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Gaussian-only regenerative stations cannot act as quantum repeaters
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Higher transmission loss diminishes the performance of optical communication—be it the rate at which
classical or quantum data can be sent reliably, or the secure key generation rate of quantum key distribution
(QKD). Loss compounds with distance—exponentially in an optical fiber, and inverse square with distance for
a free-space channel. In order to boost classical communication rates over long distances, it is customary to
introduce regenerative relays at intermediate points along the channel. It is therefore natural to speculate whether
untended regenerative stations, such as phase-insensitive or phase-sensitive optical amplifiers, could serve as
repeaters for long-distance QKD. The primary result of this paper rules out all bosonic Gaussian channels to
be useful as QKD repeaters, which include phase-insensitive and phase-sensitive amplifiers as special cases,
for any QKD protocol. We also delineate the conditions under which a Gaussian relay renders a lossy channel
entanglement breaking, which in turn makes the channel useless for QKD.
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I. INTRODUCTION

In recent years, performance of various communication
tasks over an optical channel—when limited only by the
fundamental noise of quantum mechanical origin—have been
extensively studied. A few examples are as follows: finding
the communication capacities of the lossy optical channel
for transmitting classical information [1], quantum informa-
tion [2], and that for transmitting both classical and quantum
information simultaneously in the presence of a limited amount
of pre-shared entanglement [3]. One of the biggest break-
throughs in optical communication using quantum effects was
the invention of quantum key distribution (QKD), which is a
suite of protocols that can generate information-theoretically
secure shared secret keys [4] between two distant parties Alice
and Bob over a lossy-noisy optical channel, with the assistance
of a two-way authenticated public classical channel. Security
of QKD leverages quantum properties of light to ensure the
generated shared keys are secure from the most powerful
adversary that is physically consistent with the channel noise
collectively estimated by Alice and Bob (despite the fact that
much of that noise may actually be caused by nonadversarial
or natural causes). Various QKD protocols have been proposed
in the last three decades [5], some of which have been
transitioning to practice [6–8].

For all the communication protocols discussed above,
the rates decrease rapidly with channel loss. For the task
of classical communication over an ideal pure-loss channel
(modeled by a beamsplitter of transmittance η), at any given
value of the channel transmittance η, no matter how small,
the data rate can in principle be increased without bound by
increasing the input power [9]. For QKD, this is not the case.
For several well-known QKD protocols (such as BB84 [10]
with single photons and BB84 with weak laser light encoding
and decoy states, E91 [11] with an ideal entanglement source,
and CV-QKD with Gaussian modulation [12,13]), the secret
key rate R decays linearly with channel transmittance η in the
high-loss (η � 1) regime [14]. Recently, it was shown that
this linear rate-transmittance scaling over the lossy bosonic
channel—for secure-key generation with two-way public

classical communication assistance—is impossible to improve
upon, no matter how one may design a QKD protocol, or how
much input power is used [15]. To be specific, the secret key
rate of any QKD protocol must be upper bounded by RUB

measured in bits/mode and given by

RUB = log2
1 + η

1 − η
, (1)

which equals RUB ≈ 2.88η, for η � 1. This fundamental
rate-loss upper bound also applies to the following related
tasks: quantum communication (sending qubits noiselessly
over a lossy channel), direct secure communication [16],
and entanglement generation (where each task may also
use assistance of a separate authenticated two-way classical
communication channel, in addition to transmissions over the
quantum lossy bosonic channel itself) [15].

As we discussed above, for classical communication over
an ideal lossy channel, one could in principle increase the
input power without bound as the loss increases, to maintain
a required data rate. However, an unbounded input power is
impractical both from the point of view of the availability
of a laser that is powerful enough, and also to avoid
hitting up against the fiber’s non-linearity-driven peak power
constraint. This is why traditionally, electrical regenerators
have been used to compensate for loss in long-haul optical
fiber communications, which help restore the signal-to-noise
ratio (SNR) of the digitally modulated signals by periodically
detecting and regenerating clean optical pulses. Over the last
few decades, all-optical amplifiers, such as erbium-doped
fiber amplifiers (EDFAs), have become popular in lieu of
electrical regenerators, both due to their greater speeds as
well as the low noise of modern EDFAs. Caves analyzed
the fundamental quantum limits on the noise performance
of optical amplifiers [17], for both phase-insensitive (PIA)
and phase-sensitive amplifiers (PSA). Loudon analyzed the
fundamental limitations on the overall SNR to “chains” of
loss segments and optical amplifiers, both in the context of
phase-sensitive (coherent detection) receivers, as well as direct
detection receivers [18].
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For QKD, one way to beat the linear rate-transmittance
scaling is to break up the channel into low-loss segments by
introducing physically secured center stations; in this approach
the overall key rate is still upper bounded by R � log2[(1 +
η′)/(1 − η′)] bits/mode, but η′ is the transmittance of the
longest (lossiest) segment. Quantum repeaters are conceptual
devices [19,20], which if supplied at these intermediate
stations, can beat the linear rate-transmission scaling without
having to physically secure them. There is an approach to build
a quantum repeater using one-way communication only [21],
so they can act as passive untended devices. However, such
structured implementations of those devices require quantum
error correction codes operating on blocks of multiple qubits.
A recently proposed repeater protocol [22] even eliminates
the requirement of a quantum memory, but utilizes photonic
cluster states. Building a functional quantum repeater is subject
to intensive fundamental research, but is currently far from
being a deployable technology. The natural question that thus
arises—in analogy to Loudon’s setup for classical optical
communication [18]—is whether all-optical amplifiers (PIAs
or PSAs), left untended and inserted at regular intervals, might
act to some degree as quantum repeaters and thereby help
boost the distances over which QKD can be performed over a
lossy channel.

The remainder of the paper is organized as follows. First, in
Sec. II we summarize the main results derived in this article to
put it into perspective. A central finding is a decomposition of
a lossy quantum channel with intermediate bosonic Gaussian
channel stations into another form without any insertion of
middle stations as depicted in Fig. 1. We then continue
into the technical part. In Sec. III, we give an overview of
bosonic Gaussian states and channels. In Sec. IV, we analyze
the scenario when a general multimode Gaussian channel is
inserted between two pure-loss segments, and show how one
can collect the entire pure loss in the center of the channel by

FIG. 1. (Color online) (a) Any n-mode Gaussian channel NG

sandwiched between two pure-loss channel segments A⊗n
η1

and A⊗n
η2

,
respectively, can be decomposed into a single lossy channel A⊗n

η

sandwiched by a pair of Gaussian channels, N 1
G and N 2

G. The net loss
in the channel is the sum (in dB) of the losses of the two individual
lossy segments, i.e., η = η1η2 and the Gaussian channel at the receiver
end N 2

G is a Gaussian unitary map. (b) Using this transformation
recursively, one can “push” a collection of general Gaussian center
stations interspersed through a lossy channel (b.1) to a single Gaussian
operation at the input, and a single Gaussian operation at the output
(b.2) of the entire loss accumulated in the center.

appropriate modifications to the transmitter and the receiver.
In Sec. V, we consider single-mode Gaussian stations, and
delineate the conditions for when the Gaussian center station
renders the concatenation with the losses on its two sides, an
entanglement-breaking channel. The quantum limited stations,
the PSA and the PIA, are addressed as special cases. We
conclude in Sec. VI with a summary of the main results, and
thoughts for future work.

II. OUTLINE OF MAIN RESULTS

In this paper, we show that untended operations represented
by Gaussian channels cannot serve as quantum repeater
stations when inserted into lossy bosonic channels. Note that
by using the word “channel” we automatically imply the
action to be trace preserving. Examples of such channels
involve beamsplitters, phase shifters, and squeezers, and as
a combination thereof also PSA and PIA [23]. We prove our
claim by transforming a concatenation of two lossy channel
segments with a Gaussian channel in the middle, as a pair
of Gaussian channels at the two ends, with the total loss
collected in the middle (see Fig. 1). The implication of our
no-go result is that if Gaussian channels are employed in
center station(s) placed along a lossy channel, the overall QKD
key rate, for any QKD protocol, must be upper bounded by
RUB = log2[(1 + η)/(1 − η)] bits/mode, with η being the total
end-to-end channel transmittance. Simple protocols such as
laser-decoy-based BB84, or Gaussian-modulated laser-based
CV protocols, with no repeaters, can already attain key rates
that have the optimal (linear) rate-transmittance scaling and are
only a small constant factor below the general upper bound [5].

For any optical communication protocol over a lossy
channel interspersed with Gaussian stations, our result shows
there exists another protocol with the same performance
that does not use any intermediate station, which can be
derived from the original protocol by suitably amending the
transmitted signals and the receiver measurement. Our result
does not preclude a Gaussian channel in the middle of the
lossy channel to improve the performance of a given protocol,
if the transmitter and receiver are held to be the same. Nor
does it preclude the existence of scenarios where it might
be technologically easier to implement a protocol with such
intermediate stations, as opposed to modifying the transmitter
and the receiver per the prescription generated by our analysis.
An example of such improvement is the increased range of a
QKD protocol with a given level of detector noise (although,
any increase in range must be consistent with the R ∼ η

rate-transmission scaling).
Given that the overall rate-transmission scaling cannot be

changed, the question remains whether there might be other
implementation advantages of Gaussian center stations. It
turns out that there are strict conditions on such a scenario.
To demonstrate this, we delineate the conditions under which
a Gaussian center station causes a lossy channel to become
entanglement breaking (EB) [24–26]. It is well known that
QKD is not possible on an EB channel, since the output of an
EB channel can be simulated quantitatively correctly using a
measure-and-prepare scheme [27]. The pure lossy channel is
not EB by itself for any nonzero transmittance, η > 0.
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Let us illustrate our reasoning for the better known case
of classical communication over pure-loss bosonic channels.
The channel capacity of the lossy bosonic channel (described
by single photon transmittance η) using signals with mean
photon number n̄ per mode, is given by g(η n̄) = (1 +
η n̄) log2(1 + η n̄) − η n̄ log2 η n̄ bits per mode [1]. We see
that increasing the mean photon number increases the classical
communication rate. In practice, it is impractical to keep
increasing the mean photon number due to nonlinear effects
in the fiber that limit the input power and can distort the
signals. For these reasons, one limits the input power and
builds optical amplifiers (phase sensitive or phase insensitive)
into the fiber. According to our theorems, for the ideal
loss-only bosonic channel, the setup of lossy segments with
intermediate amplifiers is equivalent to a new transmitter
consisting of the old transmitter combined with a very strong
amplifier, followed by a transfer through the full distance of
the lossy bosonic channel, and then a receiver consisting of a
combination of another amplifier and on the original receiver.
This replacement protocol corresponds to the situation of using
a large input mean photon number, and realizes the classical
capacity of the lossy bosonic channel. What we learn is that the
intermediate amplifiers do not increase the channel capacity of
the lossy bosonic channel, but realize an equivalent protocol
that keeps the optical signals—throughout the communication
channel—within a peak power level that is sufficiently below
the level where nonlinear effects would be encountered.

In QKD, the secrecy capacity of the lossy bosonic channel
does not increase unboundedly with the input power of the
signals, thus using strong signal pulses pushing into the
nonlinear domain of fibers is not important for QKD protocols:
The use of equivalent replacement schemes utilizing optical
amplifiers would not give any advantage. To the contrary,
amplifiers will add additional noise which will eventually be
detrimental to the performance of the QKD protocol, with
the exception of effects of noisy pre-processing that can
increase the secret key rate compared to protocols not using
this approach [28]. Note, however, that noisy pre-processing
cannot improve on the fundamental secrecy capacity of the
lossy bosonic channel, which is solely a function of the
channel’s end-to-end loss.

Our main result adds to the list of no-go results for
Gaussian operations in quantum information protocols, i.e.,
those that cannot be performed with Gaussian operations and
classical processing alone. Some examples are universal quan-
tum computing [29], entanglement distillation of Gaussian
states [30–32], optimal cloning of coherent states [33], optimal
discrimination of coherent states [34–37], Gaussian quantum
error correction [38], and building a joint-detection receiver
for classical communication [39].

III. GAUSSIAN STATES AND CHANNELS

In this section, we will provide a basic introduction to the
mathematics of Gaussian states and channels, sufficient to
develop the results in this paper. For a more detailed account,
see Ref. [32]. A quantum state ρ of an n-mode bosonic system
is uniquely described by its characteristic function,

χ (μ) = Tr[ρW(μ)], (2)

where the Weyl operator, W(μ) = exp[−iμT R], with R =
[x̂1, . . . ,x̂n,p̂1, . . . ,p̂n]T consisting of field quadrature oper-
ators of the n modes satisfying the commutation relations
[x̂k,p̂l] = iδkl , with μ = [μ1, . . . ,μ2n] a 2n-length real vector.
The characteristic function of a Gaussian state ρ is given by

χρ(μ) = exp
[− 1

4μT γμ + idT μ
]
, (3)

where the 2n × 2n matrix γ is the covariance matrix (CM)
and the 2n-length vector d := (〈x̂〉,〈p̂〉)T is the mean, or the
displacement vector (DV), of ρ. The Gaussian state ρ can thus
be described uniquely by the pair (γ,d). Due to the canonical
uncertainty relation, any CM of physical states has to satisfy

γ � i

2
σ, (4)

where

σ :=
(

0 1n

−1n 0

)
. (5)

A Gaussian unitary operation UG transforms a Gaussian state
(γ,d) to a Gaussian state (γ ′,d ′) as

γ ′ = MT γM, d ′ = MT d, (6)

where M is a symplectic matrix that satisfies

MT σM = σ. (7)

A Gaussian channel E can be described by a triplet
(K,m,α) [26]. It transforms a state (γ,d) to the state (γ ′,d ′) as

γ ′ = KT γK + α, d ′ = KT d + m. (8)

From the regularity of CMs in Eq. (4) the physical condition
for the pair (K,α) is given by

α � i

2
(σ − KT σK). (9)

Composition of two Gaussian channels E1 and E2 yields
another Gaussian channel E12 = E2 ◦ E1, where

K12 = K1K2,

m12 = KT
2 m1 + m2, and (10)

α12 = KT
2 α1K2 + α2.

In this paper, we will focus on Gaussian channels with m = 0.
In Appendix A we show an explicit calculation demonstrating
how mean displacement terms can be separated out in any
concatenation of Gaussian channels.

In the following subsections, we will delve a little deeper
into properties of single-mode Gaussian channels that we use
later on.

A. Decomposing a Gaussian unitary operation

The symplectic matrix M in Eq. (6) of a Gaussian unitary
can always be decomposed as

M = B

(
	 0

0 	−1

)
B ′, (11)

where 	 is a positive diagonal matrix, and B, B ′ are orthogonal
symplectic matrices (BT = B−1) [23]. This implies that any
n-mode Gaussian unitary operation UG can be realized by
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a passive linear optic circuit B (a circuit involving only
beamsplitters and phase shifters [40]), followed by n parallel
(tensor-product) single-mode squeezers, followed by another
n-mode passive linear optic circuit B ′ [23]. Therefore a general
Gaussian unitary operation can always be decomposed into
passive linear optics (beamsplitters and phase shifters), single-
mode squeezing and single-mode displacement operations.

Therefore, up to a displacement, a single-mode Gaussian
unitary (described by its symplectic matrix M) can be
decomposed as

M = RθSGRφ, (12)

where

Rθ =
(

cos θ sin θ

− sin θ cos θ

)
(13)

is the symplectic matrix of a single-mode phase rotation, and

SG =
(√

G + √
G − 1 0

0
√

G − √
G − 1

)
(14)

is the symplectic matrix of a single-mode (phase-quadrature)
squeezer. Note that it is sufficient to restrict the above
decomposition to a phase-quadrature squeezer because one
can absorb any additional phase in the squeezing operation
into Rθ and Rφ . This is because the symplectic matrix of a
single-mode squeezer with gain G and squeezing angle θ ′ can
be expressed as

SG,θ ′ = Rθ ′SGR
†
θ ′ . (15)

B. Entanglement breaking channels

An entanglement breaking (EB) channel is one whose
action on one-half of an entangled state (with an identity
map on the other half) always yields a separable state. An
EB channel can always be written in a measure-and-prepare
form [24,26]. [See also Eq. (16) below.] Any concatenation
of n (not necessarily Gaussian) channels, En ◦ · · · ◦ E2 ◦ E1

is EB if one of channels Ei is EB. It is instructive to
see the argument explicitly for n = 3. Consider the serially
concatenated channel, Et = E3 ◦ E2 ◦ E1, where the center
station E2 is EB. Supposing its measure-and-prepare form is
given by E2(ρ) = ∑

k Tr(Mkρ)σk , with Mk � 0 and σk � 0,
we can write Et in a measure-and-prepare form,

Et (ρ) =
∑

k

Tr[MkE1(ρ)]E3(σk) =
∑

k

Tr[M ′
kρ]σ ′

k, (16)

where σ ′
k = E3(σk) � 0, and it is straightforward to show that

M ′
k = ∑

i A
†
i MkAi � 0, where {Ai} represent Kraus operators

of E1, i.e., E1(ρ) = ∑
i AiρA

†
i .

The measure-and-prepare representation of an EB channel
implies that the channel’s quantum transmission can be seen
as transmission of the (probabilistic) classical information
obtained as a result of a hard quantum measurement made
on the channel’s input. This is the intuition behind why such
a channel has zero secret-key capacity, and thus cannot be
useful for QKD [27]. Because of this reason, when we analyze
concatenations of several Gaussian center stations for potential
use as repeaters, we will limit our discussion to the case when

all the channels Ei in the concatenation are non-EB (since this
is a necessary condition for QKD). Note, however, that when
interspersed with loss segments, even when all center stations
are non-EB, the overall input-output map can become EB—a
topic that we will discuss in more detail later in Sec. V.

C. Unitary-equivalence classification for single-mode
Gaussian channels

Our analysis of general one-mode Gaussian operations will
be based on the standard forms of such operations obtained
from the unitary equivalence classification of quantum chan-
nels developed by Holevo [25,26]. We say that two quantum
channels � and �S are unitary equivalent if there exist unitary
operators UV ,UW such that

�S(ρ) = UW�(UV ρU
†
V )U †

W . (17)

If UV and UW above are Gaussian, we say � and �S

are Gaussian unitary equivalent. If a single-mode Gaussian
channel E � (K,m,α) is not an EB channel, it must be
Gaussian unitary equivalent to a channel belonging to one
of the following two classes.

(i) Phase insensitive channel (PIC). This class of channels
is described by the triplet (K,0,α), with

K = √
κ12, and α = (|1 − κ|/2 + N )12, (18)

where N � 0 is the excess noise parameter and κ � 0 is a gain
parameter. We will denote this channel as AN

κ . It acts on the
canonical quadratures phase insensitively. When the gain κ �
1, we call it the phase-insensitive amplifier (PIA). When κ < 1,
we call it the lossy bosonic channel (with excess thermal noise
N ). In this case, κ is the channel’s transmittance, the fraction of
the input photons that appear at the channel’s output. We will
use the shorthand notation, Aκ ≡ A0

κ for a quantum-limited
phase-insensitive amplifier, or a pure-loss channel, for κ � 1
and κ < 1, respectively.

It is known that the PIC is EB if and only if [26],

N � min(1,κ). (19)

In our analysis we will assume that the PIC is not EB, i.e.,
N ∈ [0, min(1,κ)). Furthermore, using the composition rule
of Eq. (10), it is easy to see that any single-mode rotation
(unitary) R commutes with a PIC, i.e., R ◦ AN

κ = AN
κ ◦ R.

(ii) Additive noise channel (ANC). This is a class of phase-
sensitive Gaussian channels that adds rank-1 noise to the input
state, and is described by the triplet (K,0,α), with

K = 12, and α = 1
2 diag(0,ε), (20)

where the noise parameter ε > 0. We will denote this channel
as Iε , and will call it the additive noise channel (ANC).

IV. GAUSSIAN REGENERATIVE STATIONS
IN A LOSSY CHANNEL

In this section we investigate lossy bosonic channels
that have intermediate Gaussian channels inserted at some
intervals. We will show that such an arrangement is still
equivalent (up to Gaussian operations at the entrance and
the exit) to a lossy bosonic channel with the total loss of
the original loss segments. As a consequence, insertion of
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Gaussian channels cannot increase the secrecy capacity of the
lossy bosonic channel.

The setup for the main result of this paper is schematically
depicted in Fig. 1. Consider a pure-loss optical channel Aη

with a given amount of total end-to-end (A to B) transmittance
η ∈ (0,1]. Let us place a Gaussian center station—a quan-
tum channel, or a trace-preserving completely positive map,
N C1→C2

G —somewhere in the middle, thereby splitting Aη into
two pure-loss segments: a pure-loss channel with transmittance
η1, Aη1 (A to C1), and a pure-loss channel with transmittance
η2,Aη2 (C2 to B), such that η1η2 = η. We show that the overall
channel action from A to B is unaffected by the transformation
shown in Fig. 1(a), which replaces the Gaussian center station
N C1→C2

G by a Gaussian operation N 1
G

A→A1 at the input of the

channel and a Gaussian operation N 2
G

B1→B
at the output of the

channel. By applying this transformation recursively, it is easy
to see that one can replace any number of Gaussian center
stations interspersed through the lossy channel Aη into two
Gaussian operations, at the input and the output, respectively.

Let us consider an n-mode lossy bosonic channel A⊗n
η �

(K0,0,α0) with

K0 = √
η12n, α0 = 1 − η

2
12n. (21)

Let NG � (K,0,α) denote an n-mode Gaussian channel,
which we consider as the candidate for a center station.
Note that this Gaussian center station could act collectively
on n spatial and/or temporal modes of the propagating field.
The main result of this section is the proof of the following
proposition, also depicted schematically in Fig. 1.

Proposition 1. For any n-mode Gaussian channel NG there
exists a Gaussian channel N 1

G and a Gaussian unitary channel
N 2

G that satisfy

A⊗n
η2

◦ NG ◦ A⊗n
η1

= N 2
G ◦ A⊗n

η1η2
◦ N 1

G. (22)

Proof. Our goal is to find a pair of Gaussian channels N 1
G

and N 2
G that satisfies the physical condition Eq. (9). From the

composition rule of Eq. (10) we find the total channel action
�t := A⊗n

η2
◦ NG ◦ A⊗n

η1
can be described by �t � (Kt,0,αt )

with

Kt = √
η1η2K,

(23)

αt = η2

(
1 − η1

2
KT K + α

)
+ 1 − η2

2
12n.

We will prove the proposition by constructing the required
Gaussian channels using a symplectic matrix denoted by M .
The properties of this matrix and its existence are the subject
of the following theorem.

Theorem 2. For a given αt in Eq. (23), there exists a CM
matrix γ ′ and a symplectic matrix M such that

αt = η1η2α + (1 − η1η2)γ ′, (24)

and

MT γ ′M � 1
212n. (25)

Proof. From the physical condition of a Gaussian channel
in Eq. (9), we have

iσ

2
� iσ

2
+ 1

2
KT (12n − iσ )K (26)

= 1

2
[KT K + i(σ − KT σK)] (27)

� 1

2
(KT K + 2α), (28)

where we used in the first line that the matrix 12n − iσ is
positive semidefinite and in the last line that NG is a physical
channel. Our calculation implies γ := 1

2 (KT K + 2α) is a CM
of an n-mode Gaussian state due to Eq. (4). Consider now the
convex combination of this CM with the CM of the n-mode
vacuum state γ ′ := p γ + (1 − p) 1

212nwith mixing proba-
bility p = η2(1 − η1)/(1 − η1η2) ∈ [0,1]. A straightforward
calculation verifies that αt = η1η2α + (1 − η1η2)γ ′. As γ ′ is
a valid CM, there exists a symplectic matrix M such that one
obtains a diagonal form MT γ ′M � 1

212n, which corresponds
to a product of thermal states. �

We are now in a position to define the Gaussian channels
N 1

G � (K̃,0,α̃) and N 2
G � (M−1,0,0) with the help of

K̃ = 1√
η1η2

KtM (≡ KM), (29)

α̃ = 1

η1η2

(
MT αtM − 1 − η1η2

2
12n

)
. (30)

To show that the channels are proper physical channels,
we can concentrate on N 1

G since N 2
G corresponds to a unitary

Gaussian channel. To prove that N 1
G is physical, we use in

a first step the results of theorem 2, and then the physicality
constraints on the channel NG, followed by a rewriting of the
variables. These steps allow us to obtain

α̃ � MT αM

� MT i

2
(σ − KT σK)M

= i

2
(σ − K̃T σ K̃), (31)

Hence, N 1
G � (K̃,0,α̃) is a valid Gaussian channel. It is again

straightforward to verify that �t = N 2
G ◦ A⊗n

η1η2
◦ N 1

G. This
proves proposition 1. �

Overall, we showed the equivalence of a bosonic Gaussian
channel sandwiched between two lossy bosonic channels to
a single lossy bosonic channel, bearing the total loss of the
the original bosonic channels, and now sandwiched between
two Gaussian channels. This corresponds to the conversion of
(a.1) into (a.2) of Fig. 1. A simple iteration of this result shows
that any pattern of Gaussian channels interspersed between
loss segments can be rearranged into a lossy bosonic channel
sandwiched between Gaussian channels [see Fig. 1(b)].

As the initial Gaussian channel can be combined with
the state preparation, and the final Gaussian channel can be
combined with the detection setup, it is evident that the total
secret key rate of this arrangement is still bound by RUB of
Eq. (1).
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V. ENTANGLEMENT-BREAKING CONDITIONS
FOR SINGLE-MODE CENTER STATIONS

As discussed in the introduction, there might be practical
reasons one want to use interspersed intermediate stations,
even if the resulting key rate is still limited by the bound of
Eq. (1). In this section we will demonstrate severe restrictions
on the situations where such an advantage may exist. To do so,
we will investigate when such a sequence of lossy channels and
Gaussian center stations becomes entanglement breaking (EB)
so that its secrecy capacity goes to zero [27]. In the following
part of this article we execute the central first step of such an
investigation and focus on single-mode Gaussian channels.

A pure-loss channel is not EB by itself, but increasing
loss could make the channel progressively more fragile
and susceptible to being EB when concatenated with other
Gaussian operations, such as amplifiers. In the following
subsections, we show the explicit conditions on the parameters
of a Gaussian non-EB center station NG, such that the
composition �0 ≡ Aη2 ◦ NG ◦ Aη1 is EB, and specialize the
conditions to the cases when NG is either a PSA or a PIA.

A. General non-EB center stations

There is no point in considering EB center stations NG as
they would trivially render �0 EB. Any single-mode Gaussian
non-EB station NG is unitary-equivalent to either a phase
insensitive channel (PIC) or an additive noise channel (ANC)
(see Sec. III C). In order to evaluate EB conditions, we go
deeper into decomposing �0, as depicted in Fig. 2. The two
branches of Fig. 2 consider decompositions whenNG is unitary
equivalent to a PIC or an ANC, respectively.

(1) NG unitary equivalent to a PIC AN
g . Since phase

rotations commute with PICs, it is straightforward to see
that the concatenated channel �0 ≡ Aη2 ◦ NG ◦ Aη1 is unitary
equivalent to a channel � ≡ Aη2 ◦ SG2,θ ◦ AN

g ◦ SG1 ◦ Aη1

[see Fig. 2(b), lines 1.a and 1.b], where SG1 denotes a
phase-quadrature squeezer (PSA) with gain G1, and SG2 is
another PSA with gain G2 and squeezing angle θ . It is easy to
deduce the parameters for the channel � as

KPIC =√
gη1η2S1RθS2R

†
θ , (32)

αPIC = 1
2

[
η2(1 − η1)gKT

θ S2
1Kθ

+ η2(|g − 1| + 2N )KT
θ Kθ + (1 − η2)12

]
, (33)

respectively, where Kθ = RθS2R
†
θ , and

Si =
(√

Gi + √
Gi − 1 0

0
√

Gi − √
Gi − 1

)
, (34)

Rθ =
(

cos θ sin θ

− sin θ cos θ

)
. (35)

The following theorem shows that the total unitary equivalent
channel � is further unitary equivalent to a PIC �s , as shown
in line 1.c of Fig. 2(b).

Theorem 3. � is unitary equivalent to a channel �s that is
a PIC ANs

ηs
, whose descriptive parameters (Ks,αs) are given by

Ks = V KW = √
gη1η212, and

αs = WT αPICW =
√

det(αPIC)12, (36)

where V and W are Gaussian unitaries.

FIG. 2. (Color online) A general single-mode non-EB Gaussian channel NG is unitary equivalent to a Gaussian channel N , which can be
one of two forms, a phase-insensitive channel (PIC), AN

g , or a phase-sensitive additive noise channel (ANC) Iε . For both cases of the center
stations sandwiched between two lossy segments Aη1 and Aη2 , the total channel action �0 ≡ Aη2 ◦ NG ◦ Aη1 is shown to be unitary equivalent
to a PIC channel ANs

ηs
as in (b)1.c and (c)2.c. Green-shaded boxes denote single-mode unitary (reversible) operations, whereas red-shaded boxes

denote (in-general irreversible) actions of a single-mode quantum channel—a trace-preserving completely positive map.
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Proof. See Appendix B. �
Comparing Eq. (36) with Eq. (18), it is easy to see that �s

is in fact a PIC, ANs
ηs

, with

ηs = gη1η2, and

Ns =
√

det(αPIC) − |1 − ηs |
2

. (37)

The condition under which the Gaussian center station NG

causes the lossy channel to be an EB channel is determined
by applying Eq. (19) to the parameters of �s in Eq. (37) since
it is unitary equivalent to a PIC. Therefore, the channel �0 is
EB if √

det(αPIC) � 1
2 (1 + gη1η2). (38)

(2) NG unitary equivalent to an ANC Iε . It is straightforward
to deduce [see line 2.b in Fig. 2(c)] that, �0 ≡ Aη2 ◦ NG ◦ Aη1

is unitary equivalent to a channel � = Aη2 ◦ SG2,θ ◦ (R−φ ◦
Iε ◦ Rφ) ◦ SG1 ◦ Aη1 , whose parameters are given by

KANC = √
η1η2S1Kθ, and (39)

αANC = 1
2

[
η2(1 − η1)KT

θ S2
1Kθ + η2K

T
θ ε′Kθ + (1 − η2)12

]
,

(40)

where Rφ is a phase rotation, Kθ = RθS2R
†
θ , and

ε′ := 1

2
Rφ

(
0 0
0 ε

)
R

†
−φ. (41)

Next we prove that � is unitary equivalent to a PIC �s [see
line 2.c of Fig. 2(b)].

Theorem 4. � is unitary equivalent to a PIC �s described
by

Ks = √
η1η212, and

αs =
√

det(αANC)12. (42)

The excess noise parameter is given by

Ns =
√

det(αANC) − |1 − η1η2|
2

. (43)

Proof. As in the proof of Theorem 3 (see Appendix B),
we can simultaneously diagonalize K and α. This follows
Eq. (42). Comparing Eqs. (42) and (18), we can determine the
parameter Ns in Eq. (43). �

The condition under which the Gaussian center channel NG

causes the lossy channel to be an EB channel is determined by
applying Eq. (19) to the parameters of �s in Eqs. (42) and (43)
since it is unitary equivalent to a PIC. The condition for �0 to
be EB, translates to√

det(αANC) � 1
2 (1 + η1η2). (44)

B. Explicit examples of a Gaussian center station:
optical amplifiers

In this subsection we illustrate our results in Sec. V A with
the important example of optical amplifiers used as center
stations. We will consider the cases of a phase-sensitive am-
plifier (PSA) and phase-insensitive amplifier (PIA). Detailed
proofs of the results will be deferred to Appendix C. If the
center station NG is a PSA of gain GPSA, then the composition

�0 ≡ Aη2 ◦ NG ◦ Aη1 becomes EB if the gain GPSA exceeds
a threshold Gthres

PSA as

GPSA � Gthres
PSA := 1 + η1

(1 − η1)(1 − η2)
. (45)

(See Appendix C 1 for proof.) If NG is a PIA of gain GPIA,
then �0 becomes EB if the Gain GPIA exceeds a threshold
value Gthres

PIA (see Appendix C 2 for proof):

GPIA � Gthres
PIA := 1

1 − η1
. (46)

Note that the transmittance η2 of the loss segment after the
PIA does not play a role in determining when �0 becomes
EB. The expression for the threshold shows that when the
channel transmittance η1 of the initial is low, an amplifier
with even a small amount of gain can render the lossy
channel EB. Finally, the concatenation of a chain of PSA
center stations, η1 → PSA(G1) → η2 → PSA(G2) → · · · →
PSA(Gk) → ηk+1, can be decomposed as N 2

G ◦ Aη1η2...ηk+1 ◦
N 1

G, where N 1
G is a PSA at the channel input (of an appropriate

gain and squeezing angle) followed by classical thermal noise
addition, Aη1η2...ηk+1 is the entire channel loss collected in the
middle, andN 2

G is a PSA at the channel output. For expressions
of the gain and phase parameters of the PSAs at the transmitter
and the receiver, see Appendix C 3.

We note here that PIAs can improve the signal-to-noise ratio
(SNR) of a sub-unity-efficiency optical heterodyne detection
receiver, albeit up to 3 dB of the quantum limited SNR,
when preceding the receiver. PSAs on the other hand have
been proposed for use in optical imaging [41] and secure-key
generation [42], to boost the effective detection efficiency
of homodyne detection receivers, in principle pushing the
receiver’s performance all the way to the quantum limited
SNR, by preceding the receiver with a PSA whose gain
quadrature is phase matched to the homodyne detector’s local
oscillator. Despite these practical uses of optical amplifiers, our
results in the earlier sections show that these amplifiers cannot
increase the secret key capacity, and the results in the current
section show that it is unlikely that they will help to realize the
given secret key capacity in a practical implementation.

VI. CONCLUSIONS

It was recently shown [15] that for QKD (secure key gener-
ation), along with a few other optical quantum communication
tasks such as quantum (qubit) communication, entanglement
generation, and direct-secure communication (each with two-
way authenticated classical communication assistance), the
rates are upper bounded by RUB = log2[(1 + η)/(1 − η)] bits
per mode over a pure-loss optical channel of transmittance η.
This upper bound reads RUB ≈ 2.88η when η � 1 (high loss),
which translates to an exponential decay of rate with distance
L in fiber (η ∝ e−αL), and an inverse-square decay with L in
free-space (η ∝ 1/L2) [14]. Quantum repeaters are conceptual
devices that, when inserted along the lossy channel, can help
circumvent this rate-loss trade-off.

In this paper, we have proven the inefficacy of bosonic
Gaussian channels—optical processes that can be assembled
using passive linear optics (beamsplitters and phase shifters)
and squeezers (phase-sensitive amplifiers, and the interaction
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of parametric downconversion)—to be used as quantum
repeaters. Note that our result leaves open the interesting
question whether there are other simple types of untended
repeater stations that can be readily implemented and achieve
the same goal as quantum repeaters based on one-way
communication. We prove our result by showing that any
concatenation of such untended Gaussian operations along
a lossy channel can be simulated by one Gaussian operation
at the channel input and one at the channel output, where
the entire loss in the channel is collected in the middle. We
thereby argue that any communication protocol that uses such
a chain of Gaussian center stations can be replaced by another
protocol of the same performance without those stations, the
transmitter and receiver of which are slightly modified versions
of those used by the original protocol. As a consequence,
the upper bound RUB, as shown above, still applies. Note,
however, that our formulation is entirely based on the property
of Gaussian channels and does not preclude the possibility
that a trace-decreasing Gaussian operation [32] could serve as
a quantum repeater.

It would be possible that intermediate trace-preserving
Gaussian operations could be of practical advantage, while the
same performance of any protocol working with such middle
stations is in principle achievable without middle stations. In
order to demonstrate practical restrictions for use of conven-
tional Gaussian stations, we separately analyzed the case of a
general single-mode Gaussian channel sandwiched between
lossy channels. We derived the conditions that the center
station renders the end-to-end lossy channel entanglement
breaking, and hence useless for QKD. From special cases for
quantum-limited optical amplifiers as center stations, we found
that in a high-loss regime, even modest amplification gains will
render the overall channel entanglement breaking.
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APPENDIX A: EXTRACTING ONE MEAN
DISPLACEMENT IN A CONCATENATED

GAUSSIAN OPERATION

The action of the concatenation of n Gaussian chan-
nels En ◦ · · · ◦ E2 ◦ E1, where Ei � (Ki,mi,αi) can always be
mimicked by a concatenation E ′

n ◦ · · · ◦ E ′
2 ◦ E ′

1, where all
the displacement terms are pushed to the nth channel, i.e.,
E ′

i � (Ki,0,αi), 1 � i � n − 1, and E ′
n � (Kn,mt ,αn), where

mt is a function of {m1, . . . ,mn}, and {K1, . . . ,Kn}. To see
this, consider the composition of n Gaussian channels:

E123...n = En ◦ · · · ◦ E3 ◦ E2 ◦ E1, (A1)

for which we may write

d123...n := KT
123...nd + m12...n

= KT
n KT

123...n−1d + KT
n m123...n−1 + mn

...

= KT
1→nd +

n∑
j=2

KT
j→nmj−1 + mn

= Ktd + mt, (A2)

where

Kt : = K1→n,

mt : =
n∑

j=2

KT
j→nmj−1 + mn, (A3)

Kj→n : =
{
KjKj+1Kj+2 · · · Kn−1Kn j < n − 1

Kn j = n.

From Eq. (A2) we can confirm that the total change in the
first moment d is given by Kt = K1→n and a constant shift
mt = ∑n

j=2 KT
j→nmj−1 + mn. Hence, we can obtain the same

transformation of d, for example, by setting m1 = m2 = · · · =
mn−1 = 0 and mn = mt , while leaving the gain terms Kj of
each channel Ej as they are. To be precise, the following two
channels equivalently act on (γ,d).

E := En︸︷︷︸
(Kn,mn,αn)

◦ · · · ◦ E2︸︷︷︸
(K2,m2,α2)

◦ E1︸︷︷︸
(K1,m1,α1)

, (A4)

E′ := En︸︷︷︸
(Kn,mt ,αn)

◦ · · · ◦ E2︸︷︷︸
(K2,0,α2)

◦ E1︸︷︷︸
(K1,0,α1)

. (A5)

Therefore, mean displacement terms can be absorbed into the
final Gaussian operation, and their effect can be treated sepa-
rately in the analysis of the sequential channel action. In this
manner, one can usually discuss Gaussian channel properties
by assuming mj = 0 for all j without loss of generality, and
taking into account the effect of m’s, if at all needed, at once.

APPENDIX B: PROOF OF THEOREM 3

We restate Theorem 3 below for completeness.
Theorem. � is unitary equivalent to a channel �s that is a

PIC ANs
ηs

, whose descriptive parameters (Ks,αs) are given by

Ks = V KW = √
gη1η212, and

αs = WT αW =
√

det(α)12, (B1)

where V and W are Gaussian unitaries.
Proof. Let W0 be an orthogonal matrix that diagonalizes α

so that WT
0 αW0 = diag(λ1,λ2). We then have det(α) = λ1λ2.

It is then easy to see that the expression for αs in Eq. (B1) can
be obtained by choosing

W = (λ1λ2)−1/4W0

√
diag(λ2,λ1). (B2)

Given this W , we can choose V = W−1K−1
θ S−1

1 to obtain
the expression for Ks in Eq. (B1). Decomposing � into �s ,
sandwiched between unitaries V and W is depicted in line 1.c
of Fig. 2(b). �
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APPENDIX C: ANALYSIS OF OPTICAL AMPLIFIERS
AS REGENERATIVE STATIONS

In this Appendix, we prove the entanglement breaking
conditions stated in Sec. V B, for when an optical amplifier,
either phase-insensitive (PIA) or phase-sensitive (PSA), is
used as a center station, sandwiched between two pure-loss
channel segments. We will evaluate these conditions by
applying our general results from Sec. V A.

The decomposition shown in line 1.b of Fig. 2(b), with
the excess noise parameter N of AN

g set to zero, includes
the quantum-noise-limited PSA and PIA as special cases. For
g � 1 and N = 0, we obtain a simple expression of the
determinant of α in Eq. (33):

det(α) = 1
4 {(1 − gη1η2)2 − 4η2[G2(1 − gη1)(1 − η2)

+ gG1(1 − η1)(1 − gη2)

− 2g
√

G1G2(1 − η1)(1 − η2)

× (
√

G1G2 +
√

(G1 − 1)(G2 − 1) cos 2θ )]}.
(C1)

1. PSA sandwiched by two lossy channels

For the case of the quantum-limited PSA, by setting
G2 = g = 1 in Eq. (C1) one obtains

det(α) = (1 − η1η2)2

4
+ η2(G1 − 1)(1 − η1)(1 − η2).

(C2)

From this relation and with ηs = η1η2 the EB condition of
Eq. (38) reads

G1 � 1 + η1

(1 − η1)(1 − η2)
. (C3)

Remark 5. A pure loss channel Aη, η � 1, is not EB.
A quantum-limited PSA (which is a squeezer, and hence a
unitary) is not EB. This is consistent with the observation that
setting either η1 or η2 close to 1 requires the PSA gain G1 to go
to infinity in order for the composition (loss-PSA-loss) to be
EB. It is interesting that even though pure-loss channels and
quantum-limited PSA are not EB by themselves, composing
them can yield an EB channel if the gain and transmittances
satisfy the condition in Eq. (C3).

2. PIA sandwiched by two lossy channels

For the case of the quantum-limited PIA by setting
G1 = G2 = 1 in Eq. (C1) one obtains

det(α) = [1 + 2(g − 1)η2 − gη1η2]2

4
. (C4)

From this relation and with ηs = gη1η2, the EB condition of
Eq. (38) now reads

g � 1

1 − η1
. (C5)

Remark 6. One notable point is that the transmittance η2 of
the lossy channel that appears after the PIA, does not play a
role in the EB condition in Eq. (C5).

FIG. 3. (Color online) (a) A sequence of PSAs Si with i =
1,2, . . . ,k connected by the lossy segments of transmission ηi with
i = 1,2, . . . ,k + 1. The total loss is given by η = ∏k+1

i=1 ηi . (b) The
PSA-loss chain �0 can be transformed to the standard form of a PIC
�s by using squeezing unitary operations W and S0. (c) The standard
form �s is decomposed into a thermal noise channel AN/η

1 and a
transmission-η pure lossy segment. Then, the origin channel �0 can
be simulated by adding unitary operators to cancel out the unitary
operators in (b) at the input end and output end. This turns �0 into
the form with original loss sandwiched by the operation N 1

G and the
optput-end operation N 1

G—an explicit example of our main result
explained in Fig. 1.

3. Analysis of a chain of PSA center stations

Let us consider a chain of PSA center stations, interspersed
between the number of k + 1 lossy segments with transmission
{ηi}i=1,2,...,k+1 as in Fig. 3(a). The channel action is formally
written as

�0 =Aηk+1 ◦ SGk
◦ Aηk

◦ · · ·
· · · ◦ Aη3 ◦ SG2 ◦ Aη2 ◦ SG1 ◦ Aη1 , (C6)

where the action of PSAs SGi
with the amplification gain of

{Gi}i=1,2,...,k can be described by Eq. (34).
By repeatedly using the composition rule of Eq. (10) we

can write the channel parameters �0 � (K,0,α) as follows:

K = √
ηk+1ηkηk−1 · · · η1S1S2 · · · Sk = √

ηS0, (C7)

α = 1

2

[
η̄k+112 + ηk+1

{
η̄kS

T
k Sk + ηkη̄k−1S

T
k ST

k−1Sk−1Sk

+ ηkηk−1η̄k−2S
T
k ST

k−1S
T
k−2Sk−2Sk−1Sk + · · · }]

= 1

2

⎡
⎣η̄k+112 + ηk+1

⎧⎨
⎩

k−1∑
n=0

η̄k−n

ηk−n

n∏
j=0

ηk−j (Sk−j )2

⎫⎬
⎭

⎤
⎦

=
(

α(+) 0
0 α(−)

)
, (C8)
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where

η := ηk+1ηkηk−1 · · · η1, (C9)

η̄i := 1 − ηi, (C10)

S0 := S1S2 · · · Sk, (C11)

α(±) := 1

2

⎡
⎣η̄k+1 + ηk+1

×
⎧⎨
⎩

k−1∑
n=0

η̄k−n

ηk−n

n∏
j=0

ηk−j (
√

Gk−j ± √
Gk−j − 1)2

⎫⎬
⎭

⎤
⎦ .

(C12)

Let us define a squeezer,

W := (α(+)α(−))−1/2
√

diag[α(−),α(+)], (C13)

that symmetrizes α as WT αW ∝ 12 and set V = W−1S−1
0

similarly to the proof of Theorem 3 in Appendix B [see

Fig. 3(b)]. Then, we can convert �0 to the standard form
of a PIC �S � (Ks,0,αs) with

Ks = √
η12, (C14)

αs =
√

det(α)12 = [
1
2 (1 − η) + N

]
12. (C15)

This implies the EB condition due to Eq. (19):√
det(α) � 1

2 (1 + η). (C16)

Let us now explicitly show the decomposition of the
PSA chain into a pair of Gaussian operations at the input
and the output. See Fig. 3 for a pictorial depiction. From
the standard form we can split out the pure lossy segment
by using the relation �s ≡ AN

η = Aη ◦ AN/η

1 , which can be
confirmed easily from the composition rule of Eq. (10). We
can retrieve the original channel �0 by canceling the unitary
operators W , S0, and W−1 as in Fig. 3(c). To be specific,
we can write the original channel in the sandwiched form
�0 = N 2

G ◦ Aη ◦ N 1
G with the two Gaussian channels N 1

G =
AN/η

1 ◦ W ◦ S0 and N 2
G = W−1. Note that the channel at the

receiver N 2
G is a squeezing unitary, which is consistent with

Proposition 1.
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G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T.
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[33] N. J. Cerf, O. Krüger, P. Navez, R. F. Werner, and M. M. Wolf,

Phys. Rev. Lett. 95, 070501 (2005).
[34] M. Takeoka and M. Sasaki, Phys. Rev. A 78, 022320 (2008).
[35] K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara,

M. Takeoka, and M. Sasaki, Phys. Rev. Lett. 106, 250503 (2011).
[36] C. Wittmann, U. L. Andersen, M. Takeoka, D. Sych, and G.

Leuchs, Phys. Rev. Lett. 104, 100505 (2010).
[37] C. Wittmann, U. L. Andersen, M. Takeoka, D. Sych, and

G. Leuchs, Phys. Rev. A 81, 062338 (2010).
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