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The problem of sharing entanglement over large distances is crucial for implementations of quantum
cryptography. A possible scheme for long-distance entanglement sharing and quantum communication exploits
networks whose nodes share Einstein-Podolsky-Rosen (EPR) pairs. In Perseguers et al. [Phys. Rev. A 78, 062324
(2008)] the authors put forward an important isomorphism between storing quantum information in a dimension
D and transmission of quantum information in a D + 1-dimensional network. We show that it is possible to
obtain long-distance entanglement in a noisy two-dimensional (2D) network, even when taking into account
that encoding and decoding of a state is exposed to an error. For 3D networks we propose a simple encoding
and decoding scheme based solely on syndrome measurements on 2D Kitaev topological quantum memory. Our
procedure constitutes an alternative scheme of state injection that can be used for universal quantum computation
on 2D Kitaev code. It is shown that the encoding scheme is equivalent to teleporting the state, from a specific
node into a whole two-dimensional network, through some virtual EPR pair existing within the rest of network
qubits. We present an analytic lower bound on fidelity of the encoding and decoding procedure, using as our main
tool a modified metric on space-time lattice, deviating from a taxicab metric at the first and the last time slices.
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I. INTRODUCTION

Suppose we have a network of laboratories with some fixed
distance between neighboring ones, and one of them wants
to establish quantum communication with another one. We
assume that neighboring labs can directly exchange quantum
communication with some small, fixed error. This can be used,
e.g., to share some noisy Einstein-Podolsky-Rosen (EPR)
pairs between the neighboring labs. We also assume that all
operations performed within each laboratory may be faulty
with some fixed, small probability. If two distant labs can
achieve quantum communication with the help of all the labs in
the network, then they can exploit it to share the cryptographic
key that will be known only to these two labs. This scenario
was put forward in [1], and is an alternative to quantum
repeaters [2,3]. It is also closely related to entanglement
percolation [4]. In [1] the question was posed whether for
a two-dimensional network, in principle, one can perform
quantum communication over an arbitrary distance, provided
that one can execute gates between the adjacent nodes (i.e.,
local gates), and the size of the system in each node is
constant (i.e., it does not depend on the distance), so that
the nodes do not need quantum memory. The answer was
affirmative. Namely, the authors represented nearest-neighbor
quantum computation on a line as a teleportation process on
quantum two-dimensional square networks, where entangled
pairs are shared between adjacent nodes (i.e., between those
that are separated by a size of an elementary cell a of the
network). A one-dimensional system for quantum computation
is formed by all nodes belonging to a chosen line forming a
diagonal of elementary cells, so that nodes on this line are
separated by a distance

√
2a. Exploiting entanglement shared

between adjacent nodes, the state of every node belonging
to a one-dimensional system can be teleported (with certain
fidelity) (i) to the node on the right, and from there (ii) to the

node above. In this way the state of the whole one-dimensional
system is teleported to a line parallel to the original one.
By associating time with every parallel line one can model
a storage of a logical state of a one-dimensional system.
This can be expanded to model nearest-neighbor quantum
computation when one performs qubit unitary operators on
nodes after the stage (i) and modifies the teleporting scheme
so that qubits from nearest-neighbor nodes can be teleported
to the same node at stage (i) to perform a double qubit gate.
In this sense a computation problem on a logical state of a
one-dimensional system is equivalent to its teleportation in a
two-dimensional network. In [5] a scheme for universal fault-
tolerant quantum computing in one dimension was designed.
The fundamental problem with the above scheme from the
communication perspective is that it is based on logical qubits
as input states while long-distance communication requires
good transmission between physical nodes.

In this paper we overcome this problem, and present a
complete proof of the possibility of long-distance quantum
communication in a two-dimensional (2D) network with no
long-time quantum memory: While calculating the fidelity F

we took into account not only the fidelity of a qubit storing
Fs (determined by the applied error-correction scheme, whose
error probability goes down exponentially with the size of the
code), but also fidelities Fenc, Fdec of encoding and decoding
a physical qubit in unknown state into or from a code. This
constitutes our first result stated in Proposition 1. As the second
one we present a scheme for encoding a physical qubit into a
2D Kitaev topological code [6,7], considerably simpler than
the already existing scheme of [1] (cf. earlier works [8,9] with
numerical analysis of encoding). Our scheme, with analytical
bound on fidelity expressed by Proposition 6, enables quantum
communication in a 3D network, and it can be applied to
universal quantum computing architecture based on the 2D
Kitaev code.

1050-2947/2014/90(6)/062311(13) 062311-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.78.062324
http://dx.doi.org/10.1103/PhysRevA.78.062324
http://dx.doi.org/10.1103/PhysRevA.78.062324
http://dx.doi.org/10.1103/PhysRevA.78.062324
http://dx.doi.org/10.1103/PhysRevA.90.062311


PAWEŁ MAZUREK et al. PHYSICAL REVIEW A 90, 062311 (2014)

In the following we will first present the mentioned results
of encoding and decoding physical qubits in 1D and 2D
quantum codes. Section II is devoted to the 1D concatenated
code, while encoding and decoding into and from a 2D
Kitaev topological code is considered in Sec. III, under
the assumption of noise acting only on data qubits (non-
fault-tolerant scenario). The first result proves that quantum
communication between two distant nodes of a 2D network
is possible, while the second provides a simple scheme
of communication over a 3D network. We proceed with
a fault-tolerant encoding algorithm in Sec. IV, where we
derive the lower bound for an associated threshold value for
communication in three dimensions by using a metric on a
space-time lattice that takes into account effects of encoding
and decoding. In Sec. V we discuss the relation of our results
to entanglement percolation [4], which is closely related
to quantum communication over networks. We conclude in
Sec. VI.

II. ENCODING PHYSICAL QUBIT INTO
1D CONCATENATED CODE

We start with a physical qubit a|0〉 + b|1〉 and encode it
by use of a fault-tolerant scheme in one dimension based on
concatenation [10]. We estimate the fidelity of reaching a given
level of concatenation r and obtain a bound on the fidelity, that
does not depend on r , which is concluded in Proposition 1. We
can assume that fidelity of decoding is no worse than fidelity
of encoding (this happens for the fully unitary fault-tolerant
scheme as, e.g., in [10], and if we do not need to perform a
correction, as is the case of cryptographic applications).

Let v be the volume of the physical circuit (i.e., the number
of gates, including identity gates) which encodes into a logical
qubit in a first concatenation level. The probability of success in
this encoding stage is then larger than (1 − p)v where p is the
probability of an error per gate. Indeed, if every element of our
circuit works—which happens with the probability (1 − p)—
then the output is correct. In the next encoding stage, the
effective probability of an error per logical gate is p1 � cp2

0,
where c is the number of different pairs of circuit gates, i.e., c =
(v2), and p0 ≡ p. The probability of successful encoding into
a second level of concatenation is no smaller than (1 − p1)v .
The probability p(r)

s that we pass successfully r + 1 stages is
a product of such probabilities in each stage. Hence, we have

p(r)
s = (1 − p0)v(1 − p1)v . . . (1 − pr )v

�
r∏

k=0

(
1 − 1

c
(cp)2k

)v

. (1)

Now, we proceed to estimate this from below. Using the
notation α = 1/c, β = cp we obtain

1

v
ln

(
p(r)

s

)
�

r∑
k=0

ln
(
1 − αβ2k ) �

∫ r

−1
ln

(
1 − αβ2x )

dx. (2)

Extending the limit to infinity and changing the variables, we
obtain

1

v
ln

(
p(r)

s

)
� − 1

ln 2

∫ √
β

0

ln(1 − αz)

z ln z
dz. (3)

Since we assume that cp < 1 (otherwise the concatenation
scheme would be useless), the integrated function f (z) =
ln(1−αz)

z ln z
is monotonically increasing, so we can estimate the

integral by βf (β), obtaining

1

v
ln

(
p(r)

s

)
� − ln(1 − √

p/c)

ln 2 ln(
√

cp)
�

√
p/c

ln 2 ln(
√

cp)
, (4)

where we used ln x � x − 1 for all x � 0. If cp � 1/e (which
is only slightly stronger than the fault-tolerant threshold
assumption cp < 1), we finally obtain

1

v
ln

(
p(r)

s

)
� −2

√
p, (5)

which proves the following.
Proposition 1. If an error rate p satisfies p � pth/3, where

pth is a threshold for an error rate in fault-tolerant architecture
based on concatenated codes, then the fidelity of encoding
procedure satisfies

F0 � e−2v
√

p, (6)

where v is the volume of an encoding circuit on a physical
level.

It is worth mentioning that the proposition can also be
formulated in a bit different way. Instead of (5) we can put

F0 � (1 − p)ve−pv, (7)

which is a slightly better constraint, but not that nice in a form.
This estimation can be obtained in complete analogy to the
previous one if the sum in (2) is lower bounded as follows:

r∑
k=0

ln
(
1 − αβ2k ) � ln (1 − αβ) +

∫ r

0
ln

(
1 − αβ2x )

dx. (8)

Therefore, the fidelity F of encoding and storage and
decoding of a qubit can be estimated as F � FsF

2
0 , where

F0 � exp(−2v
√

p). For depolarizing noise �(ρ) = p(1 − p)
XρX + p2YρY + p(1 − p)ZρZ + (1 − p)2ρ, acting on ev-
ery qubit in one time step of storage, it can be shown
that Fs � 1 − (e − 1)T ( 2p

2pth
)(t+1)k , with number of time steps

T , threshold probability pth = 1
2 (e( w

t + 1))
−1/t , k enumerat-

ing a concatenation level, and w, t being the volume of
physical circuit implementing a gate and the code distance,
for k = 1, respectively [11,12]. Therefore, we have Fs >

1 − c1T exp(c0V ln p

pth
), with constant c1 = 1 − e, and c0 =

( t+1
N

)k such that V = Nk is the number of code qubits for
a given k. We take p � pth

3 in order to be consistent with
the derivation of F0, and obtain Fs > 1 − c1T exp(−c2V ),
with c2 = ln 3( t+1

N
)k . As a result, we can estimate F >

exp(−2v
√

p)[1 − 2c1T exp(−c2V )].
As we will discuss in Sec. V, the problem of storing a qubit

in an unknown state in one dimension by means of local gates is
equivalent to transmission of a qubit in a 2D network (as shown
in [1]), therefore our proposition implies that long-distance
quantum communication is possible in a 2D noisy network.

A disadvantage of the fault-tolerant schemes based on
concatenated codes is that they are usually quite complex.
Moreover, originally, they involve nonlocal gates (i.e., ones
which do not connect adjacent qubits). Since swap operators do
not propagate errors, the fault-tolerant scheme of, e.g., [10] can
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FIG. 1. (Color online) Planar code. A code space is given by
eigenvectors of all star and plaquette operators with eigenvalues +1.
The lines represent exemplary logical X (dashed line) and Z (solid
line) operators on the code space. They are given by homologically
nontrivial loops, i.e., ones connecting opposite boundaries, in the
original and dual lattice, respectively. Construction of Xs , Zp

observables is shown.

be built of solely local gates, by accompanying any nonlocal
gate with a series of swap operators, but this further increases
the complexity of the scheme (see [5,13,14] for various more
smart schemes with local gates).

III. NON-FAULT-TOLERANT ENCODING-DECODING
SCHEMES FOR 2D KITAEV CODE

A. Encoding-decoding algorithm

Here we present a much simpler scheme based on a
concept of the topological code discovered by Kitaev [15] and
developed in [6]. In its version, called the planar code, qubits
are situated on links of a 2D lattice (see Fig. 1). To maintain
the encoded quantum information it is enough to measure
repeatedly local four-qubit observables of two types—the
plaquette observables Zp and the star observables Xs :

Xs = ⊗l∈sσ
x
l , Zp = ⊗l∈pσ z

l . (9)

Here s is associated with a vertex and it denotes all links
that touch the vertex, while p denotes all links that form
the plaquette (Fig. 1). In [16] this scheme was applied to
long-distance communication, and it was analyzed how the
distance depends on the error rate. However the authors
considered communication of logical qubits (i.e., encoded
ones). To estimate the fidelity of communicating a physical
qubit, or sharing entangled pairs, we need to complement this
analysis with an encoding-decoding scheme. Such a scheme
was proposed in [6]. However it was relatively complicated
in comparison with the simplicity of a planar code and
the scheme of maintaining the logical qubit. Here we shall
propose an encoding-decoding scheme which is as close as
possible to the simplicity of the Kitaev code. Namely, we
shall use only ideal (i) measurement of Xs and Zp operators,
(ii) measurement and preparation of |0〉,|1〉 and |±〉 states

(a) (b)

C
N

O
T

FIG. 2. (Color online) (a) One shot encoding protocol. (b) One
shot decoding protocol. Red edges represent qubits originally pre-
pared in |0〉 state. Green edges represent qubits originally prepared in
|+〉 state. Black edge represents a physical qubit we want to encode
and decode.

[where |±〉 = 1√
2
(|0〉 ± |1〉)], (iii) bit and phase flips condi-

tioned on measurement outcomes. The latter are needed in the
one-shot scenario presented above only at the very last stage,
where correction is applied to the decoded qubit. However, it
is not necessary if we want to use the scheme for quantum key
distribution.

One shot encoding. The lattice is divided into three parts
(see Fig. 2): lower triangle (green qubits), upper triangle (red
qubits), and the qubit to be encoded (black one).

The procedure is as follows: (i) We measure all Xs which
include at least one red qubit, i.e., a qubit from the upper
triangle (there is no point in measuring Xs within the green
region since the outcomes of such measurements are already
known due to ideal state preparation). (ii) We measure all Zp

which include at least one green qubit, i.e., a qubit from the
lower triangle (the outcomes for red region are already known).
(iii) We apply phase flips to red qubits along arbitrarily chosen
paths joining the X defects. (iv) We apply bit flips to green
qubits along arbitrarily chosen paths joining the Z defects.

One shot decoding. We measure the lowest row of the qubits
in the |±〉 basis (except for the black qubit), compute the parity,
and flip the phase of black qubit when the parity is odd. Then
we measure the leftmost column of the qubits in the |0〉,|1〉
basis, compute the parity, and flip the bit of the black qubit
when the parity is odd.

Below we prove that the above procedures correctly encode
and decode a qubit in an unknown state, in a regime where the
noise acts on the data qubits only.

Proposition 2. The “one shot encoding” procedure encodes
the black qubit ψ = a|0〉 + b|1〉 into a superposition of
codewords a|0〉L + b|1〉L.

Proof. Clearly after the above procedure we are in the code,
as all defects are removed and therefore all stabilizers are set to
+1. Then, it is enough to check that states |0〉,|1〉,|+〉,|−〉 are
correctly encoded (cf. Lemma 4 below). Let us first consider
initial states |0〉 and |1〉. We have to show that the value of
a chosen logical operator ZL is +1 or −1, respectively. We
can choose the operator along the leftmost vertical line, which
means that we need to check the bit parity of this line. In
the first stage some Xs operators are measured, then phase
flips are applied, and finally Zp operators are measured. (Note
that no bit flips are applied to this line.) The phase flips do
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not affect parity. From Lemma 5 we conclude that the above
measurements result in applications of Xs’s and Zp’s to the
code. Clearly, only an application of Xs’s can affect bit values
of the line. Since applied Xs always touch two qubits from the
line, they do not change the parity. Now, the initial parity is
equal to the bit value of the black qubit. This proves that |0〉
and |1〉 are mapped into logical states |0〉L and |1〉L of the total
code.

The proof that |+〉 and |−〉 are correctly transferred is
analogous and can be performed by examining the phase parity
of the lower horizontal line (in a dual lattice). �

Proposition 3. The “one shot decoding” procedure decodes
the superposition of codewords a|0〉L + b|1〉L into the state
ψ = a|0〉 + b|1〉 of the black qubit.

Proof. To this end we need to show that it sends |0〉L and
|1〉L into |0〉 and |1〉, respectively. The proof that |±〉L is sent
into |±〉 is the same. Again, by Lemma 4, having correctly
transferred those four states, we obtain that all states are also
correctly transferred. If the code is in logical state |0〉L, then the
leftmost vertical line if measured would give an even number
of 1’s. Thus, if we measure all qubits from the line but the
black one, the measured parity must be equal to the bit of the
black qubit. But we want to get |0〉, i.e., trivial parity. Hence,
we have to apply the bit-flip operation, if the measured parity
is nontrivial. The same reasoning works for initial logical state
|1〉L: The parity of the whole line is odd, thus if we want to
have the bit value of the black qubit equal to that parity, we
need to flip the black qubit, when the parity of other qubits is
odd. �

Lemma 4. [17] Consider a completely positive map � on a
single qubit, and define F (ψ) = 〈ψ |�(|ψ〉〈ψ |)|ψ〉. Let Fx,Fz

be given by

Fx = 1
2 (F (|+〉) + F (|−〉)) Fz = 1

2 (F (|0〉) + F (|1〉)), (10)

where |±〉 are eigenstates of σx and |0〉,|1〉 are eigenstates of
σz. Then

F � Fx + Fz − 1, (11)

where F = ∫
F (ψ)dψ is the fidelity averaged over uniformly

chosen input states.
Lemma 5. Let a system of n qubits be in some bit basis

state. Let A be a subsystem. Then measuring XA ≡ ⊗i∈Aσ i
x

leads to a superposition of two strings: the initial one, and the
one flipped by XA.

Proof. Let us write XA = P+ − P−. Then we have P± =
1
2 (I ± XA), which proves the lemma. �

B. Teleportation description of encoding procedure

Below we present a detailed description of the procedure of
encoding a qubit in an unknown state into a planar Kitaev
code as an equivalent to teleportation. Let us first present
teleportation in terms of the stabilizer formalism. To this end,
recall that common eigenstates of operators X1X2 and Z1Z2

are Bell states [18]. Hence, teleportation can be viewed as
follows. Let qubit number 1 be the qubit to be teleported
(held by Alice) and the qubits numbers 2 and 3 be the ones in
maximally entangled state (qubit 2 owned by Alice and qubit 3

by Bob). Then teleportation is obtained by the following
protocol: First X1X2 is measured, and if the outcome is −1,
a transformation Z2Z3 is performed. Then Z1Z2 is measured,
and, if the outcome is −1, a transformation X2X3 is performed.
These operations transform qubit 3 to the initial state of qubit
1 and qubits 1 and 2 to an initial Bell state of qubits 2 and 3.

Now, let us consider our single shot encoding proce-
dure. Note that we can first (i) measure all the syndromes
that do not touch the physical qubit and remove defects.
Then the remaining part of the encoding procedure consists
of the following stages: (ii) measuring syndromes that touch
the physical qubit; (iii) removing the obtained defects. More
precisely, we measure a single syndrome Zp which touches our
physical qubit. If the syndrome is nontrivial, then we move it
away by applying bit flips to the lowest path of the qubits
(in the dual lattice). Then we measure a single syndrome
Xs which touches the physical qubit and, if the syndrome
is nontrivial, we apply phase flips to the leftmost vertical line
of qubits (in the original lattice).

Let us now show that this is teleportation. To this end we
have to determine three qubits. The first stage prepares a
two-qubit code: one qubit is described by logical operators
X2, Z2 and the other by X3,Z3 (see Fig. 3). These two
qubits will be qubits numbers 2 and 3 and, because the code
is a common eigenstate of operators X2X3 and Z2Z3, the
qubits turn out to be in a maximally entangled state. Our
physical qubit, associated with operators X1, Z1, is the one
to be teleported [the operators defining the three qubits are
visualized in Fig. 3(a)]. Then, we notice that the operators
X1X2 and Z1Z2 take exactly the form of syndromes Zp and
Xs touching the physical qubit, thus corresponding to the stage
(ii) above, while X2X3 and Z2Z3 are exactly those flipping bit
and phase respectively, along the appropriate paths, as is done
in stage (iii).

(a)

(b)

FIG. 3. (Color online) Single shot encoding as teleportation. The
black lattice symbolizes the two-qubit code resulting from measuring
all syndromes but ones touching the physical qubit. (a) Three qubits
needed for teleportation. (b) Two stages of encoding can be interpreted
as operations that perform teleportation.
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IV. FAULT-TOLERANT ENCODING-DECODING
SCHEMES FOR 2D KITAEV CODE

So far we have assumed that the operations (i)–(iii) defined
in Sec. III are ideal. Here, we consider the case where
qubits are subjected to error (including preparation), and
the measurement readout as well as performing corrections
is nonideal. We shall develop the original ideas of [6], the
implementation of [19], and obtain our main result, i.e., lower
bound for storage total fidelity, given by Proposition 6 in
Sec. IV D. To this end we shall introduce a different metric
on the space-time lattice. The metric is designed to take into
account effects of encoding and decoding stages, therefore it
differs from the standard, taxicab metric on initial and final
time slices. After a brief overview of the protocol illustrated
on the example of Kitaev code, we present the idea using the
repetition code, and then apply it to the Kitaev code. We restrict
ourselves to a scenario where errors on the syndromes do not
propagate back to the code. I.e., we imagine that a syndrome
is measured in a noiseless way, and the classical outcome of
the syndrome measurement is flipped with some probability.
However propagation issues can be addressed as in [19].

A. Algorithm: An overview

We consider space-time structure for the Kitaev code, where
horizontal slices represent subsequent time steps (see Figs. 4
and 5). There are vertical links: the ones connecting nodes
represent bits where the Xs syndrome is collected, the ones
connecting plaquettes represent bits where the Zp syndrome
is collected. In the first and the last slice, we divide qubits into
three parts, as in Fig. 2: black qubit (the one to be encoded or
decoded), red and green qubits.

In the zeroth time step (lowest slice) green qubits are
prepared in |+〉 states and red ones in |0〉 states. In between
slices, syndromes Xs and Zp are measured for all stars s

and plaquettes p (unlike in the noiseless case, where it was
sufficient to measure only the ones which include either red or
green qubits). After the last slice, green qubits are measured in
the |±〉 basis and syndrome Xs is computed, while red qubits
are measured in the |0〉,|1〉 basis and the values of the Zp

syndrome is computed.
Now we will present the algorithm which corrects the phase

(the algorithm to correct the bit is analogous). Let S be the set of
vertical links with nontrivial syndrome Xs . We have ∂S = ∂E,
where E is the set of links, where a faulty syndrome was
measured or a phase error for a qubit occurred. We select the
set Emin, such that ∂S = ∂Emin. Then we compute the phase
parity of the front row of qubits based on the last measurement,
and correct it by flipping, whenever projection of Emin onto the
first row of a single horizontal slice contains an odd number of
links. Finally, we apply the phase flip to the black qubit, when
the corrected parity is odd.

The set Emin is chosen in the following way. To the ith qubit
we assign the weight −ln pi

1−pi
[6], where pi is the probability

of an error on the qubit. For red qubits pi = 1/2, as they
are prepared in |0〉 states. For the black qubit pi = p, as we
assume it is subjected to the memory error p, and for the rest
of the qubits pi = p, as they are exposed to either preparation
error p (horizontal links) or syndrome measurement error p

n=3n=2 ... n=Nn=1 ...k=0

k=1

k=2

...

k=T

...
FIG. 4. (Color online) Structure of the algorithm of state |	in〉

protection through time T . Horizontal links represent qubits, ver-
tical links store information about parity measurement outcomes
performed on every time slice k on every vertex (Xs) and plaquette
(Zp) (cf. Fig. 5). At time k = 0, encoding of a black qubit in |	in〉 state
into a system of M qubits is performed by Xs and Zp measurements
on qubits prepared in |+〉 (|0〉) states, if a qubit belongs to a green
(red) region. Defects (red crosses), marking ends of error chains
E (red lines), are determined if the measured parity is odd (in the
picture, only exemplary defects and chains for phase protection part
of the algorithm are depicted). For higher time steps, defects are
determined whenever a parity measurement outcome changes from
one slice to another. At time T , single-qubit measurements in X basis
(green region) and Z basis (red region) are performed, and values
of corresponding Xs and Zp operators are calculated, determining
defects on T th slice. The set of most probable error chains Emin (blue
lines) is determined classically by connecting defects with themselves
or with a nearest boundary [which, in the case of phase protection,
is a front or back rough boundary, together with green regions of
first and last time slices—as defects appear there with probability 1

2
on every vertex (not marked in the picture)]. Emin is projected onto
“front row” (left column) qubit line of the T th surface, leading to
a flipping (marked by exclamation marks) of a single-qubit parity
outcome registered at time T whenever the number of projections
on a particular qubit is odd, and flipping the black qubit under the
same condition. Parity on the front row (left column) is calculated,
and when it is odd, black qubit is flipped, which finalizes decoding of
state ρout from a system of M qubits. Nontrivial chains from E + Emin

are shown: short ones, connecting front rough boundary with green
regions of encoding-decoding slices, and one joining opposite rough
boundaries directly. Trivial (closed) chain is shown as well.

(vertical links). Now we choose Emin in such a way that it
minimizes the sum of weights (if there is more than one of the
same weight we choose one of them at random).

We now want to estimate the probability of the phase error
of the black qubit under the described algorithm. When is the
phase wrongly decoded? This happens if the set Emin + E

(symmetric difference of sets E and Emin) contains an odd
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FIG. 5. (Color online) Parity operators Xs = ⊗iXi and Zp =
⊗iZi , defined on every time slice. Index i labels qubits situated on
links adjacent to a vertex (for Xs) and qubits forming boundary of a
rectangle (for Zp). Examples of logical operators defined in the code
space: ZL (green line), connecting front and back rough boundaries,
XL (brown line), connecting left and right smooth boundaries.

number of links whose “position” belongs to the first row, and
“time” is arbitrary. Conversely, we are sure that there is no
error, if there are only homologically trivial loops in the set
Emin + E, since such loops cross the first row always an even
number of times. So for sure the probability of error is no
greater than the probability of occurring of the set Emin + E

with a nontrivial loop. In Sec. IV D we prove the following
bound for the probability of such an event in a limit of large
code size:

Prob(nontrivial loop) � 2p + 2α2(2 − α)

(1 − α)3
, (12)

where α = 12
√

p(1 − p).
As it should be, this probability scales linearly with the error

rate. From (12) it follows that for the probability of phase error
Prob to be less than 1

2 , the probability of error on single qubit p
needs to be bounded by the value p = 0.000 42. Let us quickly
explain how (12) is obtained from the algorithm. In the fault-
tolerant storage as in Ref. [6], we have a probability of error
tending to 0, and this follows from the fact that the nontrivial
loops are long, and their probability vanishes. In our case we
have two types of paths: those that do not touch the first and the
last time slices, and those that do touch either of them. Former
paths appear with the probability proportional to ( p

1−p
)L, and

this is like in the storage problem. However, latter paths have a
different probability for the part that lies in the first and in the
last slice–their probability is proportional to 1 for slice regions
where measurements are performed in a complementary basis,
so that the probability of such a path scales like ( p

1−p
)l , where

l is the length of the part that does not belong to these regions.
Thus the probability (12) comes from the sum over all possible
paths that start at the boundary and end up at the first or last
slice region of measurements performed in the complementary
basis. There are very short paths there, including those of
length 1: one of them reflects the physical error that attacks
the qubit in the first step, when it is bare, and the syndrome is
measured on it; the second is the dual path that touches the last
time slice and reflects the error which is acquired when other
qubits are measured at the very end. The situation described
above can be also explained from the following geometric
point of view: The weights that we attribute to qubits constitute
a sort of metric, and the probability of appearing of a given
path scales exponentially with the length of the path in this
metric. The nontrivial paths that do not touch the green area

of the first or last slice are long, and therefore their probability
asymptotically vanishes. The more they touch the green area,
the shorter—in this metric—and therefore the more probable
they become, and formula (12) bounds the probability that such
paths appear. In Sec. IV C the encoding-decoding procedure
proposed above will be discussed in more detail.

B. Analytical lower bound on state encoding fidelity:
Repetition code

In order to present a basic intuition laying behind our
encoding-storage-decoding procedure for the Kitaev code,
below we present its analog for the repetition code.

Suppose we want to encode a physical qubit in a state |	〉 =
a|0〉 + b|1〉 into a logical qubit a|0〉|0〉 · · · |0〉 + b|1〉|1〉 · · · |1〉.
Let us first assume that we measure syndromes with zero prob-
ability of error. We encode the physical qubit in the following
way. On the right of the physical qubit, we prepare N − 1
qubits in a state |+〉 · · · |+〉. We denote the physical qubit by
1, the next qubit by 2, and so on. Then we measure operator
ZiZi+1 on each pair of neighboring qubits. We can represent
it graphically by drawing a line consisting of N horizontal
links and N − 1 vertices; see Fig. 6. Qubits correspond to
the links, while syndrome measurements correspond to the
vertices. Nontrivial error syndromes correspond to defects
placed on the vertices.

We are going to correct errors by optimally connecting all
the defects. Optimal calculation of this set of connections must
depend on error probability associated with each link. We thus
perform a matching of defects by the shortest paths; the length
of a path is defined as a sum of weights of links that it is
constituted of. The weight of a link is equal to −ln pi

1−pi
[6],

where pi is the probability of an error on every qubit. We
assume that a physical qubit 1 is subjected to a storage error
p, i.e., the weight of the first link is equal to −ln p

1−p
. On the

other hand all error syndromes have random values, i.e., an
error syndrome can have value 1 with probability 1

2 and value
−1 with probability 1

2 . Hence, weights of other links are equal
to zero. We correct errors by connecting all defects by the
shortest path according to the metric given by weights, which
is equivalent to moving all defects to the right.

Let us now assume that we measure an error syndrome
with some small, nonzero probability of error—for simplicity
we take the probability of an erroneous measurement equal
to the probability of an error on a physical qubit. In such
a case we need to measure error syndrome many times. We
can represent it graphically in the following way. We draw a
lattice of horizontal links (associated with qubits) and vertical
links (related to syndrome measurements in subsequent time
steps 0, . . . ,T )—see Fig. 7(a). Horizontal links marked in red

1 2 3

Z Zi i+1

4 i i+1 N

FIG. 6. (Color online) The encoding procedure into a repetition
code with an ideal syndrome measurement.
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FIG. 7. (Color online) (a) Scheme for encoding a state |	in〉
of qubit placed on the bottom left corner into a repetition code.
Qubits are represented by horizontal links, vertical links correspond
to measurement outcomes of ZiZi+1 operators acting on a pair
of adjacent qubits. Red horizontal links represent errors that arise
on qubits; red vertical links are associated with errors that occur
on syndrome measurement; grey vertical links define places where
nontrivial syndrome is measured; the changes of them are signed by
red crosses. Blue lines represent chains of our corrections performed
on the code. Both depicted nontrivial loops of errors lead to a
failure of the encoding procedure. (b) Single qubit measurements
on the last time line are performed in |0〉, |1〉 basis. Using results
of these measurements, perfect syndrome measurement outcomes
are obtained. A boundary of a set E is equal to syndrome changes
marked by red crosses. Connecting defects by Emin leads to either
trivial (e.g., red line + solid blue line) or nontrivial (e.g., red line +
blue dashed line) paths. (c) Single qubit measurements on the last
time line are performed in |+〉, |−〉 basis—syndrome measurement
outcomes are random there. Thus we can neglect them and assume
that last syndrome measurement is performed on the (T − 1)th line.
Some errors can cross the last time line without causing defects.
(d) Selected nontrivial paths in a case of ideal syndrome computation
in the last time step, as described in panel (b). Bottom line (except
of the first link on the left) is additionally treated as a boundary.
Connecting defects by Emin leads to paths that may have ends either
on the left and right boundaries, or on the top boundary. (e) Exemplary
nontrivial paths in the case of lack of syndrome measurement on line
T . There are two extra boundaries: “upper” and “bottom.”

indicate selected qubits on which an error occurred, red vertical
links correspond to erroneous syndrome measurements, and
grey vertical links to places where measured parity is odd.
Nontrivial error syndromes in the first step and changes
of error syndromes in all subsequent steps correspond to
defects placed on vertices (red crosses). The set of errors E

consists of all red links, and the set of nontrivial syndromes
S consists of grey links. We notice that the boundary of
E is defined by nodes where syndromes change, i.e., red
crosses.

Having recorded the defects, we perform a correction by
flipping qubits along chains from a set Ecorr, which has the
same boundary as the set E. As already announced, we can
maximize the probability of successful recovery by calculating
a set Ecorr as the set of most probable error chains, i.e., by
taking Ecorr = Emin. The elements of Emin are chosen along the
shortest paths according to the metric given by the following
weights. The weight of the first link on the first horizontal
line is equal to −ln p

1−p
and weights of the other links on the

first horizontal line are equal to zero. After the first step the
probability of an error on qubits and the probability of an
erroneous measurement is equal to p. Hence, the weight of all
other links is equal to −ln p

1−p
. One can notice that in some

regions of the lattice the “visual” lengths of the paths differ
from the lengths (weights) determined by the metric; see the
time slice 0 in Fig. 7(b) or the first and the last time slice in
Fig. 7(c), where the paths of corrections are going to the right
due to the metric (which identifies all the nodes but one) even
though they are visually much longer than potential correction
paths directed to the left.

Let us assume that the measurements of ZiZi+1 in the last
step are perfect. This can be achieved by classical (thus with
no error) calculation of syndrome using outcomes of single
qubit measurements performed in Z eigenbasis: |0〉, |1〉 (with
error p) on every qubit placed on the last line. In this case
every error chain creates a defect or pair of defects. Hence a
boundary of a set E is equal to the set of defects; see Fig. 7(b).
Therefore, we observe all chains in a set E + Emin to be either
closed or nontrivial paths. Since chains from E + Emin have
no boundary [because δE = δEmin ⇒ δ(E + Emin) = 0], they
cannot create a defect, and the state of a system after this
operation is in the code space.

An error on the logical qubit happens only if there is a
nontrivial path consisting of an actual error (E) and the shortest
paths by which we connected all defects (Emin). We have no
more than 4l nontrivial paths of length l � 2 going through the
first vertex on the first horizontal line [the bottom nontrivial
path in Fig. 7(d) is an example of such a path], no more than
4l nontrivial paths of length l � 3 going through the second
vertex on the first horizontal line [see the second path from the
bottom in Fig. 7(d)], and so on. In general we have no more
than 4l nontrivial paths of length l � k + 1 going through
the kth vertex on the first horizontal line. Additionally, we
have no more than T 4l nontrivial paths of length l � N , where
T is a number of time steps [the upper nontrivial path in
Fig. 7(a) is an example of such path]. There are no more
nontrivial paths. Probability of the specified path of length
l is no greater than 2l

√
p(1 − p)

l
. We can now bound the

probability that there is a nontrivial path by the following

062311-7



PAWEŁ MAZUREK et al. PHYSICAL REVIEW A 90, 062311 (2014)

expression:

PSAP =
∞∑
l=2

4l2l
√

p(1 − p)
l

+
∞∑
l=3

4l2l
√

p(1 − p)
l + · · · +

∞∑
l=N

4l2l
√

p(1 − p)
l

+ T

∞∑
l=N

4l2l
√

p(1 − p)
l

= q2

1 − q
+ q3

1 − q
+ · · · + qN

1 − q
+ T

qN

1 − q

<
q2

(1 − q)2
+ T

qN

1 − q
, (13)

where q = 8
√

p(1 − p). This expression goes to q2

(1−q)2 for
p 
 1, T = Polynomial(N ) and N → ∞. Hence, probability
of an error on logical qubit scales linearly with p. It is worth-
while to emphasize that eventually (in the limit of large code
size N ) only paths which start at the “geometrical” boundary
(on the left) and end at the “bottom” boundary (introduced
by randomness of syndrome measurements) contribute to the
error; see Fig. 7(d).

On the other hand, if we consider a case when individual
qubits on the last timeline T are measured in the |±〉 basis
(which gives random outcomes as if the stabilizers were not
measured at all), we can observe creation of a different type of
path in a set E + Emin, and as a result leaving the code space,
i.e., it can happen that an error chain is undetected at time T ,
and ends on the “upper” boundary without creating a defect;
see Fig. 7(c). In this case we can introduce the bottom boundary
as well as the upper boundary arising due to randomness of
measurements performed on qubits situated on the first and
last line. The bound for the probability of error on the logical
qubit is now given by (13) with additional factor 2. The factor
is due to the paths that join the left boundary with the upper
one (absent in the previous case) as depicted in Fig. 7(e). This
case will be applied while describing the encoding-decoding
procedure in the Kitaev code in Sec. IV D.

C. Detailed description of fault-tolerant
encoding-storage-decoding algorithm

The encoding and decoding protocol described briefly in
Sec. IV A aims at protecting a state of a chosen physical qubit
ρ from decoherence, modelled by a map �(ρ) = p(1 − p)
XρX + p2YρY + p(1 − p)ZρZ + (1 − p)2ρ induced on a
qubit in one time step, where X,Y,Z denote Pauli matrices.
The goal is achieved by encoding ρ into a measurement-
invariant, logical subspace of a system of M qubits, on which
measurements are performed in order to detect bit errors
(introduced by X) and phase errors (introduced by Z) resulting
from the map � acting on every qubit of the new system. Based
on measurement outcomes, and under the assumption that the
measurement itself is subjected to errors with probability p,
we perform corrections in order to revert the action of the
most probable errors on the logical subspace. In this way, after

protecting the state for some time T , it will be possible to
decode it from the M-qubit system into a chosen qubit.

Code geometric structure. In a particular geometry of a
2D planar code [6], qubits are represented by links forming
horizontal slices of a code structure, visualized in Fig. 4; a
vertical axis k describes time direction. For simplicity, we
assume that the lattice is symmetric, i.e., there are N qubits
in every space direction (distance of a code = N ), so M =
N2 + (N − 1)2. Joint phase- and bit-parity measurements are
defined in the following way: for every node s of a slice we
measure an operator Xs = ⊗iXi , where index i runs over every
link (qubit) adjacent to a node s. Similarly, for every plaquette
p of a slice we measure an operator Zp = ⊗iZi , where index i

runs over every link (qubit) forming a plaquette boundary. This
is shown in Fig. 5, which can be treated as a cut from Fig. 4.
Because X and Z anticommute, measurements of Xs (Zp)
reveal the action of an odd number of Z (X) errors on qubits
on which an operator Xs (Zp) is defined. Both joint phase- and
bit-parity measurement operators act on four qubits, with an
exception of those defined by the nodes and plaquettes situated
on the code boundaries: on the rough boundary (front and back
side of the code structure), Zp are formed by products of three
one-site operators only; similarly, on the smooth boundary (left
and right side), Xs are formed by products of three one-site op-
erators. For every time step, measurements of Xs as well as Zp

(but in virtual lattice where Zp are associated with stars and Xs

with plaquettes) are performed on the slice, and results, called
syndromes, are stored in vertical links. By tracking the defects,
i.e., points where parity measurement outcomes change from
one time step to another, we are able to identify boundary ∂E

of a set of error chains E. E can be composed both of vertical
and horizontal links of the code, as both qubits and parity
measurement outcomes are subjected to error. In Fig. 5 it can
be seen that, in the geometry considered, X (Z) error chains can
start and end at smooth (rough) boundaries without causing any
defects. Based on our knowledge about ∂E and on probability
of error on every link of the code, we can now classically
determine a set of the most probable error chains Emin. Because
all Xs and Zp commute, this can be done independently
for protection procedures against phase and bit errors. To
determine Emin it is thus sufficient to find the most probable
set of links that connect all points from ∂EX with other points
from ∂EX or rough boundary, as well as all points from ∂EZ

with other points from ∂EZ or smooth boundary, where ∂EZ(X)

refers to defects detected by Zp (Xs) parity operators.
Code space protection. The code (logical subspace of a

system of M qubits) is described by logical bit (XL) and
phase (ZL) operators. In the considered geometry, under an
assumption that a state of the system is an eigenstate of all Xs

and Zp operators on a selected time slice (i.e., it belongs to a
code space), these logical operators are defined by XL = ⊗iXi

(ZL = ⊗iZi), where summation over index i accounts for any
path within qubits of a chosen time slice and connecting oppo-
site smooth (rough) boundaries; we are going to measure logi-
cal operators on lines presented in Fig. 5. XL and ZL commute
with all Xs and Zp stabilizers, which fulflils the requirement
for the logical subspace to be measurement invariant. The
number of all Xs and Zp operators on a chosen time slice is
M − 1 (2M−1-dimensional subspace), which leaves room for
exactly one qubit state to be stored in the logical subspace of
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the 2M -dimensional space of M qubits. Because XL and ZL

anticommute (there is only one qubit that they act on jointly), as
long as the requirement to be in the code space is fulfilled, the
parity of lines where XL (ZL) is defined can be changed only
by paths of Z (X) operators that, projected onto the specific
slice, form ZL (XL) logical operators, i.e., chains that connect
opposite boundaries (in a storage scenario, the probability of
such chains to happen decreases to 0 with growing code size
N , under an assumption that single error probability p is below
some threshold value). We aim at achieving the requirement
for a state of the T th slice to be an eigenstate of all Xs and Zp

operators by connecting points from ∂EX with other points
from ∂EX or rough boundary, and by connecting points from
∂EZ with other points from ∂EZ or smooth boundary, i.e., by
flipping qubits along the most probable chains from a set Emin,
which has the same boundary as E. After this operation, the
set of errors is given by E + Emin, which represents a disjoint
union of sets. For now, let us assume that all measurements
at the T th slice are perfect, that is, all error boundaries in the
history k � T are well defined (cf. Sec. IV B). Thus all chains
in E + Emin form paths (either closed or nontrivial). If the
pairing of defects is fully successful in a sense that all paths in a
set E + Emin are closed, there will be no logical error, as closed
paths on the code structure, projected onto the T th slice, remain
closed. Closed paths of single-link operators Z (X) cannot
influence a parity of XL (ZL) since they intersect the selected
line of logical operator an even number of times. However, if
the pairing is not fully successful (there are nontrivial paths
in E + Emin—those connecting opposite rough or smooth
boundaries), the parity of the logical operator is changed; a
logical error may occur. Remembering that the final goal of a
protocol would be to recover, say at time T , a logical state of
a single, physical qubit, we can lift the unrealistic assumption
about the perfect quantum Xs and Zp measurements on the
last slice by classically (and thus with no error) calculating
its outcomes from single qubit measurements at time T .
Of course, these measurements destroy correlations between
qubits, however, after decoding we no longer need to demand
the state of a system to be in the code space. We define a single
qubit measurement pattern so that at least on one line that XL

(ZL) operators are defined, i.e., no Z (X) single qubit operators
are measured. It provides that XL (ZL) defined on this line
commutes with the measurement and, in a way described by
decoding procedure, its parity can be mapped into a chosen,
physical qubit. In other words, the decoding procedure does
not map a parity of a really existing state from the code space. It
extracts information about the parity of XL and ZL that would
have characterized a code space state if at time k = T we had
performed standard Xs and Zp measurements, knowing which
of the outcomes are correct and using that information together
with registered ∂E to apply corrections Emin to the code. Of
course, these imaginary Xs and Zp measurements on the last
time slice should lead to the same error pattern as one caused
by actual single qubit measurements.

Description of the protocol. The black qubit prepared in a
state |	in〉 at time k = 0 is situated on the front left corner of
the plane (see Fig. 4). Other qubits are prepared in |+〉 states
(X|+〉 = |+〉) (green region) or |0〉 states (Z|0〉 = |0〉) (red
region). Parity operators Xs and Zp are measured; If the parity

is odd, a defect is recorded. For time steps k = 1, . . . ,T − 1,
we measure parity operators Xs and Zp for all stars s and
plaquettes p and record defects (when parity measurement
outcome changes from one time step to another). For time step
k = T , we perform single qubit measurements in X eigenbasis
(green region) and Z eigenbasis (red region). From outcomes
of these measurements we calculate values of Xs and Zp and
record defects. (If parity cannot be determined due to the pres-
ence of an element measured in a different basis, we randomly
choose between even and odd parity with equal probability.
The same applies to a parity operator defined on the black
qubit, which, as the only one at the T th slice, is not measured.)

Having recorded the defects (which is equivalent to know-
ing ∂E), we calculate the set Emin of the most probable error
paths that could have caused it. The optimization is achieved
by minimizing the sum of the weights −∑

i ln pi

1−pi
by a proper

choice of paths of links connecting all points from ∂EX with
other points from ∂EX or the rough boundary, as well as all
points from ∂EZ with other points from ∂EZ or the smooth
boundary (pi stands here for probability of error occurrence
on link i). We assume that state preparation, storage, and
measurement are subjected to an error with probability p.
Thus, the perfect minimum weight matching algorithm [20],
which determines Emin, is going to use link weights in the
units of −ln p

1−p
. Hence all links except from those located

on the lowest and the highest slices have weight 1. In a case
of k = 0 and k = T slices, the algorithm used to construct
EX

min (EZ
min) assumes 0 weights for all links from red (green)

regions, as measurement of a state in a complementary basis
gives a random outcome (pi = 1

2 ). Thus, as X (Z) error chains
ending in the intersection between green and red region can
be extended towards the rough (smooth) boundary with no
cost (weight 0), this effectively moves code boundaries across
triangle-shaped regions of the highest and the lowest slices. To
the green (red) links, for EX

min (EZ
min) procedure, we attribute

weight value 1, as state preparation and measurement are
faulty with probability p. We assume that the black qubit
is subjected to a storage error p during the first and the last
stage of the protocol, so weight values 1 are associated with
it. Therefore, the metric used for perfect matching varies from
taxicab metric only on the first and the last slice of the lattice,
where presence of links with weight 0 stems from encoding
and decoding procedures, respectively. After calculating EX

min
(EZ

min), we make its projection onto the T th slice front row
(left column) qubit line. If the number of corrections projected
into a particular qubit is odd, we flip its measurement outcome
that was obtained at k = T time [if the projections are done
onto the unmeasured black qubit, we apply X (Z) on it
whenever the number of projections from δEX (δEZ) is odd].
Neglecting the black qubit and basing on the modified single
qubit measurements at the front row (left column) line on the
T th slice, we calculate the parity of the line. If it is odd, we
apply a Z (X) operator on a black qubit, obtaining ρout.

Before going into details of a rigorous proof of the p-
dependent lower bound for probability of 〈	in|ρout|	in〉 = 1
(success of the procedure), let us present the intuition behind
the protocol. The aim of the Xs and Zp parity measurements
at time k = 0 is to map the qubit state |	in〉 into the code
(that would have existed at time T had it not been destroyed
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by single qubit measurements). Preparation of left column
states |0〉 and front row states |+〉 sets the dependence of the
logical state of the code on the state |	in〉. Indeed, the black
qubit and the front row (left column) qubits constitute sets
of qubits on which the logical ZL (XL) operator is defined,
and we see that parities of those operators depend completely
(in the case of ideal measurements) on the state |	in〉. In a
fault-tolerant scenario we prepare half of the k = 0 plane
in |+〉 (|0〉) states in order to reduce the probability that a
chain from EX + EX

min (EZ + EZ
min) crosses the front row (left

column) line, changing in an uncontrollable way its parity.
This results in enlarging a distance between the line and
the boundary [constituted for the EX

min (EZ
min) algorithm by

the green (red) area; cf. Fig. 4] with growing n, enabling the
upper bound on the probability of failure not to scale with the
size of the code N . However, as short chains from E + Emin,
that lead to logical error, are always present, the probability
of failure is nonzero. From a geometric point of view, the
decoding procedure at k = T is symmetric to encoding at
k = 0. The presented encoding procedure maps the parity of
the hypothetical state from the code space onto the black
qubit, while destroying the coherences between the qubits.
This can be seen in the following way: If the parity of a logical
operator, characterizing a state in the code space, is originally
odd (even), the procedure leads to changing the black qubit
parity from even to odd (odd to even), thus synchronizing it
with the logical operator parity; it leaves it untouched when
its parity is already synchronized. It should be noted that
both encoding and decoding procedures do not discriminate
between eigenstates of X, or between eigenstates of Z, thus
enabling the coherence in the state |	in〉 to be sustained.

Figure 4 shows short chains from EX + EX
min connecting

the front row line of qubits with the opposite rough boundary
through the green areas of the k = 0 and k = T slice.
Nontrivial loops of this kind are the most probable (i.e.,
the shortest among all nontrivial loops) for times t < N

2
and t > N

2 , respectively. However, for intermediate times, the
shortest nontrivial loops connect rough boundaries directly,
without going through the green regions, as it is shown in
Fig. 4. The closed path is depicted as well in order to envisage
that, when projected into the T th slice, it cannot influence the
parity of any line that a logical operator is defined at (it always
acts on it an even number of times).

As the fidelity of a quantum process relies on measurement
outputs of only two complementary sets of input states (cf.
Lemma 4), in order to prove the correctness of procedures for
encoding, storage, and decoding of eigenstates of X and Z

operators it suffices to show the correctness of the algorithm
for an arbitrary state |	in〉.

D. Calculation of lower bound on the protocol fidelity

Proposition 6. An unknown quantum state is encoded from
a single qubit into Kitaev 2D code of size N , stored through

time T , and decoded into a qubit. With encoding and decoding
realized by the algorithm described in Sec. IV A, under the as-
sumption of local Markovian noise in the form �(ρ) = p(1 −
p)XρX + p2YρY + p(1 − p)ZρZ + (1 − p)2ρ, acting inde-
pendently on every qubit in a single time step of storage,
and state preparation and classical measurement error p,
the fidelity F of the encoding-storage-decoding procedure
satisfies

F � 1 − 6p − 2α2(5 − 3α)

(1 − α)3
− 2NT

αN

1 − α
− 2αN (3α − 2)

(1 − α)3
,

(14)

with α = 12
√

p(1 − p).
Proof. To prove the above proposition, we will exploit

Lemma 4 by calculating the fidelity of encoding, storage, and
decoding the |0〉 and |+〉 states.

As it was announced, the part of the scheme protecting from
phase flips relies on parity measurement of front row qubit
line at time T (see Fig. 4). We have to take into account all
nontrivial paths in the set EX + EX

min that result both from the
interaction with environment and from the applied algorithm of
calculating EX

min. Nontrivial paths, i.e., those having nontrivial
projection on the front row line at k = T , can start from
any point (n,k) on the front rough boundary and connect it
either with the back rough boundary directly or with additional
boundaries—red regions in k = 0 and k = T slices. We should
sum over all possible ways ηl

n,k of realizing paths of length l

sufficient to reach another boundary, and take into account
probability Prob(l) of occurrence of a path of length l from
the set EX + EX

min. Thus, probability of failure (phase flip)
in encoding, storage, and decoding the |+〉 state is bounded
by

P x
fail �

N∑
n=1

T∑
k=0

∞∑
l=min(N,n+k,n+(T −k))

ηl
n,kProb(l), (15)

where l stands for a minimal length of nontrivial loop which
starts at a point n,k. From [6] we conclude that the latter is
bounded by Prob(l) � [2

√
p(1 − p)]l . As paths are realized

in 3D structure, we overestimate ηl
n,k � 6l . Only in a case of a

single link error chain do we take exact values Prob(l = 1) =
p, ηl=1

n=1,k=0 = 1, ηl=1
n=1,k=T = 1. Thus we obtain

P x
fail � 2p +

T −1∑
k=1

∞∑
l=min[N,1+k,1+(T −k)]

αl

+
N∑

n=2

T∑
k=0

∞∑
l=min[n,n+k,n+(T −k)]

αl, (16)

where α = 12
√

p(1 − p). Under the assumption T
2 > N − 2,

the right-hand side of (16) can be expanded as

2p + 2([α2 + α3 + · · · ] + [α3 + · · · ] + · · · + [αN−1 + αN + · · · ]) + (T + 3 − 2N )(αN + αN+1 + · · · )

+ 2([α2 + α3 + · · · ] + [α3 + · · · ] + · · · + [αN−1 + αN + · · · ]) + (T + 5 − 2N )(αN + αN+1 + · · · )

+ 2([α3 + · · · ] + · · · + [αN−1 + αN + · · · ]) + (T + 7 − 2N )(αN + αN+1 + · · · ) + · · · + (T + 1)(αN + αN+1 + · · · )
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= 2p + 2

(
2α2 + 5α3 + · · · + (N − 1)N − 2

2
αN−1

)
︸ ︷︷ ︸∑N−1

j=2
j (j+1)−2

2 αj

+ [N (T + 1) − 2](αN + αN+1 + · · · + α∞)

= 2p + 2
N−2∑
j=2

j (j + 1) − 2

2
αj + [N (T + 1) − 2]

∞∑
j=N

αj

= 2p + 2α2(2 − α) + αN (N2[1 − α]2 + N [1 − α2] − 2α2 + 6α − 2)

(1 − α)3
+ [N (T + 1) − 2]

αN

1 − α

= 2p + 2α2(2 − α)

(1 − α)3
+ NT

αN

1 − α
+ αN [N2(1 − α)2 + 2N (1 − α) − 4α2 + 10α − 4]

(1 − α3)
. (17)

Now, one can regard calculating failure probability for
T
2 � N − 2 as ignoring some layers of qubits from the front
rough boundary of the code (cf. Fig. 4) that are connected
by the shortest error paths with the opposite rough boundary,
rather than with red boundaries of lower (k = 0) or upper
(k = T ) layers. This is equivalent to ignoring some terms of
the form (αN + αN+1 + · · · ) in (17). Therefore, the right-hand
side of (16) in the case T

2 � N − 2 is even smaller than (17). In
the limit of large code size N → ∞ we obtain the right-hand
side of (12).

Analogously, in the case of the |0〉 state encoding, storage,
and decoding, the probability of failure (bit flip) is given by

P z
fail � 4p + 2

T −1∑
k=1

∑
l=min[N,1+k,1+(T −k)]

αl

+
N∑

m=3

T∑
k=0

∑
l=min[N,m−1+k,m−1+(T −k)]

αl

= 4p + 2α2(3 − 2α)

(1 − α)3
+ NT

αN

1 − α

+ αN [−N2(1−α)2−2N (1 − α) + 2α2−4α]

(1 − α3)
, (18)

where now all nontrivial paths start at points indicated by
(m,k).

From Lemma 4 we have

F �
(
1 − P x

fail

) + (
1 − P z

fail

) − 1, (19)

which gives (14). �
We note two implications of the above proposition.
Implication 1. For p � 0.007, α is smaller than 1, and in

the limit of large code size for T polynomial in code size we
have

lim
N→∞

F � 1 − 6p − 2α2(5 − 3α)

(1 − α)3
, (20)

which yields limN→∞ F � 1 − 1448p + O(p3/2).
It shows that the probability of failure is proportional to

the probability of the shortest chain capable of creating logical
error. Let us note that the right-hand side of (20) was largely
underestimated and increases above 1

2 for p � 0.000 21.

Implication 2. The size N of the 2D Kitaev code scales at
most logarithmically with storage time T .

If we manipulate size N and storage time T : N
′ = fNN ,

T
′ = fT T , in order to keep the lower bound (14) constant we

need, for T  N ,

NT αN = N
′
T

′
αN

′
, (21)

which implies

0 = lnαfN + lnαfT + N (fN − 1). (22)

For α < 1
e

1/βe
we have lnαfN > −βfN and

fN <
−lnαfT + N

N − β
, (23)

for β < N . One can manipulate β < N to apply the reasoning
up to α � 1 ⇒ p � 0.007.

V. IMPLICATIONS FOR ENTANGLEMENT
PERCOLATION

In entanglement percolation [4] the idea is that in each node
one performs an operation consisting of a constant number of
elementary operations, i.e., it does not depend on the size of
the network. The task is then to share entanglement between
two distant nodes with the fidelity F , which does not decay
when the network is enlarged.

According to [1], if we have computation scheme of a
dimension d, which allows us to preserve a qubit in time by
means of local gates, then we can translate it into a network of
dimension d + 1 that allows us to share entanglement between
two nodes of network. Our results now imply that in the
2D EPR network a node-to-node entanglement percolation
is possible. In other words, if in the 2D square network the
neighboring nodes share an EPR pair, two nodes can share an
entangled pair with the fidelity that scales reasonably with the
error rate.

Since our scheme based on 1D architecture for fault-tolerant
quantum computing uses concatenated codes, it is quite
complicated. We have therefore also proposed a scheme of
encoding, storing, and decoding a qubit in two dimensions by
measuring local syndromes. Via the mentioned result of [1]
we obtain a scheme of distant communication in a 3D EPR
network. To see how the implementation of the idea of [1]
would look in our case, let us describe a process of measuring
Z syndromes (see Fig. 8). The total 3D network would consist
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FIG. 8. (Color online) Z-syndrome measurements via noisy EPR
pairs.

of 2D slices: the code slices (white qubits in Fig. 8) interlaced
with syndrome collecting slices (red qubits). In the first slice
we consider half of the plaquettes (so that they do not share
qubits), and each plaquette from this set is teleported to a
single node in the next slice. In that slice, the four qubits
are jointly measured (i.e., syndromes are measured) and they
are teleported to four qubits occupying separated nodes in the
next slice. Then we do the same with the second half of the
plaquettes. So using five slices of the network, with at most
four qubits in the nodes, and with at most eight EPR pairs
connecting to a single node, we are able to implement the
measurement of Z syndromes of a 2D network. Thus such
a 3D network can simulate time evolution of a 2D network,
and the fidelity of the used EPR pairs is related to the error
rate on the 2D network. Therefore our result on encoding and
decoding implies that a 3D network with noisy EPR pairs
allows communication over an arbitrary distance.

Let us stress that we do not need long-time quantum
memory—instead we demand the probability of a single
error per time step to be below some threshold value. If
this condition is satisfied, we only require local, short-time
quantum memory. Our percolation scheme does not take into
account effects of finite time of classical calculations; however
in some applications (e.g., cryptography tasks) this is not the
issue as corrections can be applied to classical values after the
end of a protocol.

The communication scheme for an encoded state was
analyzed in [16]. Here we have complemented it with a simple
scheme of encoding and decoding an unknown state, which
allows us to obtain node-to-node entanglement percolation.
Our scheme, similarly to that of [21], needs three dimensions.
Two of them scale only logarithmically with the third one—the
distance between the nodes which want to share entanglement.
If we change time into a space dimension, the logarithmic
scaling is visible from the bound on fN in (23). Our protocol is
more uniform than the one presented in [1], because the only
operations are syndrome measurements for encoding, Pauli
measurements for decoding, and entanglement swapping.

(a)

(b)

FIG. 9. Transmitting qubits vs sharing ebits. By E, D, T we
denote encoding, decoding, and transmitting.

Indeed, we do not need to perform the flips in the encoding
scheme: it is enough to store this information classically. The
communication scheme of [21] uses correlations between the
nodes emerging from their initial preparation in a cluster state,
whereas our method relies on EPR pairs shared by adjacent
nodes.

In order to transmit a qubit, it is enough to change time into
one more space direction as in [1]. To share entanglement, we
need to propagate two qubits in opposite time directions. If
we translate it into space, we obtain the following scheme: In
one node an EPR pair is prepared and each of two qubits is
transmitted towards nodes between which we want to share
entanglement (see Fig. 9).

There is an alternative scheme of sharing entanglement,
which does not need encoding, but decoding only (see Fig. 10).
The idea is the following: We shall not start from a qubit which
we then want to transmit. Rather, we shall prepare known
encoded states. On one 2D plane we prepare the |0〉L state
(which in the percolation picture will use up a 3D network).
This amounts to preparing all qubits in the state |0〉, measure
repeatedly star and plaquette observables, and write down
the syndrome. On another 2D plane we shall prepare in an
analogous way the |+〉L state. Then CNOTs will be applied
bitwise between the planes, so that we shall obtain the EPR
encoded state between two logical qubits. Then we transmit the
encoded qubits in opposite directions, and then localize them
into two single qubits by our decoding method. The same of
course can be done in the case of a 2D network.

} }

P0 P+

FIG. 10. Sharing ebits without unknown-state encoding stage.
Here P0,(+) mean the stage of preparing a logical state |0〉L (|+〉L).
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Finally, one should be aware that the scheme of quan-
tum communication over networks inherits the problems of
applicability of fault-tolerant schemes to the Hamiltonian
description of interaction of the system with environment;
see, e.g., [22–27].

VI. CONCLUSIONS

We have completed previous results on quantum commu-
nication by use of a 2D network without long-time quantum
memory by explicitly evaluating the encoding fidelity. We have
also provided an elegant scheme of encoding and decoding an
unknown qubit into the 2D Kitaev code by measuring stabilizer
operators, thereby providing a simple scheme for long-distance
communication in three dimensions. Our encoding scheme
can also be used in quantum computing architecture based
on 2D Kitaev codes, where encoding a proper superposition

(followed by distillation) allows us to implement a non-
Clifford gate needed for universal quantum computing [7].
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