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This work develops measures for quantifying the effects of field noise upon targeted unitary transformations.
Robustness to noise is assessed in the framework of the quantum control landscape, which is the mapping from
the control to the unitary transformation performance measure (quantum gate fidelity). Within that framework,
a geometric interpretation of stochastic noise effects naturally arises, where more robust optimal controls
are associated with regions of small overlap between landscape curvature and the noise correlation function.
Numerical simulations of this overlap in the context of quantum information processing reveal distinct noise
spectral regimes that better support robust control solutions. This perspective shows the dual importance of both
noise statistics and the control form for robustness, thereby opening up new avenues of investigation on how to
mitigate noise effects in quantum systems.
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I. INTRODUCTION

Controlled quantum systems are being studied for potential
applications to many chemical and physical phenomena [1,2].
The search for an optimal control can be formulated as an
excursion over a control landscape specified as the mapping
from the controls to a cost functional (e.g., fidelity). A primary
goal is to locate extrema on the landscape that correspond to
the best possible fidelity. Under reasonable assumptions about
system controllability and dynamical surjectivity, as well as
the availability of suitable control resources, the landscape
possesses a topology free of suboptimal extrema, enabling
a “trap-free” search with gradient ascent algorithms [3–7].
Key landscape features affecting search efficiency have been
considered [8–10], and recent work has also examined how
constraining critical control resources may hinder the ability
to obtain optimal fidelity [11–14].

An important issue when considering quantum control is the
extent that noise affects optimal performance. Here we develop
a perspective about the influence of random field noise that is
based upon the structural features of the landscape. Optimal
control solutions lie at the desired extrema of the control
landscape; however, solutions that exhibit a high sensitivity
to slight changes in the controls will perform poorly when
noise is present. Controls that are inherently insensitive to
such changes are termed robust.

An optimal control lies in the landscape maximal (or
minimal, as appropriate to the objective) critical point sub-
manifold where the slope of the landscape vanishes, while
robust optimal controls are additionally located in such
regions with low curvature. Figure 1 illustrates the qualitative
differences between robust and nonrobust solutions with a
simplified landscape J [c] that depends upon two control
variables c = [c1,c2], although practical cases will generally
have many variables. Controls are optimized by climbing
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the landscape from an initial point, indicated by either of
the two dots at the base of the landscape, to an optimal
solution denoted by a star. In practice, controls that maximize
a functional J are inherently subjected to noise that perturbs
the controls, reflected in a domain on the landscape indicated
by the red oval describing the noise correlation function
regions in Fig. 1. Projecting the noise correlation function
upon the control landscape indicates the sensitivity of the
fidelity to this noise. These robustness concepts apply to any
quantum control application, and here we focus on the goal of
generating particular unitary transformations. In this regard,
an application of special importance is the implementation of
gate operations for quantum information processing (QIP). A
variety of control methods have been developed to deal with
disturbances in QIP such as dynamical decoupling [15,16],
dynamically corrected gates [17,18], and techniques for the
correction of systematic noise [19,20]. Instead of focusing on
these particular forms of control to assess robustness, we rather
seek to investigate features of noise and landscape structure
that are encountered for any control method.

Assessing robustness in this way is rooted in classical
control theory, where higher-order moments of a given fidelity
objective are taken as estimates to changes due to noise
[21–23]. Its extension into a quantum context often uses a
Magnus expansion of the fidelity objective, where expectation
values over noise are taken for higher-order Magnus terms
[24,25]. Such an approach draws on filter function theory,
where components of system dynamics act as a filter upon
the noise spectral density. The effects of the magnitude and
structure of the noise have also been studied for semiclassical
disturbances to the system [26–30], as well as for fully quan-
tum mechanical disturbances [31]. The relationship between
controllability and robustness has also been explored [32,33],
as have investigations into the dynamical nature of robust
control operation [34].

Formulating robustness through the lens of the quantum
control landscape and its Hessian (see Sec. III), as opposed
to a Magnus expansion approach as in [24,25], geometrically
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FIG. 1. (Color online) Landscape description of robustness. Two
control search trajectories ascend to optimal control points, indicated
by the stars. Average behavior of the stochastic noise can be specified
by noise correlation functions (red ovals), with characteristic direc-
tions denoted by the eigenfunctions ui and uj . Robustness quality
is determined by the degree of landscape curvature that overlaps
with eigenfunction directions of the noise correlation function. Better
robustness is given by the critical point at the middle of the landscape,
which possesses shallow curvature compared to the critical point
toward the foreground of the landscape.

reveals how robust controls can exist even in the presence
of seemingly adverse noise sources for any type of control
scheme. The robustness measure given in Sec. III is reminis-
cent of the filter function approaches in Refs. [24,25]; however,
the use of the landscape Hessian (which is highly nonlinear
in the controls) naturally reflects the system dynamics and
acts as a filter that directly reveals the subtle noise-system
relationship. While the landscape Hessian’s role in robustness
was previously identified [3,9], the general implications of its
relationship with noise structure have not yet been addressed.

This paper quantitatively investigates the spectral relation-
ship between the Hessian and the noise in a general manner,
revealing specific spectral regimes of noise that can either
hinder or support robust controls. Doing so provides a founda-
tion for optimization studies, including Pareto trade-offs, and
further examination of the role of quantum control landscape
features in this regard. The structure of the paper is organized
as follows: Section II outlines the formalism of optimal unitary
transformation control. Section III develops the formalism of a
Hessian-based robustness measure. Analytical and numerical
features of robustness for different noise types are examined
in Sec. IV, followed by concluding remarks in Sec. V.

II. UNITARY CONTROL OBJECTIVE

Consider an N -level quantum system with a Hamiltonian
expressed as

H (t) = H0 + με(t), (1)

where H0 is the field-free Hamiltonian, μ is the dipole,
and ε(t) is a control field. The Hamiltonian generates a
unitary propagator U (t) ≡ U (t,0) satisfying the Schrödinger
equation:

i
∂

∂t
U (t) = H (t)U (t), (2)

where U (0) = I, and � = 1. The solution U (t) may be written
as

U (t) = T̂ exp

[
−i

∫ t

0
H (t ′)dt ′

]
, (3)

where T̂ is the time-ordering operator [35].
The performance of the final controlled transformation

for performing the target unitary gate W , at time T , can be
quantified by the cost functional J that depends upon the
control field ε(t) [3]:

J [ε(t)] = 1

4N
‖W − U (T )‖2

= 1

2
− 1

2N
Re{Tr[W †U (T )]}, (4)

where ‖A‖ ≡
√

Tr
[
A†A

]
is the Hilbert-Schmidt norm for

a matrix A. The fidelity of a performed transformation is
then taken as F = 1 − J . For this objective, the goal is
to minimize J (rather than maximize as shown in Fig. 1)
such that an optimal control generates U (T ) = W (J = 0),
while a worst-case control generates U (T ) = −W (Jmax = 1).
Unitary transformations that differ only by a global phase
are physically indistinguishable as gate operations, and a
phase-independent version of the functional in Eq. (4) can
be used [36]. As the landscape features are predominantly
developed for the functional in Eq. (4), and the phase of
the target transformation can bear significant implications for
time-optimal control strategies [11], we focus here on the
phase-dependent form.

Locating an optimal control for J through gradient-based
methods involves descending the control landscape to find
minimal critical points of J , where the gradient of J with
respect to the control is zero. There are N + 1 critical sub-
manifolds at equally spaced values of J = 0,1/N,2/N, . . . ,N

[3]. Under the assumptions that (i) the system is controllable,
(ii) the time-dependent coupling matrix μ(t) = U †(t)μU (t) is
full rank, and (iii) no constraints are placed upon the controls,
the landscape possesses a favorable trap-free topology, and
contains only a global maximum and minimum, with the
other critical points of J corresponding to saddles [3,37]. The
overwhelming numerical and experimental evidence suggests
that these assumptions are generally satisfied, at least to
a practical level, for physically applicable control schemes
[9,38,39].

The gradient of J in Eq. (4) is

δJ

δε(t)
= − 1

2N
Re

{
Tr

[
W † δU (T )

δε(t)

]}
, (5)

and utilizing Eq. (1) we have [40]

δJ

δε(t)
= − 1

2N
Im{Tr[W †U (T )μ(t)]}. (6)

A critical point is characterized by its Hessian,

Hε(t,t ′) = δ

δε(t ′)

[
δJ

δε(t)

]
= δ2J

δε(t ′)δε(t)

= 1

2N
Re{Tr[W †U (T )μ(t ′)μ(t)]}, t ′ � t, (7)

062309-2



CHARACTERIZATION OF CONTROL NOISE EFFECTS IN . . . PHYSICAL REVIEW A 90, 062309 (2014)

which specifies the landscape curvature [41]. The Hessian may
be expressed in an eigendecomposition,

Hε(t,t ′) =
N2−1∑
i=1

λivi(t)vi(t
′), (8)

where the eigenfunctions {vi(t)} give the principle directions
of curvature and the nonzero eigenvalues {λi} weight their
contributions [3,9]. The Hessian also has an accompanying
infinite dimensional null space, which is important for under-
standing the influence of noise upon optimality [3–5]. Note
that the Hessian at any point on the landscape is bounded by

|Hε(t,t ′)| � 1

2N
‖μ‖2. (9)

The trace of the Hessian at points of optimality is invariant to
the control,

Tr[Hε] =
∫ T

0
Hε(t,t)dt

= 1

2N
T Re(Tr[μ2])

= 1

2N
T ‖μ‖2. (10)

This property has important implications for seeking robust
controls, as the overall magnitude of the Hessian may not be
reduced. This situation is in stark contrast to the very favorable
circumstances for the control of state-to-state transformations,
where the magnitude of the Hessian can be freely manipulated
by appropriate variation of the control field [42].

III. FORMULATION OF THE ROBUSTNESS MEASURE

Robustness to noise about an optimal control ε(t) is
dominated by the second-order contribution to the Taylor series
expansion of J , assuming that the perturbation δε(t) is small
(i.e., in the weak noise approximation):

δ2J [ε(t) + δε(t)] = 1

2

∫ T

0

∫ T

0
Hε(t,t ′)δε(t)δε(t ′)dtdt ′.

(11)

Noise in the control can be expressed as entering in either
of two distinct forms: additively [ε(t) → ε(t) + δε(t)] or
multiplicatively (ε(t) → ε(t)[1 + δε(t)]). In practice the noise
may have both contributions present. For convenience we will
separately consider these two forms. Since the noise arises
due to a stochastic process, it is appropriate to take the
statistical expectation value of Eq. (11) with respect to the
probability distribution of the corresponding noise process to
give a measure of robustness:

KA = E{δ2JA}

= 1

2

∫ T

0

∫ T

0
Hε(t,t ′)R(t,t ′)dtdt ′, (12)

KM = E{δ2JM}

= 1

2

∫ T

0

∫ T

0
Hε(t,t ′)ε(t)ε(t ′)R(t,t ′)dtdt ′. (13)

Here, R(t,t ′) = E{δε(t)δε(t ′)} is the noise correlation function
of δε(t), and the subscripts on K denote additive (A) or
multiplicative (M) noise. Good robustness of a control is
indicated by KA or KM being small.

For wide-sense stationary (WSS) noise processes, where
the mean and standard deviation of the probability distribution
characterizing the noise are constant in time, a complimen-
tary view of robustness can be presented conveniently in
the frequency domain [43]. The noise correlation function
R(t,t ′) = R(τ ) of a WSS process only depends upon the time
difference τ ≡ t − t ′. The Wiener-Khinchin theorem relates
the noise correlation function of a WSS noise signal to its
power spectral density S(ω), which yields

KA = 1

4π

∫ ∞

−∞
Hε(ω)S(ω)dω, (14)

where

Hε(ω) =
∫ T

0

∫ T

0
Hε(t,t ′)eiω(t−t ′)dt ′dt, (15)

S(ω) =
∫ ∞

−∞
R(τ )e−iωτ dτ, (16)

and for multiplicative noise

KM = 1

4π

∫ ∞

−∞
H̃ε(ω)S(ω)dω, (17)

where

H̃ε(ω) =
∫ T

0

∫ T

0
Hε(t,t ′)ε(t)ε(t ′)eiω(t−t ′)dt ′dt. (18)

The landscape interpretation of robustness presented in Fig. 1
can be understood in terms of an eigendecomposition of both
the Hessian in Eq. (8) and the noise correlation function as

R(t,t ′) =
M∑

j=1

γjuj (t ′)uj (t), (19)

where γj are the eigenvalues, uj (t) are the eigenfunctions, and
M is the rank of R (either finite or infinite depending upon the
specific noise process). The eigenfunctions uj (t) and vi(t) are
taken as real. Combining Eq. (19) with the Hessian expression
in Eq. (8), the robustness measures can be written in terms of
a set of overlap coefficients CAi,j

and CMi,j
, for additive and

multiplicative noise, respectively:

KA = 1

2

N2−1∑
i=1

M∑
j=1

λiγj

(∫ T

0
vi(t)uj (t)dt

)2

= 1

2

N2−1∑
i=1

M∑
j=1

λiγjCAi,j
, (20)

KM = 1

2

N2−1∑
i=1

M∑
j=1

λiγj

(∫ T

0
vi(t)uj (t)ε(t)dt

)2

= 1

2

N2−1∑
i=1

M∑
j=1

λiγjCMi,j
. (21)
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When the noise correlation function and Hessian strongly
overlap, this can lead to poor robustness. Figure 1 visualizes
how the overlap contributes to robustness quality, where ovals
in that figure represent R. Even with significant overlap in the
C coefficients in Eqs. (20) and (21), robust controls may still
exist in regions where the product of eigenvalues λi and γj are
relatively small.

Engineering methods to cope with noise often focus on
how to compensate for a given noise source tied to the nature
of the control in a particular physical system. However, the
robustness measures in Eqs. (12) and (13) or equivalently
Eqs. (14) and (17) emphasize that the character of the
engineered system, as well as the features of the noise
structure, enter on equal footing. If an optimal control acting on
a particular physical system produces a Hessian that overlaps
significantly with the associated noise form, then modifying
the physical system realization may permit operation under
favorable, alternative noise contributions. This route may just
as readily lead to better robustness as could an elaborate
control scheme that modifies the Hessian structure in the
original system. Either approach can successfully enhance
robustness, thereby making clear that quantum engineering
can beneficially operate with dual consideration of system
realization along with operational noise characteristics.

The fundamental relationship between the landscape and
noise structures also highlights the complexity of robustness,
as accessible directions and associated curvature on the land-
scape are both coupled to one another through the conserved
trace of the Hessian, as well as coupled externally to multiple
components of a noise correlation function. The following
section numerically examines these intricate relationships
between noise and landscape structures, and explores dynamic
trends about robustness.

IV. ILLUSTRATIONS OF ROBUSTNESS BEHAVIOR

Certain noise processes may be either naturally difficult or,
alternatively, easy to tolerate, and we will discuss these cases
to consider the possible factors that influence robustness. In
order to provide a broad assessment, we consider models of
one-qubit and two-qubit systems. The first case is a generalized
spin-1/2 system with the Hamiltonian

H (t) = ω1

2
σz + ε(t)σx, (22)

where ω1 is the energy level spacing between the |0〉 and |1〉
states, and σz and σx are Pauli operators. For the two-qubit case,
an additional isotropic Heisenberg coupling term between the
two qubits is included, along with a separate control field for
each qubit,

H (t) = H0 + H1(t) + H2(t), (23)

H0 = ω1

2
σ (1)

z + ω2

2
σ (2)

z + J1,2σ
(1)σ (2), (24)

Hi(t) = εi(t)σ
(i)
x , i = 1,2. (25)

The operators σ (i) = [σ (i)
x ,σ (i)

y ,σ (i)
z ] are tensor products of the

one-qubit Pauli matrices with the 2 × 2 identity matrix I2:

σ (1)
a = σa ⊗ I2, σ (2)

a = I2 ⊗ σa, a = x,y,z. (26)

Energy level spacings of ω1 = 20 and ω2 = 24 are used with
a weak interqubit coupling strength J1,2 = 0.2. One-qubit
operations are conducted over a time interval T = 1, two-qubit
operations over T = 10, and a temporal resolution �t = 0.01
is used in solving the Schrödinger equation. Propagation is
performed through short time steps,

U (t + �t) = e−iH (t+�t)�tU (t). (27)

We consider a decaying exponential noise correlation
function corresponding to an ∼1/ω2 noise spectral density,

Rz(t,t
′) = A2e−(|t−t ′ |/α), S(ω) = 2A2

π
α

+ παω2
, (28)

with a correlation time α characterizing the low-frequency
regime (α � 1) and a white noiselike regime (α � 1). The
noise strength is chosen as A2 = 10−4. A constant value of
A2 is chosen across all values of α to assess the effect of
disturbances to controls with an average magnitude of A =
0.01 (i.e., ∼0.1% of optimal control field amplitudes in this
study). The Hessian in the single qubit case is given by

Hε(t,t ′) = 1
2N

Re{Tr[W †U (T )σx(t ′)σx(t)]}, t ′ � t. (29)

The Hessian for the two-qubit system is formed in an analogous
fashion. We assume that the two fields have independent noise
contributions with each expressed by the same noise corre-
lation function. Thus, the total robustness is the contribution
from both qubits [44]:

KA =1

2

∫ T

0

∫ T

0
[Hε1 (t,t ′) + Hε2 (t,t ′)]R(t,t ′)dtdt ′, (30)

and similarly for KM .
The gate transformations are the one-qubit Hadamard and

two-qubit controlled-NOT (CNOT) gate

WH = eiπ/2

√
2

(
1 1
1 −1

)
, (31)

WCNOT = eiπ/4

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ . (32)

A global phase is included in the gate definition in order to
ensure that the target transformation is in the special unitary
group SU(N ), a requirement for successful optimization of J

given the Hamiltonian structure of Eqs. (22)–(25) [9].
The optimal controls in this study are located through

minimization of the distance measure in Eq. (4) with the
D-MORPH algorithm [9,45,46]. The controls depend on the
search variable s � 0 with the requirement that dJ/ds � 0,

dJ

ds
=

∫ T

0

δJ

δε(s,t)

∂ε(s,t)

∂s
dt � 0, (33)
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assured by

∂ε(s,t)

∂s
= − δJ

δε(s,t)
. (34)

Equation (34) is numerically solved with a fourth-order
Runga-Kutta integrator (MATLAB’s ode45 routine). For QIP
applications, gate fidelity demands are high, and an optimal
control is required to create a baseline, optimal J values of
J0 < 10−6. This degree of optimality is in the regime where
error-correcting codes should be operational [47].

A. Distributions of robustness for optimal controls

A general picture of robustness to noise, as well as
any inherent difficulties in improving it, can be gained by
examining an ensemble of optimal fields for their robustness
quality. To build this ensemble, 1000 initial fields with
random amplitudes and phases for on-resonance frequency
components were optimized to minimal critical points on the
landscape, followed by calculation of robustness measures.
After initial choice of the random field, its form is dictated
by the optimal solution to Eq. (34). The averages 〈KA/M〉
and left standard deviations σl of the ensemble for both
additive and multiplicative noise types are shown in Fig. 2(a)
for the Hadamard gate, and Fig. 2(b) for the CNOT gate.
Assuming that the ensemble adequately represents the range of
possible robustness values for critical points on the landscape,
a large left standard deviation indicates a high potential for
optimization of robustness against a given noise form. For
each of the L optimal fields in the ensemble generating a
robustness measure Ki � 〈K〉, σl is expressed as

σl =
(

1

L

L∑
i

(Ki − 〈K〉)2

)1/2

, Ki � 〈K〉. (35)

Here, 〈K〉 is the average change in J due to noise where
〈J 〉 = J0 + 〈K〉. When 〈K〉 � J0 and σl � 〈K〉, then this
situation indicates operation under nonrobust conditions that
may be difficult to improve upon by searching for the most
robust control. Such an instance is evident in the case of
additive noise in the CNOT gate, where 〈K〉 is over an order of
magnitude larger than J0 for α ∈ [0.01,1] (shaded region), and
σl was several orders of magnitude smaller than 〈K〉. However,
the Hadamard gate did operate in a nearly robust manner in the
presence of additive noise, with 〈K〉 reaching its maximum of
∼10−6 for α = 0.06. 〈K〉 and σl for multiplicative noise are
practically invariant to the dimension of the target gate in the
present cases.

A range of correlation time values for which noise power
overlaps with the spectrum of system dynamics is shaded in
Figs. 2(a) and 2(b), ranging from α ∈ [0.008,0.12] for the
Hadamard gate, and α ∈ [0.008,1] for the CNOT gate. This
spectral region where system dynamics are important was
identified by examining dominant frequency components in
the power spectra of the optimal controls, which displayed
significant power in ω ∈ [6,50]. The corresponding range of α

values was characterized by identifying the onset of the low-
frequency regime (i.e., more than 90% noise power density in
ω < 6) as well as the white noise regime (noise power density
in the window ω ∈ [6,50] approaching a constant value). The

0.001 0.01 0.1 1 10 100 1000
0

0.6

1.3

x 10
−6

 Noise correlation time, α

<
 K

 >

Average K for noise in Hadamard Gate

Additive control noise
Mult. control noise

3.8

63

125
(a)

Additive control noise
Mult. control noise

0.001 0.01 0.1 1 10 100
0

32
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94
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188

219

x 10−6

σ

 Noise correlation time, α

Average K for noise in CNOT Gate

<
 K

 >

(b)

l

(white noise) (mid-frequency noise) (low-frequency noise) 

FIG. 2. (Color online) Averages and left standard deviations (in-
set) of robustness distributions of the optimal Hadamard gate (a) and
CNOT gate (b). The shaded regions denote midfrequency noise, where
noise power is centered around the same spectral domain as system
dynamics (ω ∈ [6,50]). White noise and low-frequency noise lie to
the left and right of this region, respectively.

shaded regimes in Fig. 2 are referred to as “midfrequency”
noise, as they lie in between low-frequency and white noise.
〈K〉 has a maximum in the midfrequency regime, while for
multiplicative noise 〈K〉 increases monotonically with α. σl

decreases dramatically as α decreases, displaying the difficulty
for robustness to be improved at small α. The standard
deviations are similar in magnitude for both gates.

The trends seen in robustness distributions can be further
qualified by examining the different spectral regimes of noise
where robustness quality is distinct. Comparing the averages
and standard deviations for these different regions of α in
Fig. 2, the midfrequency regime possesses the most diversity
in average robustness, as well as standard deviation within
the distributions. This frames midfrequency noise as having a
complex relationship with system dynamics that can be either
tolerable or detrimental for performing quantum operations.
These three different spectral regimes are further examined
for their landscape features in the following sections.
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TABLE I. Robustness and fluence for midfrequency control
noise, α = 0.1.

WH

Add. noise Mult. noise

Kmin 〈K〉 Kmax Kmin 〈K〉 Kmax

KA/M (10−6) 1.12 1.17 1.39 23.5 37.0 96.5
f 10.03 17.39 42.94 9.99 16.74 42.94

WCNOT

Add. noise Mult. noise

Kmin 〈K〉 Kmax Kmin 〈K〉 Kmax

KA/M (10−6) 17.6 17.7 17.9 19.4 35.8 65.6
f1 3.98 8.04 19.18 3.93 5.82 15.36
f2 4.97 11.04 19.17 4.34 11.14 15.03

B. Midfrequency noise

Table I presents the values of the robustness measure and
fluence for three separate controls that are representative of
robust (Kmin), average (〈K〉), and nonrobust (Kmax) controls
in the presence of noise with a correlation time α = 0.1. The
fluence of each control field is a measure of its energy,

fi =
∫ T

0
ε2
i (t)dt, i = 1,2. (36)

For the case of the Hadamard gate there is a single field with
fluence, f . The table shows an intuitive trend that higher
fluence controls are less robust toward multiplicative noise, but
interestingly the behavior is essentially the same for additive
noise. Additionally, the overlap terms CAi,j

from Eq. (20)
for robust and nonrobust optimal fields were examined for
performing the Hadamard gate for additive noise (Fig. 3), as
well as CMi,j

from Eq. (21) with multiplicative noise for CNOT

gate (Fig. 4). Figure 3 illustrates the simple circumstances
when robustness to noise is achieved by shifting the dynamics
such that the noise spectrum contribution mainly lies in the
Hessian’s null space. In contrast, Fig. 4 shows that robustness
to multiplicative noise in each field performing the CNOT gate
is achieved by reducing the partial overlap of the noise in
the Hessian non-null space, regardless of the overlap in the
Hessian null space. This behavior is further explained by the
rapid decrease of the Hessian eigenvalues (in parentheses),
such that components beyond index i ≈ 6 have little overall
contribution to K . Such contrasting behavior between Figs. 3
and 4 illustrates the variety of different ways in which a control
can be robust to noise.

C. Low-frequency noise

Low-frequency noise (α � 1) has a correlation time that is
long compared to the time scale of the dynamics, and can be
treated as constant in time as R(t,t ′) ≈ R. The mismatch in
time scales for low-frequency noise has been exploited with
many pulse-sequencing control techniques [15–17,48,49].
This circumstance in the additive noise case leads to

KA = R

2

N2−1∑
i=1

λiVAi
, (37)

C i,jA 

(0.0
019)

(0.0
016)

(0.0
012)

(0.0
009)

(0.0
007) (21)

(17)
(11)

(0)
(0)

(0)
(0)

(0)
(0)

(0)

Hessian Eigenvector number, v ,(λ  )
i

i
Noise Eigenvector number, u ,(γ )

j
j

(0.0
019)

(0.0
016)

(0.0
012)

(0.0
009)

(0.0
007) (23)

(16)

(0)
(0)

(0)
(0)

(0)
(0)

(0)

Hessian Eigenvector number, v ,(λ  )
i

i
Noise Eigenvector number, u ,(γ )j

j

(13)

C
i,jA 

K     min

K      max

(a)

(b)

FIG. 3. (Color online) Additive noise and Hessian overlap terms
CAi,j

for midfrequency noise in the Hadamard gate for poor robustness
(a) and best robustness (b). The noise correlation time for the noise
was α = 0.1. Listed in parentheses are the associated eigenvalues of
each eigenfunction. Robustness is achieved by altering the dynamics
such that the noise-Hessian overlap shifts to the Hessian null space.

where

VAi
=

(∫ T

0
vi(t)dt

)2

. (38)

The Hessian eigenfunctions with nonzero eigenvalues are
typically highly oscillatory functions reflecting the system’s
dynamical sensitivity to the field, implying that time averaging
over these eigenfunctions would lead to good robustness in this
regime, as found in Figs. 2(a) and 2(b).

Similarly, for multiplicative noise, we have

KM = Rz

2

N2−1∑
i=1

λiVMi
, (39)

where

VMi
=

(∫ T

0
ε(t)vi(t)dt

)2

. (40)
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FIG. 4. (Color online) Multiplicative control noise and Hessian overlap terms CMi,j
for midfrequency noise in the CNOT gate. The noise

correlation time for the noise was α = 0.1. Overlap terms for the individual control field contributions are shown separately for worst robustness
[(a) and (b)] and best robustness [(c) and (d)]. Listed in parentheses are the associated eigenvalues of each eigenfunction. The eigenfunctions
composing the Hessian null space are colored in gray. Robustness is achieved by diminishing the Hessian non-null space overlap with the noise
spectrum, regardless of the overlap with the Hessian null space.

The Hessian eigenfunctions with nonzero eigenvalues natu-
rally reflect the key control field structure. Thus, the overlap
in Eq. (40) is expected to be significant, which is reflected in
the strong impact of multiplicative noise, over that of additive
noise in Table II and in the ensembles in Fig. 2.

TABLE II. Robustness and fluence for low-frequency control
noise, α = 100.

WH

Add. noise Mult. noise

Kmin 〈K〉 Kmax Kmin 〈K〉 Kmax

KA/M (10−6) 0.03 0.30 1.23 74 128 333
f 24.8 30.03 20.86 17.0 17.3 35.3

WCNOT

Add. noise Mult. noise

Kmin 〈K〉 Kmax Kmin 〈K〉 Kmax

KA/M (10−6) 0.17 0.26 0.65 113 193 466
f1 5.21 8.16 13.68 9.28 8.13 7.81
f2 10.47 7.81 14.85 11.02 6.08 14.20

D. White noise

Another limiting case for robustness occurs for Gaussian
white noise (i.e., δ correlated), in which the power density
spectrum covers the entire frequency domain. This case has
been previously examined [11,50,51], and also the robustness
scaling with respect to the system dimension has been studied
for a class of variable-size systems with a particular dipole mo-
ment structure [33]. We briefly summarize the circumstances
to demonstrate the contrast between the robustness behavior
of different spectral regimes of noise. The robustness measure
for additive white noise becomes

KA = A2

2

∫ T

0

∫ T

0
Hε(t,t ′)δ(t − t ′)dt ′dt

= A2

2
Tr[Hε]

= A2T

4N
‖μ‖2. (41)

The fixed trace shows invariance to pulse shaping, and
robustness can only be increased through a shorter operation
time, T .
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Similarly, for multiplicative control noise the fixed Hessian
trace leads to

Kε,M = A2

2

∫ T

0

∫ T

0
Hε(t,t ′)ε(t)ε(t ′)δ(t − t ′)dt ′dt

= A2

4N
‖μ‖2f, (42)

in which case robustness can only be enhanced by decreasing
the fluence f . In both cases, white noise offers little opportu-
nity to enhance robustness.

V. CONCLUSION

This work utilized the control landscape Hessian to provide
a general framework for quantifying the robustness of targeted
unitary gate operations in the presence of random noise.
Ensembles of randomly generated, fidelity-optimized controls
revealed that distinct spectral regimes of noise exist where
robustness quality is highly diverse. Numerical examination of
low-frequency and midfrequency control noise demonstrated
that even though the total landscape curvature around any
optimal control point is fixed (i.e., the Hessian trace is
invariant to the control for a given T ), robust controls can
still correspond to landscape domains possessing curvature
that is favorable, with Hessian eigenfunctions oriented away
from the disturbances due to noise.

The challenges faced upon seeking optimal robust controls
are evident in Fig. 2, where the mean performance is 〈J 〉 =
J0 + 〈K〉, with J0 < 10−6 in the present work. Importantly,
in the regime of weak noise, 〈K〉 scales as A2 from the
noise correlation function strength in Eq. (28), with A = 0.01

chosen to represent ∼0.1% of the optimal field amplitude.
Based on these randomly sampled tests, robust performance
requires that the value of A should be further reduced, in
particular for the CNOT gate, to ensure fault-tolerant operation.
In addition, the left standard deviation σl in Eq. (35) also
scales as A2, so a reduction in A also leaves less room for
optimal field enhancement of robustness. These insights into
the robustness of controls are relevant to optimal control
experiments, and a full assessment of this matter calls for
further work exploring for optimally robust controls, as
well as potential trade-offs between fidelity and robustness.
Finally, the landscape perspective draws attention to the
equally important roles of control noise and system dynamics
when considering robustness. Thus, for designed quantum
devices (e.g., gates), balanced attention should be given to
alternative system realizations and the associated control noise
characteristics.
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