − γ |1〉〈1|, A1 = √
γ |0〉〈1|. (10)

If the channel Aγ accurately describes experimentally ob-
served decoherence, the equation 1 − γ = e−τ/T1 implicitly
quantifies γ in terms of an experimentally observed spin-lattice
relaxation time (T1) after a time elapse of τ . A Taylor
approximation for small τ

T1
yields γ ≈ τ

T1
.

When there is no encoding of the qubit, the code is just
C2 and hence the error which corresponds to no recovery is
EAγ ,C2 (I) = γ , where I is the identity channel on a qubit.
If one encodes a qubit into a quantum code over multiple
qubits, it might be possible to mitigate the effects of amplitude
damping errors, in the sense that for some positive integer t ,
our min-max problem for error correction has for all γ ∈ [0,γ0]
the upper bound

inf
R

EA⊗m
γ ,C(R) � Cγ t+1, (11)

for some positive constants C and γ0. Codes for which
Eq. (11) hold are called t-amplitude damping codes, or t-AD
codes for short. By definition, a t-AD code suppresses the
error probability γ by t folds in the exponent. We prove in
Theorem 16 that a gnu code with g = t + 1, n > 3t , and
u � 1 + t

gn
is a t-AD code for all positive integers t .

III. COMBINATORICS

In this section we introduce the key combinatorial results
that we use to prove our gnu codes’ utility in combating both
amplitude damping and sparse errors.

Denote the binomial coefficient as (n�) := n(�)

�! where the
falling factorial is

n(�) :=
�∏

k=0

(n − k).

Our main combinatorial tool is the following lemma.
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Lemma 1. Let n be a positive integer. Then for all integers
x such that 0 � x � n − 1,

n∑
�=0

(
n

�

)
�x(−1)� = 0. (12)

The above lemma can be proved trivially using linear
combinations of the binomial identity [Eq. (11) on p. 609
of [38]]

n∑
�=0

(
n

�

)
�(x)(−1)� = 0,

which holds for all 0 � x < n, and can be proved by
considering the derivatives of the binomial generating function
and using induction.

The lemma below represents a fraction of binomial coeffi-

cients

(
m − (a + c)

w − a

)(
m
w

) as a polynomial in w.

Lemma 2. Let a, c, m, and w be non-negative integers such
that a � w � m − c. Then(

m−(a+c)
w−a

)(
m

w

) =
(

w

a

)
a!(m − w)(c)

m(a+c)
.

Proof. Let s = m − (a + c). Then,(
s

w−a

)(
m

w

) = s(w−a)w!a!

m(w)(w − a)!a!
=
(

w

a

)
a!s(w−a)

m(w)
.

We can rewrite the above equation using the identity

s(w−a)

m(w)
= (m − a − c)(w−a)

m(w)
= (m − w)(c)

m(a+c)

to get (
s

w−a

)(
m

w

) =
(

w

a

)
a!(m − w)(c)

m(a+c)
.

�
To study the correction of spontaneous decay errors, we

consider the following.
Lemma 3. Let a, c, m, and w be non-negative integers as

given by Lemma 2. Then γ a(1 − γ )w−a
(m − (a + c)

w − a
)

(mw)
has the

Taylor series

m∑
k=a

(−1)yk(a)

m(a+c)
(m − w)(c)

(
w

k

)
γ k. (13)

Proof. Using Lemma 2, the binomial expansion

(1 − γ )w−a =
w−a∑
y=0

(
w − a

y

)
(−1)yγ y,

and the identity(
w − a

y

)(
w

a

)
= w(a)(w − a)(y)

a!y!
=
(

w

a + y

)(
a + y

a

)
,

and setting k = a + y yields the result.

IV. CORRECTING SPARSE ERRORS

In this section, we consider gnu codes with gap g = 2t + 1,
occupation number n = 2t + 1, and scaling factor u � 1, for
all positive integers t . We investigate the utility of our PI codes
in protecting an encoded qubit from t-sparse errors.

Let A be a t-sparse channel with Kraus set �. Note that
for all A,B ∈ �, the matrix A†B has a maximum weight of
2t . Hence for our code analysis, it suffices to evaluate inner
products of the form

〈0L|A†B|0L〉, 〈1L|A†B|1L〉, and 〈0L|A†B|1L〉.

Clearly the cross term 〈0L|A†B|1L〉 is zero for all A,B ∈
�, because our gap g = 2t + 1 is strictly greater than the
maximum weight of A†B. Indeed, if

〈0L|A†B|0L〉 − 〈1L|A†B|1L〉 (14)

equals to zero for all A,B ∈ �, the Knill and Laflamme
quantum error correction conditions [16] will hold, and perfect
correctability will follow. In this section we prove that our
(g,n,u)-PI code corrects perfectly with respect to all t-sparse
noisy channels.

Theorem 4. Let t be a positive integer and � be the Kraus
set of any t-sparse channel. Then the worst case error is exactly
zero with respect to a gnu code where g = n = 2t + 1, and
u � 1.

As a first step to prove Theorem 4, observe that (14)
simplifies to

2n−1
∑

0���n

(−1)�
(

n

�

)〈
Dm

g�

∣∣A†B
∣∣Dm

g�

〉
.

Lemma 5. Let g, n, and u be as defined in Theorem 4, and
let m = gnu. For any Pauli error P in {I,X,Y,Z}⊗m of weight
strictly less than n, we have

〈0L|P|0L〉 − 〈1L|P|1L〉 =
∑

0���n

(−1)�
(

n

�

)〈
Dm

g�

∣∣P∣∣Dm
g�

〉 = 0.

Proof. The first equality in the lemma is obvious by
definition. The permutation invariance of the Dicke states
allows us to assume without any loss of generality that

P = E ⊗ I⊗m−(x+y+z),

where

E = X⊗x ⊗ Y⊗y ⊗ Z⊗z,

and x, y, and z are non-negative integers such that

x + y + z = wt(P).

For w = g�, let Bm
w be the set of all binary vectors of length

m and weight w. Consider the set analog of the Vandermonde
identity (

m

w

)
=

wt(P)∑
a=0

(
wt(P)

a

)(
m − wt(P)

w − a

)
,
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which decomposes a set of constant weight vectors into the
following union of Cartesian products of sets:

Bm
w =

wt(P)⋃
a=0

Bwt(P)
a ×B

m−wt(P)
w−a .

Then it follows that(
m

w

)〈
Dm

w

∣∣P∣∣Dm
w

〉 = ∑
x,y∈Bm

w

〈x|P|y〉

=
wt(P)∑
a=0

∑
a,b∈B

wt(P)
a

〈a|E|b〉
(

m − wt(P)

w − a

)
.

To simplify the expression on the right-hand side of the above
equation, define the function

f (E,a, wt(P)) :=
∑

a,b∈B
wt(P)
a

〈a|E|b〉.

Hence∑
0���n

(−1)�
(

n

�

)〈
Dm

g�

∣∣P∣∣Dm
g�

〉

=
∑

0���n

(−1)�
(

n

�

) wt(P)∑
a=0

f (E,a, wt(P))

(
m−wt(P)

g�−a

)(
m

g�

) . (15)

Exchanging the order of summation in (15) and noting that
f (E,a, wt(P)) does not depend on �, we get

wt(P)∑
a=0

f (E,a, wt(P))

⎛⎝ ∑
0���n

(−1)�
(

n

�

)(m−wt(P)
g�−a

)(
m

g�

)
⎞⎠ . (16)

Using Lemma 2, the ratio of binomial coefficients in (16) is a
polynomial in � of order wt(P) given by(

m−wt(P)
g�−a

)(
m

g�

) =
(

g�

a

)
a! [m − wt(P)](wt(P)−a)

m(wt(P))
.

Hence Lemma 1 and the inequality n > wt(P) imply that the
bracketed term in (16) is zero, which proves the result. �

The above lemma implies that the expression in (14) is
always zero for all Pauli errors A and B both of weight
no more than t , and hence Theorem 4 follows from the
Knill-Laflamme error correction criterion. For completeness,
we prove Theorem 4 formally in the last part of Sec. VI.

We remark that our (3,3,1)-PI code on nine qubits is
precisely Ruskai’s nine-qubit PI code [14] that corrects an
arbitrary single qubit error. This (3,3,1)-PI code is in fact,
a completely symmetrized version of the Shor code [17], as
noted by Ruskai [14]. Similarly our (2t + 1,2t + 1,1)-PI codes
are just completely symmetrized versions of the Bacon-Shor
codes [18,39] that are capable of correcting arbitrary t-sparse
errors.

V. A REVIEW OF TRUNCATED RECOVERY
MAPS AND MATRIX ANALYSIS

A. Truncated recovery maps

We now review the recovery map of Leung et al. [25]. Given
a basis B of a code C, let � =∑|β〉∈B |β〉〈β| be a projector of
states into the codespace C. For all A in the truncated Kraus
set �, define

�A := UA�U†
A,

where UA is the unitary in the polar decomposition
A� = UA

√
�A†A�. Also define the recovery operator

RA := U†
A�A.

One might hope to use the truncated recovery map of
Leung et al.,

R�,C(μ) :=
∑
A∈�

RAμR†
A,

for code recovery, because it can be implemented by per-
forming a projective measurement followed by applying a
unitary which depends on the previous measurement outcome.
Nonorthogonal projectors �A, however, cause R�,C to in-
crease trace and not be a quantum operation.

Regardless of whether R�,C is a quantum operation, using
Schumacher’s formula for the entanglement fidelity [Eq. (43)
of [37]] and omitting terms of the form |Tr(RABρ)|2 for distinct
A,B ∈ � formally gives

Fe(ρ,R�,C ◦ A) �
∑
A∈�

|Tr(RAAρ)|2.

The expression on the right-hand side of the above inequality
admits the following lower bound.

Lemma 6. (Leung et al. [25]). Given any density matrix ρ

supported on the codespace of a code C, and a noisy channel A
with truncated Kraus set �, the truncated recovery map R�,C
has Kraus operators RA that satisfy the lower bound∑

A∈�

|Tr(RAAρ)|2 �
∑
A∈�

λmin(A†A).

B. Matrix analysis

For a d-dimensional complex vector v = {v1, . . . ,vd} and
real number p such that p � 1, define the vector p norm of
v as

‖v‖p :=
⎛⎝ d∑

j=1

v
p

j

⎞⎠1/p

.

Let G : Cd → Cd be a finite dimensional linear map. The
linear map G can be represented as a finite dimensional square
matrix, and we define its operator p-norm as

‖G‖p := sup{‖Gv‖p : v ∈ Cd ,‖v‖p = 1}.
If G is a positive semidefinite matrix, its operator 2-norm is
just its spectral radius (and maximum eigenvalue), and

‖Gn‖2 = (‖G‖2)n (17)

for all positive integers n.
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When the off-diagonal elements of a square complex matrix
G are vanishingly small, Geršgorin’s classic result [33,34]
approximates the eigenvalues of G using its diagonal entries.

Theorem 7 (Geršgorin circle theorem [33,34]). Let gi,j be
the matrix elements of a d×d matrix G, with row index i and
column index j chosen from [d]. Then every eigenvalue of G
lies within the union of the Geršgorin discs Di , where

Di :=
⎧⎨⎩x ∈ C : |x − gi,i | �

∑
j �=i

|gi,j |
⎫⎬⎭ .

VI. DEVIATION MATRICES AND QUANTUM
ERROR CORRECTION

Given a channel with a truncated Kraus set �, and a code
with orthonormal basis B, for each A and B in � we may
evaluate the code-averaged expectations

gA,B := 1

|B|
∑
|β〉∈B

〈β|A†B|β〉.

We rearrange the code-averaged expectations gA,B into a
matrix G and its corresponding (A,B)-deviation matrices
defined, respectively, by

G :=
∑

A,B∈�

gA,B|A〉〈B|, (18a)

GA,B :=
∑

|α〉,|β〉∈B
(〈α|A†B|β〉 − gA,Bδ|α〉,|β〉)|α〉〈β|, (18b)

where the orthonormal basis {|E〉 : E ∈ �} labels the Kraus
operators in �. Each deviation matrix GA,B has a diagonal
and an off-diagonal matrix element of maximal magnitude,
which we denote as θA,B and σA,B, respectively. Define the
total deviation

ε := max
A,B

θA,B + (|B| − 1) max
A,B

σA,B. (19)

The total deviation ε, Tr G, and the minimum eigenvalue of G
are the only ingredients of Theorem 10.

We give a lower bound on the magnitude of the rescaling
factor η for which our truncated recovery map R�,C,η :=

1
1+η

R�,C is a valid quantum operation.
Lemma 8. Let η be a non-negative real number such

that η �
∑

A�=B∈� ‖�U†
AUB�‖2. Then the map R�,C,η is a

quantum operation.
Proof. It suffices to show that

1

1 + η

∥∥∥∥∥∑
A∈�

R†
ARA

∥∥∥∥∥
2

� 1.

First note that R†
ARA = (�†

AUA)(U†
A�A) = �A. Since the

projectors �A may not be orthogonal,(∑
A∈�

R†
ARA

)2

=
(∑

A∈�

�A

)(∑
B∈�

�B

)

=
∑
A∈�

�A +
∑

A�=B∈�

UA�U†
AUB�U†

B. (20)

Since the left-hand side of the above equation is a positive
semidefinite matrix, we use (17) to get∥∥∥∥∥∥

(∑
A∈�

R†
ARA

)2
∥∥∥∥∥∥

2

=
∥∥∥∥∥∑

A∈�

R†
ARA

∥∥∥∥∥
2

2

.

Applying the operator 2-norm on both sides of (20), using
the triangle inequality for operator norms with the above
inequality, and applying the unitary invariance of the operator
2-norm then gives∥∥∥∥∥∑

A∈�

R†
ARA

∥∥∥∥∥
2

2

�
∥∥∥∥∥∑

A∈�

�A

∥∥∥∥∥
2

+
∑

A�=B∈�

‖�U†
AUB�‖2

�
∥∥∥∥∥∑

A∈�

�A

∥∥∥∥∥
2

+ η. (21)

Define θ to be a real number such that∥∥∥∥∥∑
A∈�

�A

∥∥∥∥∥
2

= 1 + θ.

Since the operator 2-norm of each of the projectors �A is at
least one, the real number θ has to be non-negative. Now the
inequality (21) is equivalent to

(1 + θ )2 � (1 + θ ) + η.

The above inequality is equivalent to

1 + θ + θ2 � 1 + η.

Hence it follows that (1 + θ ) � (1 + η). Applying the defini-
tion of θ then gives∥∥∥∥∥∑

A∈�

R†
ARA

∥∥∥∥∥
2

� 1 + η,

and the result follows. �
The code’s error using the rescaled recovery R�,C,η is

EA,C(R�,C,η) � 1 −
∑
A∈�

λmin ,C(A†A)

1 + η
, (22)

where λmin ,C(·) denotes the minimum eigenvalue of a matrix
restricted to a subspace C. The bound in (22) follows from
trivial application of Lemma 6 and Lemma 8, and with the
definition of the worst case error given by (8).

When the projectors �A are orthogonal, we may set η = 0
in the bound (22) to recover the result of Leung et al. regarding
an approximate quantum error correction criterion [25].

Motivated by Knill and Laflamme’s methodology [16], we
consider the spectral decomposition of the Hermitian matrix
G; there exists a unitary matrix V such that D := VGV† is
diagonal. We use the decompositions

V =
∑

E,F∈�

vE,F|E〉〈F|, D =
∑
E∈�

dE|E〉〈E|. (23)

For all Kraus operators A ∈ �, let Ã :=∑F∈� vA,FF
denote transformed Kraus operators. Repeatedly using the
Geršgorin circle theorem yields the deviation bounds:
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Lemma 9. For all distinct A,B ∈ �,

‖�Ã†Ã�‖2 � dA, ‖�Ã†B̃�‖2 � |�|ε, (24a)∑
A∈�

λmin ,C(Ã†Ã) � Tr G − |�|2ε. (24b)

Proof. The decompositions in (23) imply that for all
A,B ∈ �, ∑

F,F′∈�

vB,FgF,F′v∗
A,F′ = dAδA,B. (25)

Substituting (18b) and (25) into

〈α|Ã†B̃|β〉 =
∑

F,F′∈�

〈α|F†F′|β〉v∗
A,FvB,F′

gives our version of the “diagonalized and perturbed”
Knill-Laflamme conditions [16]

〈α|Ã†B̃|β〉 = dAδA,Bδ|α〉,|β〉 +
∑

F,F′∈�

(v∗
A,F′vB,F)〈α|GF′,F|β〉.

(26)

To obtain the first inequality in (24a), observe that

‖�Ã†Ã�‖2 � 1

|B|
∑
|α〉∈B

〈α|Ã†Ã|α〉.

Clearly
∑

|α〉∈B〈α|GA,B|α〉 = 0, and its substitution into (26)
summed over |α〉 with |β〉 = |α〉 gives

1

|B|
∑
|α〉∈B

〈α|Ã†Ã|α〉 = dA � λmin(G).

To prove the second inequality in (24a), define the vector
vA := (vA,F)F∈�. Note that∑

F,F′ ∈ �

|v∗
A,F′vB,F| = ‖vA‖1‖vB‖1.

Now the Cauchy-Schwarz inequality implies that

‖vA‖1 �
√

|�|〈vA,vA〉.
Moreover vA is a column vector in the unitary matrix V with
〈vA,vA〉 = 1. Hence applying Hölder’s inequality gives

|〈α|Ã†B̃|β〉| =
∣∣∣∣∣∣
∑

F,F′ ∈ �

v∗
A,F′vB,F〈α|GF′,F|β〉

∣∣∣∣∣∣
� |�| max

F,F′ ∈ �
|〈α|GF′,F|β〉|

�
{|�||σA,B|, |α〉 �= |β〉
|�||θA,B|, |α〉 = |β〉. (27)

Applying the Geršgorin circle theorem on∑
|α〉,|β〉∈B

|α〉〈β|〈α|Ã†B̃|β〉 (28)

using (26) and (27) yields the bound.
To prove (24b), we can similarly apply the Geršgorin

circle theorem on (28) with B̃ = Ã to get a lower bound
on λmin ,C(Ã†Ã) which when summed over A ∈ � yields the
required lower bound. �

Theorem 10. Let � be a truncated Kraus set, C be a code
with orthonormal basis B, and let G and ε be as given by
Eqs. (18a) and (19). If η = (|�|−1)|�|2ε

λmin(G) , then

inf
R

EA,C(R) � 1 − Tr G − |�|2ε
1 + η

. (29)

To prove Theorem 10, we could use recovery maps
guaranteed to be nearly optimal [40–43], but we set R =
R�,C,η because R�,C,η possibly quantifies the performance
of a recovery implemented by the recovery circuit by Leung
et al. [25].

Proof. The polar decompositions Ã� = UÃ

√
�Ã†Ã� and

B̃� = UB̃

√
�B̃†B̃� for distinct A,B ∈ � imply that

�Ã†B̃� =
√

�Ã†Ã�(�U†
Ã

UB̃�)
√

�B̃†B̃�.

Submultiplicativity of norms implies that

‖�U†
Ã

UB̃�‖2 � ‖�Ã†B̃�‖2

‖
√

�Ã†Ã�‖2‖
√

�B̃†B̃�‖2

. (30)

Using (24a), the upper bound in (30) is at most

‖�Ã†B̃�‖2

minF∈{A,B} λmax(�F̃†F̃�)
� |�|ε

λmin(G)
.

Hence if η � |�|2(|�|−1)ε
λmin(G) , Lemma 8 holds, implying thatR�,C,η

is a quantum operation. The upper bound (29) comes by
substituting A with Ã and applying (24b) in (22). �

If the total deviation ε is zero, Theorem 10 is equivalent
to Knill and Laflamme’s result on perfect quantum error
correction [16].

We now prove Theorem 4 by invoking a special case of our
main technical result, Theorem 10. This illustrates concretely
the reduction of Theorem 10 to the Knill-Laflamme quantum
error correction conditions [16] when all the deviation matrices
GA,B are exactly zero.

Proof of Theorem 4. Using Lemma 5 with the expression
in (14), it follows that for all A,B ∈ �, the deviation matrices
GA,B are identically zero. Hence it follows from Theorem 10
that the worst case error is at most

1 − Tr(G) = 1 − 〈0L|∑A∈� A†A|0L〉 + 〈1L|∑A∈� A†A|1L〉
2

.

(31)

Using the completeness relation
∑

A∈� A†A = 1, the
expression (31) simplifies to yield

1 − 〈0L|0L〉 + 〈1L|1L〉
2

= 0.

This implies that noise induced by the channel A can be
perfectly reversed using our gnu code. �

VII. CORRECTING SPONTANEOUS DECAY ERRORS

In this section, we consider gnu codes (1) of length m =
gnu with a gap g = t + 1, occupancy number n > 3t , and
scaling factor u � 1 + t

gn
for positive integers t . We consider

the amplitude damping channel on m qubits A⊗m
γ , which
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models m spontaneous decays on m qubits; each spontaneous
decay occurs independently with probability γ , and each Kraus
effect of A⊗m

γ has the form

K = K1 ⊗ · · · ⊗ Km,

where each Ki is either A0 or A1 as defined in Eq. (10).
We define supp(K), the support of K, to be the set of all
indices i where Ki = A1, and wt(K), the weight of K, to be
the cardinality of its support. In this section, let our truncated
Kraus set be the set of all Kraus effects with weights at most
t , given by

� := {K ∈ KA⊗m
γ

: wt(K) � t
} ⊂ KA⊗m

γ
. (32)

The following lemma gives a lower bound for the trace of our
G matrix.

Lemma 11. The trace of the matrix G satisfies the lower
bound

Tr G � 1 −
(

m

t + 1

)
γ t+1.

Proof. Applying the definition of gA,A and exchanging the
order of summation, we get

Tr G =
∑
A∈�

gA,A =
∑
|α〉∈B

1

|B| 〈α|
∑
A∈�

A†A|α〉.

Since

〈α|
∑
A∈�

A†A|α〉 � λmin

(∑
A∈�

A†A

)
,

hence

Tr G � λmin

(∑
A∈�

A†A

)
=

t∑
k=0

(
m

k

)
γ k(1 − γ )m−k.

Thus for γ � 0, the inequality

Tr G � 1 −
∞∑

k=t+1

(
m

k

)
γ k,

and Taylor’s theorem with remainder on (1 + γ )m gives
Tr G � 1 − ( m

t + 1)γ
t+1. �

The inner product 〈+L|A†B|−L〉 plays a central role in our
analysis of the properties of our deviation matrices GA,B for
all A,B ∈ �. Since the gap g is strictly greater than the weight
of any Kraus effect from �, we have

〈+L|A†B|−L〉 = 2−n

n∑
�=0

(−1)�
(

n

�

)〈
Dm

g�

∣∣A†B
∣∣Dm

g�

〉
. (33)

Indeed, the absolute value of the inner product 〈+L|A†B|−L〉
is equal to the spectral radius of the deviation matrix GA,B for
all A,B ∈ �.

Lemma 12. For all A,B ∈ �,

GA,B = 〈+L|A†B|−L〉 (|0L〉〈0L| − |1L〉〈1L|) .

Proof. Since the code has gap g = t + 1, for all distinct j

and k in {0,1}, the states |jL〉 and |kL〉 are supported on Dicke
states with excitations spaced t + 1 apart, it follows that

〈jL|A†B|kL〉 = 0.

Hence the off-diagonal entries of GA,B, given by 〈0L|GA,B|1L〉
and 〈1L|GA,B|0L〉, are zero. The sufficiently large gap g of our
code also gives the equalities

〈0L|GA,B|0L〉 = 〈0L|A†B|0L〉 − gA,B

= 〈0L|A†B|0L〉 − 〈1L|A†B|1L〉
2

= 〈+L|A†B|−L〉,
and

〈1L|GA,B|1L〉 = 〈1L|A†B|1L〉 − gA,B

= 〈1L|A†B|1L〉 − 〈0L|A†B|0L〉
2

= −〈+L|A†B|−L〉.
�

To complete analyzing our deviation matrices GA,B, eval-
uating the inner products 〈Dm

g�|A†B|Dm
g�〉 for 0 � � � n is

essential. We evaluate these inner products by counting set
cardinalities.

Lemma 13. Let w be a non-negative integer no greater than
m, and define the inequality

wt(A) � w � m − | supp(A) ∪ supp(B)| + wt(A). (34)

For all A,B ∈ �, 〈Dm
w |A†B|Dm

w 〉 is

γ wt(A)(1 − γ )w−wt(A)

(
m−| supp(A)∪supp(B)|

w−wt(A)

)(
m

w

) δwt(A), wt(B), (35)

if (34) holds, and 〈Dm
w |A†B|Dm

w 〉 = 0 otherwise.
Proof. For non-negative integers x,

Bx(A) := {x ∈ {0,1}m : xi = 0 ∀i ∈ supp(A), wt(x) = x}.
Now let x = w − wt(A) and y = w − wt(B). Then

A
∣∣Dm

w

〉 = (1 − γ )x/2γ wt(A)/2

(
m

w

)−1/2 ∑
x∈Bx (A)

|x〉,

B
∣∣Dm

w

〉 = (1 − γ )y/2γ wt(B)/2

(
m

w

)−1/2 ∑
y∈By (B)

|y〉.

It follows that 〈Dm
w |A†B|Dm

w 〉 is equal to√
(1 − γ )x+yγ wt(A)+wt(B)

(
m

w

)−1 ∑
x ∈ Bx (A)
y ∈ By (B)

〈x|y〉

=
(

m

w

)−1

|Bx(A) ∩ By(B)|. (37)

The expression in (37) is zero when Bx(A) ∩ By(B) = ∅,
which happens when any one of the following is true:

(1) Case wt(A) �= wt(B): Then x �= y.
(2) Case w < wt(A): Then x < 0, and Bx(A) = ∅.
(3) Case x > m − | supp(A) ∪ supp(B)|: All vectors from

the set Bx(A) ∩ By(B) are necessarily zero on |supp(A) ∪
supp(B)| indices. Hence vectors from Bx(A) ∩ By(B) have
a weight of at most m − | supp(A) ∪ supp(B)|. But these
vectors must also have a weight of x—an impossibility.

062317-8



PERMUTATION-INVARIANT QUANTUM CODES PHYSICAL REVIEW A 90, 062317 (2014)

When the set Bx(A) ∩ By(B) is nonempty, its cardinality is

(m − | supp(A) ∪ supp(B)|
x ), from which the result follows. �

The inner product 〈+L|A†B|−L〉 admits a Taylor series
expansion with respect to the noise parameter γ , from which
we can obtain an upper bound on the total deviation ε. The
relevant constants are

KA,B :=
∑

k�n−t

|[γ k]〈+L|A†B|−L〉|γ k−(n−t)
1 , (38a)

K := max
A,B∈�

KA,B, (38b)

where γ1 is some real number in the open unit interval. Indeed,
the ε � Kγ n−t if the coefficients [γ k]〈+L|A†B|−L〉 are zero
for all 0 � k � n − (t + 1). This is the content of Lemma 14,
and in its proof we represent the Taylor series expansions with
respect to γ of the Dicke inner products 〈Dm

g�|A†B|Dm
g�〉 using

polynomials in �. Motivated by Lemma 3, for non-negative
integers a, c, k, and � we define the polynomials with respect
to � as

hk,a,c(�) := k(a)

m(a+c)
(m − �g)(c)

(
�g

k

)
. (39)

These polynomials are defined so that we have

〈
Dm

g�

∣∣A†B
∣∣Dm

g�

〉 = g�∑
k=0

hk,a,c(�)γ k, (40)

where

c := |supp(A) ∪ supp(B)| − wt(A), (41)

A and B have equal weights that are positive, and � is also
positive.

Lemma 14. Let γ1 be a real number in the open unit interval
(0,1). Then for all non-negative reals γ no greater than γ1,

ε � max
A,B∈�

|〈+L|A†B|−L〉| � Kγ n−t ,

where K is given by (38b).
Proof. The first inequality of this lemma follows directly

from Lemma 12. First note the inner product 〈+L|A†B|−L〉
is zero when (i) wt(A) = wt(B) = 0, and when (ii) wt(A) �=
wt(B). Hence we focus on Kraus effects A and B of equal
weight a where 1 � a � t .

Using Lemma 3 and Lemma 13 on the decomposition given
by Eq. (33), for non-negative integers k, the Taylor series (40)
holds.

Since these Taylor series are finite, we have that
〈+L|A†B|−L〉 is equal to

2−n

n∑
�=1

(
n

�

)
(−1)�

〈
Dm

g�

∣∣A†B
∣∣Dm

g�

〉
= 2−n

∑
k�0

[
n∑

�=1

(
n

�

)
(−1)�(−1)k−ahk,a,c(�)γ k

]
, (42)

where c is as given by (41). In Eq. (42), we interchange
the order of the summations, which is valid because the
Taylor series (40) is a finite sum. Hence [γ ]k〈+L|A†B|−L〉 is

equal to

2−n

n∑
�=1

(
n

�

)
(−1)�(−1)k−ahk,a,c(�). (43)

Now the polynomials hk,a,c satisfy the equality hk,a,c(0) = 0
for all non-negative integers k,a,c. Hence the expression (43)
is equivalent to the expression

2−n(−1)k−a

n∑
�=0

(
n

�

)
(−1)�hk,a,c(�). (44)

Since the polynomials hk,a,c are of order k + c with respect
to the parameter � and c � t , their maximum order is n − 1
for all 0 � k � n − (t + 1). Lemma 1 then implies that all the
bracketed terms in the right-hand side of Eq. (42) are zero
when k � n − (t + 1). �

Let us denote 〈jL|A†A|jL〉 explicitly as a function of the
noise parameter γ using the function fj,A(γ ). From this
function’s decomposition as given by Lemma 13, it is clear
that for non-negative γ � 1

2 and t � m
2 , the function fj,A is

monotone increasing with respect to γ . Hence for γ smaller
than min{γ1,

1
2 }, the minimum eigenvalue of our G matrix is

L
2 γ t , where L is defined as

L := min
A ∈ �

j ∈ {0,1}

fj,A(γ1). (45)

This is the content of the following lemma.
Lemma 15. Let γ1 be a real number no greater than 1

2 , and
let L be as defined in (45). Let

γ0 = m−t/(n−2t)

(
L

2K

)1/(n−2t)

,

and suppose that γ0 � γ1. Then for all non-negative reals no
greater than γ0, we have the lower bound

λmin(G) � L

2
γ t .

Proof. Clearly minA∈� gA,A � Lγ t . Each row in G has at
most (mt ) nonzero entries, each entry with magnitude at most
Kγ n−t . Since γ < γ0, the Geršgorin circle theorem implies
that

λmin(G) � Lγ t −
(

m

t

)
Kγ tγ n−2t .

Since γ0 is the minimum of the set {γ0,γ1,
1
2 }, it follows that

λmin(G) � Lγ t − mtKγ t

(
L

2K
m−t

)
= L

2
γ t .

�
Piecing our results together, we can quantify the error after

using our gnu codes to correct spontaneous decay errors.
Theorem 16. Suppose that the non-negative reals γ0 and γ1

are such that the assumption of Lemma 15 holds. Let K and L

be given by (38b) and (45), respectively. Then for all γ � γ0,
a gnu code with gap g = t + 1, occupancy number n > 3t ,
scaling factor u � 1 + t

gn
, and a length m = gnu has a worst
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case error with respect to the noisy channel A⊗m
γ at most

1 − 1 − ( m

t+1

)
γ t+1 − |�|2Kγ n−t

1 + 2(|�|−1)|�|2K
L

γ n−2t
. (46)

Proof. From the above we have the upper bound
ε � Kγ n−t , and the lower bounds λmin(G) � L

2 γ t and

Tr(G) � 1 − ( m

t + 1)γ
t+1. Using Theorem 10, and by choosing

the rescaling factor

η = (|�| − 1)|�|2Kγ n−t

L
2 γ t

= 2(|�| − 1)|�|2K
L

γ n−2t ,

we get the result.
Note that the upper bound on the error in the above theorem

converges to zero at the appropriate rate in the limit as γ

approaches zero. Thus Eq. (1) gives a family of t-AD PI codes.

VIII. DISCUSSIONS

In this paper, we construct t-AD codes and codes correcting
arbitrary t-sparse errors from our gnu code family. Since gnu
codes lie within the ground state of ferromagnetic Heisenberg

models without an external magnetic field, one might hope that
such codes are viable candidates in realizing a viable quantum
memory [22].

To determine whether gnu codes are suitable for prac-
tical use, many difficulties remain to be overcome. Easily
implementable encoding and decoding protocols for these
gnu codes have to be devised, and the explicit quantum
circuits for the error correction procedure also remain to be
determined. The possibility of having fault-tolerant PI codes
remains to be investigated, because the standard framework of
fault-tolerant quantum computing [44] does not apply directly
to nonstabilizer codes. Also the relationship between our work
and other results on implementation of permutation-invariant
quantum circuits [20,45,46] remains to be more thoroughly
investigated. We leave these challenges amongst many others
for future study.
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[43] C. Bény and O. Oreshkov, Phys. Rev. A 84, 022333 (2011).
[44] P. Aliferis, D. Gottesman, and J. Preskill, Quantum Inf. Comput.

6, 97 (2006).
[45] A. Hentschel and B. C. Sanders, J. Phys. A: Math. Theor. 44,

115301 (2011).
[46] A. B. Klimov, G. Björk, and L. L. Sánchez-Soto, Phys. Rev. A

87, 012109 (2013).

062317-11

http://dx.doi.org/10.1103/PhysRevLett.98.220502
http://dx.doi.org/10.1103/PhysRevLett.98.220502
http://dx.doi.org/10.1103/PhysRevLett.98.220502
http://dx.doi.org/10.1103/PhysRevLett.98.220502
http://dx.doi.org/10.1063/1.1459754
http://dx.doi.org/10.1063/1.1459754
http://dx.doi.org/10.1063/1.1459754
http://dx.doi.org/10.1063/1.1459754
http://dx.doi.org/10.1063/1.3463451
http://dx.doi.org/10.1063/1.3463451
http://dx.doi.org/10.1063/1.3463451
http://dx.doi.org/10.1063/1.3463451
http://dx.doi.org/10.1103/PhysRevLett.104.120501
http://dx.doi.org/10.1103/PhysRevLett.104.120501
http://dx.doi.org/10.1103/PhysRevLett.104.120501
http://dx.doi.org/10.1103/PhysRevLett.104.120501
http://dx.doi.org/10.1103/PhysRevA.84.022333
http://dx.doi.org/10.1103/PhysRevA.84.022333
http://dx.doi.org/10.1103/PhysRevA.84.022333
http://dx.doi.org/10.1103/PhysRevA.84.022333
http://dx.doi.org/10.1088/1751-8113/44/11/115301
http://dx.doi.org/10.1088/1751-8113/44/11/115301
http://dx.doi.org/10.1088/1751-8113/44/11/115301
http://dx.doi.org/10.1088/1751-8113/44/11/115301
http://dx.doi.org/10.1103/PhysRevA.87.012109
http://dx.doi.org/10.1103/PhysRevA.87.012109
http://dx.doi.org/10.1103/PhysRevA.87.012109
http://dx.doi.org/10.1103/PhysRevA.87.012109



